15-122: Principles of Imperative Computation

Recitation 1 Josh Zimmerman, Nivedita Chopra

Administrivia and general advice

Welcome to 15-122 section ' I'm and you can email me at
. Before we get started, | want to give you some
information that'll be useful to you, as well as some advice.

| have office hours, which | encourage you to go to if you're having any trouble with the material. The
sooner you ask questions, the sooner | can help you. (Everyone else on course staff has office hours too.
You can find those, and their contact information, on the course website.)

If at any point you don't understand something | say, ask questions! If | explained something in a way
that made you confused, you're almost certainly not the only one, and | want to clarify what | said.

There's a lot of useful reference material about CO at http://c0.typesafety.net/. If you have any questions
about anything related to CO, it's an excellent first resource.

tl:dr:

ASK ALL THE QUESTIONS! U

My office hours:

Everyone's office hours will be posted soon

http://c0.typesafety.net/ is useful!

Basic syntax

Semicolons: statements are terminated by semicolons. What this means is that at the end of most lines,
you'll need a semicolon. (exceptions are if statements, function definitions, use statements, and loops.)

Variables: variables must be explicitly declared and all variables have a type. Variables can never change
type after they are declared. Some of the types in CO are:

e int: whole numbers 2z where —231 < 2 < 231

e bool: Either true or false. Useful for conditionals, loops, and more.
e string: An ordered sequence of characters like “Hello!”

e char: A single character, like 'c’

e t[1: An array with elements of type t. Arrays are declared with alloc_array:
alloc_array(int, 10) will make an array that can hold 10 ints. This is a big distinction from
Python and other languages: arrays have fixed size, so you need to know how long your array will
be at the time you declare it.

Conditionals: It's an error to put something that isn't a bool in a conditional. Note that a || b is true
if either a or b are true (and false otherwise), and a && b is true if both a and b are true (and false

otherwise). These are called infix operators. The compiler mentions them if you make a mistake with
them, so it's good to be aware of this name for them.

Here's an example of if statements in CO :

1 if (condition) {

2 //do something if condition == true

31}

4 else if (condition2) {

5 //do something if condition2 == true (and condition == false)
6}

7 else {

8 //do something if condition == false and condition2 == false
91}

Loops: There are two kinds of loops in CO : while loops and for loops. While loops execute the loop
until the condition they're given is false. For loops execute the first statement they're given once, loop
until the second statement is false, and execute the last statement at the end of each iteration. These
two examples do the same thing. Here, the for loop is preferable but there are cases (like binary search
in an array, which we'll discuss later this semester) where while loops are cleaner.

While loop For loop
1 int x = 0; 1 for (int x = 0; x < 5; x++) {
2 while (x < 5) { 2 printint(x);
3 printint(x); 3 print("\n");
4 print("\n"); 4}
5 X++;
6}

Function definition: This example defines a function called add that takes two ints as arguments and
returns an int.

1 int add (int x, int y) {
return x + vy;

N

3}

Comments: use // to start a single line comment and /* ...*/ for multi-line comments. It's good style
to have a * at the beginning of each line in a multi-line comment.

Indentation and braces: Your code will still work if it's not indented well, but it's really bad style to indent
poorly. Python's indentation rules are good and you should generally follow them in CO too. CO uses
curly braces ({ and }) to denote the starts and ends of blocks, as seen above. For single-line blocks
it's possible to omit the curly braces, but that can make debugging very difficult if you later add in
another line to the block of code. For that reason, | highly encourage you to always use braces, even for
single-line statements.

Very Bad Bad Good
1if (x == 4) 1if (x == 4) 1if(x == 4) {
2 println("x is 4"); 2 println("x is 4"); 2 println("x is 4");
3}

Another important note about indentation is that you should choose either tabs or spaces and stay
consistent, since mixing styles makes your code unreadable if someone views your code with a different
number of spaces per tab.

Fix syntax my!

Now, ssh in to unix.andrew.cmu.edu and run these commands (don't forget the at the end of the

cp):

cd private

mkdir -p 122

cd 122

cp /afs/andrew.cmu.edu/usr5/jzimmerm/public/badSyntax.cO .

©“H H H H

If you're using the csh shell (which is the default, you should run the following command, which allows
you easy access to tools you'll need to use for the course. (If you're using bash, you should first run the
command csh, run exit after you're done, and then log out and log back in from the andrew machine.)

$ source /afs/andrew.cmu.edu/course/15/122/bin/setup-c0.csh

Then, use either emacs or vim (| personally prefer vim) and the CO compiler (cc0) to correct the syntax
errors in that file.

Compile using the following command.
$ ccO badSyntax.cO -o badSyntax

In this command, ccO refers to the CO compiler. Next comes the name of the file in which we've written
our program: badSyntax.c0O. This file is called the source code. Then we can specify the file that we
want to store the compiler’s output in using the -o option. (This file is called an executable). Here this
file is badSyntax. If the -o option is absent, the compiler's output is stored in a.out.

Then, when cc0 no longer gives errors, run with the following command. (in general, to execute a file,
you need to either put it in a “special” location like /bin or to specify a path to that file. In this case,
the file is in the current working directory so we prepend ./.

$./badSyntax

When you're done, your compiled version should output:

34

Checkpoint
If my first command was ccO badSyntax.cO what command would | use to run the executable?

