
15-122: Principles of Imperative Computation

Recitation 5 Josh Zimmerman

Basic linear search: recap
(Note: I assume the is_in and is_sorted functions exist as defined in class.)

1 int lin_search(int x, int[] A, int n)
2 //@requires 0 <= n && n <= \length(A);
3 //@requires is_sorted(A, 0, n);
4 /∗@ensures (−1 == \result && !is_in(x, A, 0, n))
5 || ((0 <= \result && \result < n) && A[\result] == x); @∗/
6 {
7 for (int i = 0; i < n; i++)
8 //@loop_invariant 0 <= i && i <= n;
9 //@loop_invariant !is_in(x, A, 0, i);

10 {
11 if (A[i] == x) return i; // We found what we were looking for!
12 else if (x < A[i]) return −1; // Can’t possibly be to the right
13 //@assert A[i] < x;
14 }
15 return −1;
16 }

Now, let’s look at this code and see if we can prove that it works. Work on your own or with other
people to follow the four-step process to proving that linear search works. (Remember: Show that the
loop invariants hold initially, that they are preserved, that the loop invariants and the negation of the
loop condition imply the postcondition, and that the loop terminates.)
I claim we can search a sorted array faster than this. We’ll discuss why in lecture tomorrow, but for now
try to think about how you could improve on this search method.

Linear search for integer square root
Recall linear search from lecture. We can apply the same concept to find the integer (since c0 doesn’t
have floats!) square root of a given number. The integer square root of n is defined to be the greatest
non-negative integer, m, such that m2 ≤ n.

1 int isqrt (int n)
2 //@requires n >= 0;
3 //@ensures \result ∗ \result <= n;
4 //@ensures n < (\result+1) ∗ (\result+1) || (\result+1) ∗ (\result+1) < 0;
5 {
6 int i = 0;
7 int k = 0;
8 while (0 <= k && k <= n)
9 //@loop_invariant i ∗ i == k;

10 //@loop_invariant i == 0 || (i > 0 && (i−1)∗(i−1) <= n);
11 {
12 // Note: (i + 1)∗(i + 1) == i ∗ i + 2∗i + 1 and k == i ∗ i
13 k = k + 2∗i + 1;
14 i = i + 1;
15 }
16 // This subtraction is necessary since we know k > n now
17 // and i ∗ i == k. i is barely too large to be the square root of n
18 return i − 1;
19 }

1

Note that this function is very similar to the linear search function we discussed. It’s essentially equivalent
to searching through a sorted array containing all non-negative ints less than n, looking for the square
root of n. There is a similar improved algorithm that we’ll discuss on Friday.

Contract Checking
A water main break in GHC has, confusingly, broken the C0 compiler’s -d option! C0 contracts are
now being treated as comments, and the only way to generate assertion failures is with the assert()
statements.

Insert assert() statements into the code below so that, when the code runs, all operations (C0 state-
ments, conditional checks, and assertions) are performed at runtime in the exact same sequence that
would have occured if we compiled with -d. Not all of the blanks need to be filled in.

1 int mult(int x, int y)
2 //@requires x >= 0 && y >= 0;
3 //@ensures \result == x∗y;
4 {
5 /∗ 1 ∗/ /∗ 1 ∗/______________________________
6 int k = x; int n = y;
7 int res = 0;
8
9 /∗ 2 ∗/ /∗ 2 ∗/______________________________

10 while (n != 0)
11 //@loop_invariant x ∗ y == k ∗ n + res;
12 {
13 /∗ 3 ∗/ /∗ 3 ∗/______________________________
14 if ((k & 1) == 1) res = res + n;
15 k = k >> 1;
16 n = n << 1;
17 /∗ 4 ∗/ /∗ 4 ∗/______________________________
18 }
19 /∗ 5 ∗/ /∗ 5 ∗/______________________________
20
21 /∗ 6 ∗/ /∗ 6 ∗/______________________________
22 return res;
23 /∗ 7 ∗/ /∗ 7 ∗/______________________________
24 }
25
26 int main() {
27 int a;
28
29 /∗ 8 ∗/ /∗ 8 ∗/______________________________
30 a = mult(3,4);
31
32 /∗ 9 ∗/ /∗ 9 ∗/______________________________
33 return a;
34 }

2

