
15-122: Principles of Imperative Computation

Recitation 10 Solutions Josh Zimmerman

Practice!
(Credit for this section goes to CMU alumna Caroline Buckey; it has been updated since by Alex Cappiello
and Rob Simmons.)

Suppose you have the implementation using linked lists shown in lecture. Specifically, you have the
following structs:

1 struct list_node {
2 int data;
3 struct list_node∗ next;
4 };
5 typedef struct list_node list;
6
7 struct linkedlist_header {
8 list∗ start;
9 list∗ end;

10 };
11 typedef struct linkedlist_header linkedlist;

In lecture, we talked about the is_segment(start, end) function that tells us we can start at start,
follow next pointers, and get to end without ever encountering a NULL. (We won’t worry about the
problems with getting is_segment to terminate in this recitation.) A linkedlist is a non-NULL pointer
that captures a reference to both the start and end of a linked list.

1 bool is_linkedlist(linkedlist∗ L) {
2 if (L == NULL) return false;
3 return is_segment(L−>start, L−>end);
4 }

Recall from lecture that we always have one “dummy” node at the end of our linked list segments. Its
fields are uninitialized; it simply ensures that we never need to worry about start or end being null.

Creating a new linked list
Here’s the code that creates a new linked list with one non-dummy node. Suppose linkedlist_new(12)
is called. For each of lines 4-9 (inclusive) draw a diagram that shows the state of the linked list after
that line executes. Use X for struct fields that we haven’t initialized yet.

1 linkedlist∗ linkedlist_new(int data)
2 //@ensures is_linkedlist(\result);
3 {
4 list∗ p = alloc(struct list_node);
5 p−>data = data;
6 p−>next = alloc(struct list_node);
7 linkedlist∗ L = alloc(struct linkedlist_header);
8 L−>start = p;
9 L−>end = p−>next;

10 return L;
11 }

1



4.

Solution:

p	
  

L	
  

data	
   next	
  

5.

Solution:

p	
  

L	
  

data	
   next	
  

12	
  

6.

Solution:

p	
  

L	
  

data	
   next	
  

12	
  

data	
   next	
  

7.

Solution:

p	
  

L	
  

data	
   next	
  

12	
  

data	
   next	
  

start	
   end	
  

8.

Solution:

p	
  

L	
  

data	
   next	
  

12	
  

data	
   next	
  

start	
   end	
  

9.

Solution:

p	
  

L	
  

data	
   next	
  

12	
  

data	
   next	
  

start	
   end	
  

2



Adding to the end of a linked list
We can add to either the start or the end of a linked list. The following code adds a new list node to
the end.

1 void add_end(linkedlist∗ L, int x)
2 //@requires is_linkedlist(L);
3 //@ensures is_linkedlist(L);
4 {
5 list∗ p = alloc(struct list_node);
6 L−>end−>data = x;
7 L−>end−>next = p;
8 L−>end = p;
9 }

Suppose add_end(L, 3) is called on a linked list L that contains before the call, from start to end, the
sequence (1, 2). Draw the state of the linked list after each of lines 5 - 8 (inclusive). Include the list
struct separately before it has been added to the linked list.

5.

Solution:

L	
  

x	
   3	
  

p	
  

data	
   next	
  

1	
  

data	
   next	
  

start	
   end	
  

data	
   next	
  

2	
  

data	
   next	
  

6.

Solution:

L	
  

x	
   3	
  

p	
  

data	
   next	
  

1	
  

data	
   next	
  

3	
  

start	
   end	
  

data	
   next	
  

2	
  

data	
   next	
  

7.

Solution:

L	
  

x	
   3	
  

p	
  

data	
   next	
  

1	
  

data	
   next	
  

3	
  

start	
   end	
  

data	
   next	
  

2	
  

data	
   next	
  

8.

Solution:

L	
  

x	
   3	
  

p	
  

data	
   next	
  

1	
  

data	
   next	
  

3	
  

start	
   end	
  

data	
   next	
  

2	
  

data	
   next	
  

3



Adding to the start of a linked list
With the previous example in mind, can you think about what code would be necessary if we instead
wanted to add a new list node to the start of a linked list?

1 void add_start(linkedlist∗ L, int x)
2 //@requires is_linkedlist(L);
3 //@ensures is_linkedlist(L);
4 {
5 list∗ p = alloc(struct list_nodes);
6 p−>data = x;
7 p−>next = L−>start;
8 L−>start = p;
9 }

Removing the first item from a linked list
This is the code that removes the first element from a linked list. If it were not for the second precondition,
we might remove the dummy node! This would almost certainly cause the postcondition to fail.

1 int remove(linkedlist∗ L)
2 //@requires is_linkedlist(L);
3 //@requires L−>start != L−>end;
4 //@ensures is_linkedlist(L);
5 {
6 int x = L−>start−>data;
7 L−>start = L−>start−>next;
8 return x;
9 }

Suppose remove(L) is called on a linked list L that contains before the call, from start to end, the
sequence (4, 5, 6). Draw the state of the linked list after lines 6 and 7 execute. Include an indication
of what data the variable x holds.

6.

Solution:

L	
  

x	
   4	
  

data	
   next	
  

4	
  

data	
   next	
  

start	
   end	
  

data	
   next	
  

5	
  

data	
   next	
  

6	
  

7.

Solution:

L	
  

x	
   4	
  

data	
   next	
  

4	
  

data	
   next	
  

start	
   end	
  

data	
   next	
  

5	
  

data	
   next	
  

6	
  

4


