
15-122: Principles of Imperative Computation

Recitation 3 Josh Zimmerman

Hexadecimal notation
Just as we can represent numbers in base 2 (binary), we can represent numbers in other bases. Base 16, or hexadecimal
(often called hex), is one such base. For clarity, hex numbers are written with "0x" at the beginning, so it’s always
possible to tell what base they are. Hex is useful because it allows us to compactly represent binary numbers: each
hex digit corresponds to exactly 4 bits. For example, 0x4a = 01001010.

It’s worth noting that any base that is a power of 2 would have this property: in base 8, each digit represents 3 bits
and in base 32 each digit represents 5 bits. Hex is used partially because 4 evenly divides word sizes on almost all
computers (almost all computers in use today are 8, 16, 32, or 64 bit systems) and partially because the number of
digits needed grows slower than decimal while not needing to use many more characters.

Since hex is a higher base than base 10, we need more symbols for digits. Here’s a table of hex values and their
binary and decimal equivalents. (Note: the letters in hex numbers can be written in uppercase or lowercase).

Hex 0 1 2 3 4 5 6 7 8 9 a b c d e f
Bin. 0000 0001 0010 0011 0100 0101 0110 0111 1000 1001 1010 1011 1100 1101 1110 1111
Dec. 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Formally, a hex number n that is d digits long is equal to
∑d−1

i=0 ni16
i. (If working with that definition, keep in mind

that a letter in a hex number corresponds to an integer between 10 and 15, as given in the above table.)

For an example, convert the hex number 0x7f2c to binary.

ARGB images
We can represent colors using bits, too. In assignment 1, we represent images in an image format that uses the ARGB
color scheme: Alpha (transparency level), red, green, blue.

We split a 32-bit integer into 8-bit sections, 1 each for each of those sections.

Here’s a helpful visualization from Wikipedia:

(for a color version, you can look at http://www.cs.cmu.edu/~rjsimmon/15122-f13/rec/03.pdf, which you can
get to from the course calendar).

Each of these “ints” (really, they’re just sequences of 32 bits that we can pretend are ints) is one pixel in an image.
We can store an array of these pixels which, along with width and height data, allows us to construct an image.

You’ll take advantage of this fact on homework 1, and we’ll talk more about ARGB images and manipulating bits in
recitation on Friday.

1

http://www.cs.cmu.edu/~rjsimmon/15122-f13/rec/03.pdf


Bit maniuplation
So-called bitwise operations operate on integers one bit at a time: they treat all bits in a number as independent
units that don’t have anything to do with each other. Here are some tables illustrating the bitwise operators in C0 :

and
& 1 0
1 1 0
0 0 0

or
| 1 0
1 1 1
0 1 0

xor (exclusive or)
^ 1 0
1 0 1
0 1 0

complement
∼ 1 0

0 1

There are also shift operators. They take a number and shift it left (or right) by the specified number of bits. In C0 ,
right shifts sign extend : if the first digit was a 1, then 1s will be copied in as we shift. For shifts, note that it doesn’t
really make sense to shift by more bits than there are in the number. If you do so, C0 will give a division by 0 error.

Here are some examples (I’m assuming we’re using a 4-bit two’s complement system):

0101
& 1100

0100

0101
| 1100

1101

0101
^ 1100

1001

∼ 0101

1010

0101
>> 1

0010

1101
>> 1

1110

0101
<< 1

1010

1101
<< 1

1010

Note that left-shifting by k is equivalent to multiplying by 2k and that right-shifting by k is equivalent to dividing by
2k and rounding towards −∞.

Something that’s often very useful when working with individual bits is the idea of a mask. Masks are used to set,
get, invert, or do other operations on certain bits of a number with one bitwise operation.

Let’s look at some examples of masking so you can get a better idea of how it’s used. First, let’s write a function
that, given a pixel in the ARGB format, returns the green and blue components of it. Your solution should use only
&.

1 typedef int pixel;
2 int greenAndBlue(pixel p)
3 //@ensures 0 <= \result && \result <= 0xffff;
4 {
5
6
7 }

Now, let’s write a function that gets the alpha and red pixels of a pixel in the ARGB format. Your solution can use
any of the bitwise operators, but will not need all of them.

