15-122:

Principles of Imperative Computation

Recitation 6 Solutions Josh Zimmerman

Debugging tips and tricks

http://cO.typesafety.net/tutorial/Debugging-CO-Programs.html has some very useful tips on
debugging, and addressess common pitfalls. I'll summarize some of the points here. | highly encourage
you to read over that site on your own time for more details.

e Compilation errors

Lexical errors: Invalid numbers or variable names, like 0a4, generate an error.

Syntax errors are generated by sequences of characters that don't make sense, like £(, 4);
orx + 3 =4,

Type errors arise when you write expressions that don't make sense based on the types of
variables, like true == 3 or 3 + ‘hello’.

Unexpected EOF errors are generally caused by an unmatched brace, parenthesis, or similar
character. Most editors can be configured to highlight unmatched parens and braces.

Undeclared variable errors happen if you use a variable before declaring it.

e Runtime errors

Floating point or division by zero errors generally indicate that you divided by zero, or divided
int_min() (0x80000000) by -1. They will also occur if you try to shift left or right by 32
or more or by a number less than 0.

Segmentation faults occur if you attempt to access memory that you can't access. Right now,
the only thing we've covered that can cause this is out-of-bounds array access (accessing a
negative index of an array or accessing something past the end of the array), but later we'll
see that NULL pointer dereferences can also cause this.

Contract errors occur when a contract is violated and contract checking is turned on.

e Weird behavior with conditionals and loops: If some code that should be running in a conditional
or loop isn't, make sure you have braces around the block. It's much harder to debug otherwise.

while (some_condition)
printint(i);
print(‘‘\n’’);

will only print the newline after some_condition is false. You should add braces before and after
the loop to get correct behavior.

e Printing: CO does not print anything until it sees a newline. This can cause things to get printed
at unexpected times when you are debugging your program. You should ALWAYS print a newline
after any string you print, using either print (‘“\n’>) or println("). println will work for any
string: println(‘‘Hello!’’) is the same as print (‘‘Hello!\n’’);

Using contracts to debug is invaluable. If you can catch array out of bound errors or arithmetic before
they happen, the extra information contract failures give you could save hours of debugging.


http://c0.typesafety.net/tutorial/Debugging-C0-Programs.html
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Print statements are also very useful to help investigate why your contracts are failing or your code is
returning strange results. They let you examine the values of variables and see where things go wrong.

Another useful tactic is to use a small example, and see what your code does with it by evaluating your
code by hand. When you evaluate by hand, you can see exactly where a mistake happens as soon as
possible, allowing you to catch and fix it quickly.

Binary search

So, we look at half of the array, and we then look at half of that, and so on. How many halvings will it
take until we're looking at 1 element?

Solution: We're looking for 7 such that % =1, or n = 2¢. The solution to this, of course, is log,(n) = 1.
This gives a rough approximation of how the algorithm’s performance changes as the input array size
grows. We'll talk more formally about this next week.

Here's the code for binary search. We're going to look at a proof of its correctness.

int binsearch(int x, int[] A, int n)

//@requires 0 <= n && n <= \length(A);
//@requires is_sorted(A, 0, n);

/+@ensures (—1 == \result && !is_in(x, A, 0, n))

|| ((0 <= \result & \result < n) && A[\result] == x);
@x/
{
int lower = 0;
int upper = n;
while (lower < upper)
//@loop_invariant 0 <= lower && lower <= upper && upper <= n;
//@loop_invariant lower == 0 || A[lower—1] < x;
//@loop_invariant upper == n || Alupper] > x;
{
int mid = lower + (upper—1lower)/2;
if (A[mid] < x) {
// We can ignore the bottom half of the array now, since we
// know that every thing in that half must be less than x
lower = mid+1;
} else if (A[mid] > x) {
// We can ignore the upper half of the array, since we know
// that everything in that half must be greater than x
upper = mid;
} else {
//@assert A[mid] == x;
return mid;
}
}
//@assert lower == upper;
return —1;
}

It's not immediately obvious from looking at this code that it works. So, let's prove that it does, by
showing that the precondition implies the loop invariant will be true at the start of the first loop, that
if the loop invariant is correct after one iteration of the loop it will be correct after the next iteration,
that if the loop terminates and the loop invariants hold, then the postcondition holds, and that the loop
does terminate.



