
15-122: Principles of Imperative Computation

Recitation 7 Josh Zimmerman

Practice!
1. Rank these big-O sets from left to right such that every big-O is a subset of everything to the right
of it. (For instance, O(n) goes farther to the left than O(n!) because O(n) ⊂ O(n!).) If two sets are
the same, put them on top of each other.

O(n!) O(n) O(4) O(n log(n)) O(4n+ 3) O(n2 + 20000n+ 3) O(1) O(n2) O(2n)
O(log(n)) O(log2(n)) O(log(log(n)))

Solution:
O(4) O(log(log(n))) O(log(n)) O(log2(n)) O(n) O(n log(n)) O(n2 + 20000n+ 3) O(2n) O(n!)
O(1) O(4n+ 3) O(n2)

2. Using the formal definition of big-O, prove that n3 + 300n2 ∈ O(n3).

Solution: n3 + 300n2 ≤ n3 + 300n3 for all n > 1. n3 + 300n3 = 301n3. So, for all n > 1,
n3 + 300n2 ≤ 301n3. We have n0 = 1, c = 301 if we want to plug back in to the formal definition.

3. Using the formal definition of big-O, prove that if f(n) ∈ O(g(n)), then k ∗ f(n) ∈ O(g(n)) for
k > 0.

One interesting consequence of this is that O(logi(n)) = O(logj(n)) for all i and j (as long as they’re
both greater than 1), because of the change of base formula:

logi(n) =
logj(n)

log(i)

But 1
log(i) is just a constant! So, it doesn’t matter what base we use for logarithms in big-O notation.

Solution: Since f(n) ∈ O(g(n)), we know that there exist some n0 ∈ R and c ∈ R+ such that
f(n) ≤ c ∗ g(n) for all n > n0.

We can multiply both sides by k to obtain k ∗ f(n) ≤ k ∗ c ∗ g(n) for all n > n0.

So, if we set c1 = k∗c, then we know that k∗f(n) ≤ c1∗g(n) for all n > n0. Thus, k∗f(n) ∈ O(g(n)).

1


