
15-122: Principles of Imperative Computation

Recitation 17 Josh Zimmerman, Arjun Hans

Backtracking
Backtracking search is very important to the next homework, so we’re going to take a few minutes to
review it.

The key idea behind backtracking search is that we try possibilities in some order and then backtrack
if we get to a case where we can’t possibly solve the problem we’re trying to solve. In the case of peg
solitaire, this could correspond to a board with no legal moves that isn’t a winning board.

It’s often conceptually useful to visualize backtracking search with a tree diagram, but we do not normally
actually build a tree. It’s useful for talking about how algorithms work, but in practice we use some
combination of recursion, stacks, queues, or priority queues to implement a backtracking search.
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Your search algorithm for peg solitaire will use depth-first search. Let’s briefly discuss it:

Depth-first simply goes as deep as possible. We first generate a set of all the possible moves from a
position. We then sequentially choose a move from the set of moves and go to the new position formed
by making the chosen move. We then recursively generate a new set of moves and choose a new move
from the set of moves.

If we come across a solution, we’re done: we’ve reached our goal. If we come across a state where we
have no more valid moves and we have not found the, we backtrack to the previous position and try a
different move.

Let’s try to execute DFS on this tree. Suppose that we are trying to find the state after move 3.1.
Suppose that we choose moves in ascending numerical order (so we will first choose move 1 before move
2).

(i) From our Initial State, we can make moves 1,2 and 3. We first make move 1, reaching state (After
move 1).

(ii) From state (After Move 1), we can make moves 1 and 2. We first choose move 1, reaching state
(After move 1.1)

(iii) There are no moves to be made from state (After move 1.1). We backtrack to state (After move
1) and try move 2, reaching state (After move 1.2).
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(iv) There are no moves to be made from state (After move 1.2). We backtrack to state (After move
1). There are now no remaining moves to be made from state (After move 1). We backtrack to
the Initial State

(v) We now try move 2, reaching state (After move 2). From state (After move 2), we can make move
1. We choose move 1, reaching state (After move 2.1)

(vi) There are no moves to be made from state (After move 2.1). We backtrack to state (After move
2). There are now no more moves to be made from state (After move 2). We backtrack to the
Initial State and try move 3, reaching state (After move 3)

(vii) From state (After move 3) we can make moves 1,2 and 3. We choose move 1, reaching state (After
move 3.1), which is our goal.

DFS can be easily implemented by using recursion: in a given state (say, the state we’re in after move
3.1), we see what moves we can make. For each possible move (there are three in our example tree), we
then call our search function recursively on the (first on the state after move 3.1.1, then, if that doesn’t
work, on the state after move 3.1.2, and then, if that doesn’t work, on the state after move 3.3.3).

A final note: it’s somewhat wasteful to do the same search twice, but this will happens all the time in
your peg2 solution for peg solitaire. Consider the following sub-board:

...
...

...
· · · ∗ ∗ o · · ·
· · · ∗ ∗ o · · ·

...
...

...

We reach the position below by first moving moving the top-left peg, then the bottom left peg. We can
also reach this position by first moving the bottom-left peg, then the top-left peg.

...
...

...
· · · o o ∗ · · ·
· · · o o ∗ · · ·

...
...

...

But if there’s no solution from the board at the bottom, we’ll find that out twice - once for each way we
can make moves to get from the top board to the bottom one.

If we want to avoid that, we need to remember all the boards that we’ve decided don’t have solutions.
This can save us a lot of time, but it requires a lot of space. In the bonus part of peg lab, you will do
this using hash tables.

Binary search trees—a quick recap
Binary search trees are an implementation of associative arrays in a tree structure.

We maintain the invariant (an ordering invariant). For every node in the tree:

(a) All the elements in the left subtree have keys smaller than that of the node

(b) All elements in the right subtree have keys greater than than that of the node

2



We have seen in lecture that the asymptotic complexity of insertion/lookup in a BST is O(log n). While
this is slower than the O(1) insertion/lookup time with hash tables, there are some good reasons why
we may want to use BSTs instead:

(a) Hash tables only have O(1) insertion/lookup time if the hashing function has a good key distribu-
tion. Otherwise, if most of the elements hash to a small number of chains, insertion/lookup will
slow down to linear time.

(b) Also, hash tables require us to allocate large backbone arrays; a number of these may be empty
throughout the hash table’s usage, which wastes memory.

There are some applications in which hash tables are preferable and some in which BSTs are preferable,
so it’s a matter of evaluating the specific case and deciding which data structure works better for it.

Let’s play around with a binary search tree visualization so we can see how the ordering invariants work
out in practice. We’ll be using http://www.cs.usfca.edu/~galles/visualization/BST.html.

One important thing to note is that BSTs are not always balanced, and so we won’t necessarily always
have O(log(n)) runtime for the common operations. This is largely dependent on the order in which the
keys are inserted.