Solution:

Precondition implies loop invariant.

Based on the precondition, we know that 0 <= n. By lines 9 and 10, we know that 0 <= lower and
upper <= n. We also know that lower <= upper, since lower == 0 and upper == n and 0 <= n.

Further, lower == 0 and upper == n so the other two loop invariants are true.

Loop invariants are preserved.

Suppose the loop invariants are true at the start of one loop. We now look at one iteration of the loop.
mid’ = lower + (upper - lower) / 2
We have 3 cases to consider.

Either A[mid’] < x, Almid’] > x, or A[mid’] ==

Almid’] < x: In this case, lower’ = mid’ + 1. Sincemid’ >= lower ((upper - lower)/2 is non-negative),

we know that lower’ > lower >= 0. Since we're in the body of the loop, we know lower
< upper. Suppose now that lower’ > upper. Then, lower + (upper - lower)/2 + 1 >
upper. Rearranging, we get that 2*lower + upper - lower + 2 > 2xupper. Simplifying, we
get lower + 2 > upper. Since lower < upper, this means that lower = upper - 1. However,
in that case, (upper - lower)/2 == 0 because we round, so lower’ == upper. Thus, lower
<= upper. upper’ == upper, so it must still be less than or equal to n.

Therefore, the first loop invariant holds.

The second loop invariant must hold because A[mid’] < x and lower’ = mid’ + 1. Thus,
Allower’ - 1] == A[mid’] < x. (Note that lower’ > 0, since mid >= 0).

The third loop invariant must hold because upper’ == upper.

A[mid’] > x: In this case, upper’ == mid’. 0 <= lower’ since lower’ == lower.
By the loop guard, lower < upper. Since lower < upper,mid’ = lower + (upper - lower)/2,
(upper - lower)/2 > 0, and upper’ = mid, we know that lower == lower’ <= mid’ ==

Almid]

upper’. Thus, lower’ <= upper’. Since mid’ <= upper, upper’ <= upper. [hat means
that upper’ <= n.

Finally, Lower is unchanged, so 0 <= lower still holds.

The second loop invariant must hold because lower’ == lower.
The third loop invariant holds because upper’ == mid’ and A[mid’] > x. Because mid’ < n,
we can access A[upper’] == A[mid’], which is greater than x since we were in this case.

== x In this case, we return immediately, so we never check the loop invariants again.

Thus, the loop invariants hold.



Loop invariants and negation of loop condition imply postcondition.

Next, we show that if the loop invariants hold and we exit the loop, the postcondition holds.
We can exit the loop in two ways: either we enter the else branch or lower >= upper.

In the first case, we know A[mid’] == x since we didn't enter any other case and that this array access
is in bounds by the loop invariant, so the postcondition follows.

In the second case, we know lower >= upper. So, by the first loop invariant, we know lower ==
upper.

Now we split into cases based on the second and third loop invariants. Either lower == 0 (and thus
upper == 0), or upper == n (and thus lower == n), or neither of those are true and so A[lower -
1] < x && Alupper] > x.

Case 1. A[lower - 1] < x && Alupper] > x:

We know that A[lower] > x since lower == upper. Since the array is sorted, x would have to
be between indices lower - 1 and lower, which isn't possible. Thus, it isn't in the array.

Case 2. lower == 0 and upper ==
Thus, either n == 0 (so x isn't in the array), or A[upper] == A[lower] == A[0] > x (by loop
invariant 3). Since A is sorted, this means that x is not in A.

Case 3. upper == n && lower == n:
By the second loop invariant, we know thatn == Oor A[n - 1] == A[upper - 1] == A[lower

- 1] < x by the second loop invariant. Since A is sorted, that means x cannot be in A.

Termination. The loop must terminate since the interval between lower and upper is strictly decreasing
in size. If we find the element we're searching for, we return. Otherwise, we eventually get to a point
when lower == upper and we're done.



