
15-122: Principles of Imperative Computation

Recitation 19 Josh Zimmerman

AVL Trees
When talking about binary search trees, we saw that operations like insert and lookup ran in O(log(n))
time on a balanced binary tree with n items. But if the tree isn’t balanced, we could get far worse
times—even up to O(n)!

AVL trees solve this problem. AVL trees are binary search trees where we also maintain a height invariant.

First, we need to say what the height of a binary tree is. There are two equivalent definitions we can
use. We’ll mention both so that you can use whichever makes more sense to you.

The first is that the height of a tree is the maximum number of nodes from the root to a leaf, inclusive.

The second is recursive: the empty tree has height 0 and any other tree has height 1 + max(hl, hr)
where hl and hr are the heights of the left and right children of the tree, respectively.

The height invariant for AVL trees states that for every node in the tree, the height of the left and right
subtrees differ by at most 1, or in other words, if the left and right subtrees have height hl and hr,
respectively, |hl − hr| ≤ 1. This lets us maintain balance of the tree, and so ensures that we’ll have at
worst O(log n) lookup time.

In an AVL tree, we insert an element much like we would in a BST, but we then check to see if the
height invariant is violated and rebalance the tree if necessary. This approach means that the difference
between the height of any two children is at most 2 when we’re rebalancing, which lets us split up the
possibilities into four cases.

Here’s a depiction of the cases and the rotations we do, from Wikipedia.
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Note that two of the cases (the ones the diagram calls “Left Right” and “Right Left”) can be transformed
into the other two with a single rotation, and those two can be made balanced with a single rotation.
Importantly, this means that we never need more than 2 rotations to restore balance an AVL tree after
inserting an element. Since rotation is a constant time operation, this means that insertion into an AVL
tree is only at worst a constant amount slower than insertion into a BST!

It’s also important to note that we do these rotations at the lowest violation of the height invariant in
the AVL tree.

Let’s now go through some examples of these cases, to familiarize ourselves with the rotations. (We’ll
use http://www.cs.usfca.edu/~galles/visualization/AVLtree.html)

Implementation
Now that we have a conceptual understanding of AVL trees, let’s talk about the implementation details.

To keep track of the height in an efficient manner, we add a height field to the data structure:

struct tree_node {
elem data;
int height;
struct tree_node *left;
struct tree_node *right;

};

Note that we now need to do more work in the is_balanced function, since we need to check that
height accurately describes the height of each node of the tree (if it didn’t, we wouldn’t be able to
guarantee that the tree was balanced, since we use the height variable when checking balance in our
rebalance_right and rebalance_left functions).

First, let’s look at rotate_right. (rotate_left is exactly symmetric)

1 tree ∗rotate_right(tree ∗T) {
2 REQUIRES(is_ordtree(T));
3 REQUIRES(T != NULL && T−>left != NULL);
4 tree ∗root = T−>left;
5 T−>left = root−>right;
6 root−>right = T;
7 fix_height(root−>right); /∗ must be first ∗/
8 fix_height(root);
9 ENSURES(is_ordtree(root));

10 ENSURES(root != NULL && root−>right != NULL);
11 return root;
12 }

Let’s go through some sketches to help illustrate what this function is doing. If you’re reading through
this after recitation, I encourage you to sketch some diagrams on a piece of paper or a whiteboard to help
you understand the code. (Note that rotate_left is symmetric to rotate_right, so if you understand
one you should be able to understand the other.)

Now, let’s look at our rebalance_right code, on an intuitive level. (The rebalance_left code is
similar, and for the sake of a shorter handout I’ll leave it out. I highly encourage you to work with it and
make sure you understand it, as the code for AVL trees is tricky.)
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1 tree ∗rebalance_right(tree ∗T) {
2 REQUIRES(T != NULL);
3 REQUIRES(is_avl(T−>left) && is_avl(T−>right));
4 /∗ also requires that T−>right is result of insert into T ∗/
5
6 tree ∗l = T−>left;
7 tree ∗r = T−>right;
8 int hl = height(l);
9 int hr = height(r);

10 if (hr > hl + 1) {
11 ASSERT(hr == hl + 2);
12 if (height(r−>right) > height(r−>left)) {
13 // We’re in the "right right" case in the diagram from Wikipedia
14 ASSERT(height(r−>right) == hl + 1);
15 T = rotate_left(T);
16 // Note that hl + 2 == hr here
17 ASSERT(height(T) == hl+2);
18 }
19 else {
20 // We’re in the "right left" case in the diagram from Wikipedia
21 ASSERT(height(r−>left) == hl + 1);
22 /∗ double rotate left ∗/
23 T−>right = rotate_right(T−>right);
24 T = rotate_left(T);
25 // Note that hl + 2 == hr here
26 ASSERT(height(T) == hl+2);
27 }
28 }
29 else {
30 // the tree is already balanced, so just update the height
31 ASSERT(!(hr > hl+1));
32 fix_height(T);
33 }
34 ENSURES(is_avl(T));
35 return T;
36 }

Note: We’re missing a precondition we need here, so we won’t do a formal proof.

We will, however, discuss the intuition behind the function.

Give an informal explanation of why this function works. This shouldn’t be a proof—just explain it, as
though you’re trying to teach someone.

It may help you to explain it to the person sitting next to you, since explaining things is a very good way
to learn them.
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For reference, the AVL insertion function calls rebalance_left and rebalance_right in exactly the
same place where the height-tracking BST implementation called fix_height. The assignment back to
T is needed because we might be changing the root of the tree with a rotation or double rotation.

1 tree ∗tree_insert(tree ∗T, elem e)
2 {
3 REQUIRES(is_ordtree(T));
4 REQUIRES(is_specified_height(T));
5 REQUIRES(e != NULL);
6
7 if (T == NULL) {
8 /∗ create new leaf with the data e ∗/
9 T = xmalloc(sizeof(struct tree_node));

10 T−>data = e;
11 T−>height = 1;
12 T−>left = NULL;
13 T−>right = NULL;
14 }
15 else {
16 int r = key_compare(elem_key(e), elem_key(T−>data));
17 if (r == 0) {
18 T−>data = e; /∗ modify in place ∗/
19 }
20 else if (r < 0) {
21 T−>left = tree_insert(T−>left, e);
22 T = rebalance_left(T); /∗ also fixes height ∗/
23 }
24 else {
25 ASSERT(r > 0);
26 T−>right = tree_insert(T−>right, e);
27 T = rebalance_right(T); /∗ also fixes height ∗/
28 }
29 }
30
31 ENSURES(is_ordtree(T));
32 ENSURES(is_specified_height(T));
33 return T;
34 }
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