
15-122: Principles of Imperative Computation

Recitation 4 Josh Zimmerman

Overflow
Overflow can cause potentially nasty bugs, so it’s often advisable to check that your operations will not
cause overflow before performing them. For example, let’s add 7 + 1 using two’s complement arithmetic:

0111
+ 0001
______

1000

But 1000 = −1 ∗ 23 + 0 ∗ 22 + 0 ∗ 21 + 0 ∗ 20 = −8. So 1 + 7 = -8 in four-bit two’s complement
arithmetic, which is not what we wanted to happen. (Similarly, -8 - 1 does strange things—you should
play with that and see what happens.)

There’s some more weird behavior when we negate the minimum int (In a 4-bit system, that’s 1000.)
Recall that we define the negation of an integer x as -x = x+1. We then have the following:

-x = (~x+1) = (~1000 + 1) = (0111 + 1) = (1000) = x

This is an important oddity to be aware of: if you negate the minimum integer, you get the minimum
integer back.

Overflow can occur with unsigned integers as well. Let’s add 15+1 assuming that both are unsigned
integers:

1111
+ 0001
______

0000

Overflow is not a theoretical problem; there are real-world examples where integer overflow has led to
bugs.

(a) In the original Pac-Man game, the level counter was an unsigned 8-bit integer and could only store
values from 0-255 (in this case, the integers were unsigned types, not signed types that we used
in the examples above). Reaching level 256 would cause the counter to overflow, leading to a ’kill
screen’

(b) In the original Donkey Kong game, the amount of time to complete the level was directly dependent
on the level value and was calculated via a formula 100 x (10 x (level + 4)). Reaching level 22
would yield the calculation (100 x 260); because of integer overflow, this would be evaluated as
(100 x 4), leading to an impossibly short amount of time to complete the level.

Also, the majority of binary search and mergesort implementations contain bugs related to signed integer
overflow. We will discuss the implementations of these fundamental algorithms in upcoming lectures
(and identify areas where overflow can happen can cause errors).

1



So, clearly, overflow is bad; it is also a non-trivial problem to catch. Let’s discuss the process of
implementing a function int safe_add(int a, int b) that will use a precondition to ensure that the
calculation a+ b does not overflow. Let’s discuss the possible cases:

(a) a > 0 && b > 0: While it tempting to calculate the sum a+b and check for overflow via the
expression a+b > 0, this solution does not generalize well (i.e. actually perform the computation
that we want to check for overflow) although it will work in c0. A better method is to check if a
<= int_max() - b, as int_max() - b will not overflow (as b > 0).

(b) a < 0 && b < 0: Likewise, the expression a + b < 0 is not a good approach. We instead check
that a >= int_min() - b, as int_min() - b will not overflow (as b < 0)

(c) a <= 0 && b >= 0: In this case, a+b will not overflow (it will be between int_min() and
int_max())

(d) a >= 0 && b <= 0: In this case, a+b will not overflow (it will be between int_min() and
int_max())

This leads to the following pre-condition for the function safe_add:

Now, as an exercise, try to develop a precondition for the function safe_mult. For the sake of simplicity,
let’s just try to develop pre-conditions, assuming that a > 0 and b > 0 (you can try the other cases as
as an exercise):

Before we begin, let’s try to answer the following question: if a > 0 && b > 0, is it true that if a * b
> 0 that overflow did not happen? This should make it apparent why we adopted the strategy used in
safe_add.

1 int safe_mult(int a, int b)
2 /∗@requires
3 @∗/
4 {
5 return a ∗ b;
6 }

2



Arrays
Arrays are stored as addresses in C0. We’ll talk more about pointers later in the course, but for now it’s
sufficient to know that a variable representing an array stores the address of the array (i.e. where it is
located in memory) and that indexing into the array allows us to access the value of the element at that
index.

Like other variables, array variables can be assigned to other array variables. However, assigning ar-
ray variables just changes the reference that one array variable stores.

1 void addOne(int[] arr, int size)
2 //@requires size == \length(arr);
3 {
4 // It’s important to make sure that all array accesses are in bounds.
5 // Ideally, we should be able to prove that they are.
6 for (int i = 0; i < size; i++)
7 //@loop_invariant 0 <= i && i <= size;
8 {
9 //arr[i] gets the value at index i in array arr; we can assign

10 //arr[i] to another value or we can assign a variable to store
11 //the value at arr[i]
12 arr[i] += 1;
13 }
14 // When we take (loop invariant) and not(loop exit condition),
15 // we can easily conclude that i == size, which is often useful
16 }
17
18 int main()
19 {
20 int array_size = 2;
21
22 //allocate an int array of array_size elements, with all
23 //elements initialized to 0. Only way to create array in c0
24 int[] a = alloc_array(int, array_size);
25
26 //create an alias to a; any changes made to elements in a
27 // will be reflected in b
28 int[] b = a;
29
30 //@assert a[0] == 0;
31 //@assert b[0] == 0;
32
33 // We must pass the size of the array to the function because otherwise
34 // the function has no way of verifying that all array accesses are
35 // in bounds.
36 addOne(a, array_size);
37
38 // The function call changes the area in memory that a and b
39 // refer to, so it changes both a and b when we access them.
40 assert (a[0] == 1 && a[1] == 1);
41 assert (b[0] == 1 && b[1] == 1);
42
43 return 0;
44 }

3



Let’s try a variation of addOne, but with a twist. We will use the same main function as given above.
1 void addOne(int[] arr, int size)
2 //@requires size == \length(arr);
3 {
4 arr = alloc_array(int, size);
5 for (int i = 0; i < size; i++)
6 //@loop_invariant 0 <= i && i <= size;
7 {
8 arr[i] += 1;
9 }

10 }

Although we assigned arr to a new array and added one to each element in the new array, the changes
are not reflected back in the calling function! The reason for this is that c0 is a call by value language.
This means that when we pass arguments to a function, copies of the arguments are passed. Changes
made to function’s arguments will not be reflected back in the calling function.

Fibonacci and Arrays
Here’s a slightly more complicated loop: it’s a function that calculates the nth Fibonacci number more
efficiently than the naive recursive implementation. Assume that we have a function:

1 int slow_fib(int n)
2 //@requires n >= 0;
3 ;

that calculates Fibonacci recursively (so it can be used as a reference function):
1 int fib(int n)
2 //@requires ;
3 //@ensures \result == slow_fib(n);
4 {
5 int[] F = alloc_array(int, n);
6 if (n > ) {
7 F[0] = 0;
8 }
9 else {

10 return 0;
11 }
12 if (n > ) {
13 F[1] = 1;
14 }
15 else {
16 return 1;
17 }
18 for (int i = 2; i < n; i++)
19 //@loop_invariant ;
20 /∗@loop_invariant F[i − 1] == slow_fib(i − 1)
21 && F[i − 2] == slow_fib(i − 2); @∗/
22 {
23 F[i] = F[i − 1] + F[i − 2];
24 }
25 return F[n − 1] + F[n − 2];
26 }

Fill in the blanks in the code to show that there are no out of bounds array accesses. Are the invariants
strong enough to prove the postcondition?

4


