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15-122: Principles of Imperative Computation

Recitation 12 Josh Zimmerman

Amortized analysis
Amortized analysis lets us consider the runtime behavior of a sequence of operations of an algorithm.

It lets us take a more nuanced view of the runtime of an algorithm: if there's some incredibly rare
operation that takes a long time to do, it doesn't make sense to characterize the entire performance of
the algorithm by that one operation. By using amortized analysis, we can get a more accurate view of
how the algorithm will actually run.

Unbounded arrays

Unbounded arrays are implemented as pointers to struct uba_headers:

struct uba_header {
int size;
int limit;
elem[] data;

Y

We're going to discuss a variation on the UBAs presented in class to give a different example of amortized
analysis and discuss

When implementing unbounded arrays on an embedded device, a programmer is concerned that doubling
the size of the array when we reach its limit may use precious memory resources too aggressively. So she
decides to see if she can increase it by a factor of % = 1.5 instead, rounding down if the result is not an
integral number.

This means that it won't make sense to have fewer than elements in the array, because
otherwise you might resize the array and get an array that wasn't any bigger. This would need to be
reflected in the data structure invariant!

We're also going to resize the arrays a little bit earlier than the UBAs we discussed in lecture (which
means we may use a bit more memory sometimes!) to make sure that we never end up with a full array.
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Make sure you know how to write a data structure invariant for this modified UBA:

bool is_uba(struct uba_header* U) {
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We now carry out the the amortized analysis for this version of unbounded arrays. We'll start right after
we've resized the array, when the size of the array is s and the limit of the array is | = 3s/2. We'll show
that, assuming we start out with some non-zero number of tokens k, the next resizing of the array, from
size [ to size I = 31/2 = 9s/4, can be paid for by the cost (in tokens) of the operations that happen
before that resize. (Just assume s is divisible by 4 for the purposes of this questions.)

Most of the operations require us to spend 1 token because we write to the U->data array exactly once.
In addition, we need to reserve tokens for a total amortized cost of tokens.

Starting from a 2/3 full array, if we write into the old array every time, then after insertions
we will fill up the old array completely.

At this point, we have a total of tokens, and we need to copy tokens into
the newly allocated array of size I’ = 31/2.

After all those copies, we have tokens left. This is no smaller than %k, and we have
considered the worst case, so we will never run out of tokens.

You can try running through this analysis with other resizing factors, like tripling the size of the array or
multiplying it by 5/4, 4/3, or 11/10.

If we were nervous about our analysis, we could add a field tokens to our data structure and include the
condition that this field must be greater than or equal to 0. That way, if we ever drive our token count
below zero, the is_uba postcondition will fail.

void uba_add(uba U, elem e)
//@requires is_uba(U);
//@ensures is_uba(U);

{
U—>tokens = U—>tokens + ____________ s /* Amortized cost of uba_add */
U—>data[U—>size] = e; /x Actually write to the array */
U—>tokens——; /x This write costs us 1 token x/
U—>size++;
if (U->size == U—>1limit) {
assert(U—>size <= (max_int()/3)*2 + 1); /x check for overflow x/
uba_resize(U, 3x(L—>size/2); /x resize, rounding down x/
}
}
void uba_resize(uba L, int new_limit)

//@requires is_uba(L);
//@requires L—>size < new_limit;

//@ensures is_uba(L);
//@ensures L—>1imit == new_limit;
{
elem[] B = alloc_array(elem, new_limit);
for (int i = 0; i < L—>size; i++)
//@loop_invariant 0 <= 1 && 1 <= L—>size;
{
B[i] = L—>datalil; /* Copy over one array element x/
L—>tokens——; /x This copy has cost 1 x/
)
L—>1limit = new_limit;
L—>data = B;
}