For example, if we insert the keys 1,2 and 3 in the order 2, 1, 3, we see that a balanced tree is formed.
However, if the key are inserted in the order 1,2,3, we see that tree is not balanced; it resembles a linked
list,which has linear insertion/lookup time. We’ll see how to fix the problem next week when we talk
about self-balancing binary trees.

is_ordered
Here’s the is_ordered code from lecture. Remember that we require that elem be a pointer to some-
thing. This allows us to use NULL as a special value that we can use in bst_lookup to indicate that the
key was not found in the table.

Also remember that key_compare(k1, k2)’s return value is less than 0 if k1 < k2, is equal to 0 if
k1 = k2, and is greater than 0 if k1 > k2. (You can remember this by thinking of the special case when
k1 and k2 are integers and we can just return k1− k2.) ‘

bool is_ordered(tree* T, elem lower, elem upper) {
if (T == NULL) return true;
if (T->data == NULL) return false;
key k = elem_key(T->data);
// Check that the key is larger than the lower bound
if (!(lower == NULL || key_compare(elem_key(lower), k) < 0)) {

return false;
}
// Check that the key is smaller than the upper bound
if (!(upper == NULL || key_compare(k, elem_key(upper)) < 0)) {

return false;
}
return is_ordered(T->left, lower, T->data)

&& is_ordered(T->right, T->data, upper);
}
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When we define the function this way we essentially establish a lower and an upper bound for what a
BST key can be to be valid in the part of the BST we’re currently examining.

Consider the following trees. Only the right one is a valid BST: the left one has 6 to the left of 5, which
shouldn’t happen, since 5 < 6.

5

3

1 6

7

5

3

1 4

7

When we traverse the tree, we need to maintain lower and upper bounds for the possible values of nodes.
For instance, the node to the right of 3 must be between 3 and 5. And indeed, we see that the left tree
violates this condition but the right one does not.

We do this by using an elem for our lower/upper bounds. We can extract the key value from an elem
object using the elem_key function and we can then compare that value with the key of the tree node
using key_compare.

On the other hand, the node to the left of 3 must be between −∞ and 3. In other words, there is no
lower bound for it. We represent this by passing a lower bound of NULL. Similarly, when there is no upper
bound, we pass an upper bound of NULL.

tree_insert
Speaking of recursive functions, let’s consider tree_insert.

tree* tree_insert(tree* T, elem e)
//@requires is_ordtree(T);
//@requires e != NULL;
//@ensures is_ordtree(\result);
{

if (T == NULL) {
/* create new node and return it */
T = alloc(struct tree_node);
T->data = e;
T->left = NULL;
T->right = NULL;
return T;

}
int r = key_compare(elem_key(e), elem_key(T->data));
if (r == 0) {

T->data = e; /* modify in place */
} else if (r < 0) {

T->left = tree_insert(T->left, e);
} else {

//@assert r > 0;
T->right = tree_insert(T->right, e);

}
return T;

}
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Note that in the cases where r < 0 and r > 0 we assign the right and left sub-trees to the result of
calling the function recursively. Also, we need to return T in the case where we enter the case where T
== NULL (an empty tree), since we have no way of modifying the tree that was passed in as an argument.

In prose, we can understand tree_insert as follows. Suppose that the element we want to insert is e

(1) If we reach an empty tree (T == NULL), then we just create a new node, set the data to e and return
the node.

(2) Otherwise, we compare the key ek of e to the key nk of the node n we’re currently at in the tree.
We then have the following three cases:

(i) If ke and kn are equal, then we just write over the data in the node n with e.

(ii) If ke < kn, then element e belongs in the left-subtree of n. We therefore call tree_insert on
the subtree T->left and insert e somewhere in T->left

(iii) Otherwise, ke < kn, so the element e belongs in the right-subtree of n. We therefore call
tree_insert on the subtree T->right and insert e somewhere in T->right.

To understand Recursion, You Must First Understand Recursion
Recursion on binary search trees can be a tricky concept to master. Here are some practice problems to
help you. Note that some of these problems only rely upon the structure of a BST, while others rely upon
the BST ordering invariant. Your solution should use the struct definitions and the client-side functions
we defined in class (given below for your reference).

Your solutions should be short (around 10 lines at most). You may also need a helper function to
access the internals of the tree (as we did in bst_insert with tree_insert.

key elem_key(elem e);

int key_compare(key k1, key k2);

struct tree_node {
elem data;
struct tree_node* left;
struct tree_node* right;

};
typedef struct tree_node tree;

struct bst_header {
tree* root;

};
typedef struct bst_header* bst;
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(a) Write a function elem bst_max(bst B) that returns the element with the maximum key in a given
BST.

(b) Write a function int count_leaves(bst B) that counts the number of leaves in a given BST.
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