15-122: Principles of Imperative Computation

Recitation 7

Josh Zimmerman

Practice!

1. Rank these big-O sets from left to right such that every big-O is a subset of everything to the right of it. (For instance, O(n) goes farther to the left than O(n!) because $O(n) \subset O(n!)$.) If two sets are the same, put them on top of each other.

 $\begin{array}{cccc} O(n!) & O(n) & O(4) & O(n\log(n)) & O(4n+3) & O(n^2+20000n+3) & O(1) & O(n^2) & O(2^n) \\ O(\log(n)) & O(\log^2(n)) & O(\log(\log(n))) \end{array}$

Solution:

 $\begin{array}{cccc} O(4) & O(\log(\log(n))) & O(\log(n)) & O(\log^2(n)) & O(n) & O(n\log(n)) & O(n^2+20000n+3) & O(2^n) & O(n!) \\ O(1) & & O(4n+3) & O(n^2) \end{array}$

2. Using the formal definition of big-O, prove that $n^3 + 300n^2 \in O(n^3)$.

Solution: $n^3 + 300n^2 \le n^3 + 300n^3$ for all n > 1. $n^3 + 300n^3 = 301n^3$. So, for all n > 1, $n^3 + 300n^2 \le 301n^3$. We have $n_0 = 1$, c = 301 if we want to plug back in to the formal definition.

3. Using the formal definition of big-O, prove that if $f(n) \in O(g(n))$, then $k * f(n) \in O(g(n))$ for k > 0.

One interesting consequence of this is that $O(\log_i(n)) = O(\log_j(n))$ for all *i* and *j* (as long as they're both greater than 1), because of the change of base formula:

$$\log_i(n) = \frac{\log_j(n)}{\log(i)}$$

But $\frac{1}{\log(i)}$ is just a constant! So, it doesn't matter what base we use for logarithms in big-O notation.

Solution: Since $f(n) \in O(g(n))$, we know that there exist some $n_0 \in \mathbb{R}$ and $c \in \mathbb{R}^+$ such that $f(n) \leq c * g(n)$ for all $n > n_0$.

We can multiply both sides by k to obtain $k * f(n) \le k * c * g(n)$ for all $n > n_0$.

So, if we set $c_1 = k * c$, then we know that $k * f(n) \le c_1 * g(n)$ for all $n > n_0$. Thus, $k * f(n) \in O(g(n))$.