
15-122: Principles of Imperative Computation

Recitation 4 Solutions Josh Zimmerman

Overflow
Now, as an exercise, try to develop a precondition for the function safe_mult. For the sake of simplicity,
let’s just try to develop pre-conditions, assuming that a > 0 and b > 0 (you can try the other cases as
as an exercise):

Before we begin, let’s try to answer the following question: if a > 0 && b > 0, is it true that if a * b
> 0 that overflow did not happen? This should make it apparent why we adopted the strategy used in
safe_add.

Solution: a > 0 && b > 0: This time, attempting to compute a * b and check for overflow via the
expression a * b > 0 is actually wrong. If a and b are sufficiently large, a * b may actually be positive
(and therefore, a * b > 0 will not catch the overflow).

The solution is to observe that a <= int_max()/b, as int_max()/b will not overflow as b > 0 and 0
< int_max()/b < int_max().

This leads to the following pre-condition for the function safe_mult:

1 int safe_mult(int a, int b)
2 //@requires (a > 0 && b > 0 && a <= int_max()/b);
3 {
4 return a ∗ b;
5 }

Fibonacci and Arrays
Here’s a slightly more complicated loop: it’s a function that calculates the nth Fibonacci number more
efficiently than the naive recursive implementation. Assume that we have a function:

int slow_fib(int n)
//@requires n >= 0;
;

that calculates Fibonacci recursively (so it can be used as a reference function):

1 int fib(int n)
2 //@requires n >= 0;
3 //@ensures \result == slow_fib(n);
4 {
5 int[] F = alloc_array(int, n);
6 if (n > 0) {
7 F[0] = 0;
8 }
9 else {

10 return 0;
11 }
12 if (n > 1) {
13 F[1] = 1;

1



14 }
15 else {
16 return 1;
17 }
18 for (int i = 2; i < n; i++)
19 //@loop_invariant 2 <= i && i <= n;
20 //@loop_invariant F[i − 1] == slow_fib(i − 1) && F[i − 2] == slow_fib(i − 2);
21 {
22 F[i] = F[i − 1] + F[i − 2];
23 }
24 return F[n − 1] + F[n − 2];
25 }

Fill in the blanks in the code to show that there are no out of bounds array accesses.

Are the invariants strong enough to prove the postcondition?

Solution:

Array access

The conditions above are necessary and sufficient to show that there are no out of bounds array accesses.
We have the following:

(a) Before we reference F[0] or F[1], we check with conditional statements (lines 7 and 13) to make
sure the accesses are in bounds.

(b) Then, in the loop, our loop invariant guarantees that 2 <= i. Thus, when we access F[i - 2],
we can be sure that i - 2 >= 0, so we won’t be attempting to access a negative array element.

(c) Further, we know that i < n by the loop exit condition. As \length (F) == n (as we allocate F
with length n), accessing F[i] won’t lead to an error.

(d) Moreover, as F[i-1] is between F[i-2] and F[i], which are both valid accesses, accessing F[i-1]
won’t lead to an error.

(e) Finally, when we access F[n-2] and F[n-1], we won’t have a problem as n >= 2 (if we entered
the loop), so n - 2 >= 0, so F[n-2] is a safe access. The same can be said of accessing F[n-1]

Correctness

We will first show that the loop invariants are initially true and that they are preserved for each iteration
of the loop:

(1) 2 <= i && i <= n:

(a) Initialization:

i. i >= 2, since i is initialized to 2
ii. i <= n, since n >= 2 (by pre-condition and conditional checks before loop body). So, as

i = 2 initially, i <= n

(b) Preservation:

2



i. Assume that at the beginning of an iteration, 2 <= i && i <= n. As we enter the loop
body, i < n by the loop guard.

ii. The new value of i is i’ = i + 1
iii. Clearly, if i >= 2, then i’ = i + 1 >= 2 Also, if i < n, then i’ = i+1 <= n

(2) F[i-1] == slow_fib(i-1) && F[i-2] == slow_fib(i-2):

(a) Initialization:

i. Initially, i = 2 . So, F[i-2] = F[0] = 0 and F[i-1] = F[1] = 1.
ii. These values match slow_fib(0) and slow_fib(1) respectively, so the invariant is ini-

tially true.

(b) Preservation:

i. Assume that at the beginning of an iteration, F[i-1] == slow_fib(i-1) and F[i-2]
== slow_fib(i-2). As we enter the loop body, i < n.

ii. We set F[i] = F[i-1] + F[i-2] in the loop body and we increment i to i’ = i+1
iii. We have F[i’-1] =F[i+1-1] = F[i] = F[i-1] + F[i-2] = slow_fib(i) = slow_fib(i’-1),

by definition of the Fibonacci numbers.
iv. Also, F[i’-2] = F[i+1-2] = F[i-1] = slow_fib(i-1) = slow_fib(i’-2), as be-

fore.

As both loop invariants are true initially and are preserved, we can use them to show that the post-
condition is implied. Before we do that, though, we shall show that loop terminates.

Termination:

The loop terminates since i starts out as a number less than n and is incremented by 1 each iteration
until it reaches n. We know that i == n at termination by the negation of the loop guard (i >= n) and
the loop invariant (i <= n).

Implication of Post-condition:

(a) We know by the negated loop guard and the loop invariant 2 <= i && i <= n that i == n at
termination.

(b) Thus, we can substitute i = n in the second loop invariant, yielding F[n-1] == slow_fib(n-1)
&& F[n-2] == slow_fib(n-2).

(c) As we return F[n-1] + F[n-2] and by the definition of the Fibonacci numbers, F[n] = F[n-1]
+ F[n-2] = slow_fib(n). Hence, the post-condition is proven true.

3