1 typedef int pixel;
2 int alphaAndRed(pixel p)
3 //@ensures 0 <= \result && \result <= 0xffff;
4 {
5
6
7 }

2



Two’s Complement
To represent negative numbers, we use the two’s complement system.

In unsigned (binary) arithmetic, a number n with k bits dk−1 . . . d0 would be: n =
∑k−1

i=0 di ∗ 2i (di is the ith digit
of n, where the 0th digit is the rightmost one)

For example, in 4-bit unsigned arithmetic, 1011 = 1 ∗ 20 + 1 ∗ 21 + 0 ∗ 22 + 1 ∗ 23 = 11.

In two’s complement, we modify this to allow us to have negative numbers. We make half of the numbers we represent
nonnegative and half of them negative. (0 is neither positive nor negative. If you have an n-bit two’s complement
representation, there are 2n−1 − 1 strictly positive numbers and 2n−1 negative numbers. This means that two’s
complement numbers that are n bits long must be at least −2n−1 and can be no more than 2n−1 − 1.)

Two’s complement arithmetic works like a clock (modularly), just like unsigned arithmetic does. Both of the below
“clock” diagrams show 4-bit two’s complement numbers. The left one shows the way they are interpreted and they
way humans understand them and the right one shows the way they are represented as binary in the computer.

0 0000
-1 1 1111 0001

-2 2 1110 0010
-3 3 1101 0011

-4 4 1100 0100
-5 5 1011 0101

-6 6 1010 0110
-7 7 1001 0111

-8 1000

Except for 0 and -8, each number is across from its negative in both diagrams. Something else interesting to note
here is that all negative numbers start with a 1 and all non-negative (positive and 0) numbers start with a 0. This is
not just a coincidence, and we’ll see why when we look at the formal definition of two’s complement.

To find the negative of a two’s complement number x, we simply flip all of the bits (so 1 becomes 0 and 0 becomes
1), and add one. The operator for flipping bits in C0 is ~. So, what this is saying is that -x == (~x) + 1. This
is a very convenient property, since it lets us do addition without worrying about whether the number is in two’s
complement or not. (C0 doesn’t have any unsigned types but other languages, including C, do and this property
allows for simpler hardware: we can use the same circuits to add unsigned and signed numbers.)

3



For example, let’s calculate 5+−5. 5 = 4+1 = 1 ∗ 22+1 ∗ 20, so its binary representation (if our integers are 4 bits
long) is 0101. If we flip the bits, we get 1010, and if we then add 1 to that, we get 1011. Now let’s do the addition:

0101
+ 1011
______
10000

However, since we’re working with 4 bits, we have nowhere to store that leading 1, so the final answer that the CPU
reports is 0000. So, in this case, two’s complement worked out: 5 +−5 = 0.

For another example, let’s calculate 5 +−1 in two’s complement arithmetic.

We already know that 5 = 0101. To find what −1 is, we take 0001, flip all of the bits, and add 1, giving us that -1
= 1110 + 1 = 1111.

Let’s add to verify.

0101
+ 1111
______
10100

But again, this gets truncated to just the last 4 bits, which is 0100, which we can verify is 4.

To get a bit more formal, a k-digit two’s complement number n is defined as follows: .

n = −dk−12
k−1 +

k−2∑
i=0

di2
i

So, in a 4-bit two’s complement system, −5 = 1011 = −1 ∗ 23 + 0 ∗ 22 + 1 ∗ 21 + 1 ∗ 20 = −8 + 2 + 1.

The fact that we negate the most significant bit is what causes two’s complement to work the way it does. If just the
most significant bit is on, then the number is as small as it can be, because we’re only subtracting and not adding.
If every bit is on, we come close to canceling out the negative, but are just short of it, since

∑n−2
i=0 2i = 2n−1 − 1.

Now, let’s formally prove that flipping the bits and adding 1 does, in fact, produce the negation. Work on this by
yourself or with other people to prove this.

4


