15-122: Principles of Imperative Computation

Recitation 21a Nivedita Chopra, Josh Zimmerman

Exam!

The exam is on Tuesday and there's a review session on Sunday (November 10) from 6:00-8:00PM in GHC 4401
(Rashid, where first lecture meets).

textbfMake sure to bring your student ID to the exam and leave yourself extra time to get where you need to go,
especially if you're in Porter Hall.

Locations are as follows:

FOR STUDENTS IN LECTURE 1:

— If your last name starts with A-O, you will go to GHC 4401 (Rashid, the usual classroom)
— If your last name starts with P-Z, you will go to Wean 7500

FOR STUDENTS IN LECTURE 2:

— If your last name starts with A-N, you will go to Wean 7500 (the usual classroom)

— If your last name starts with O-Z, you will go to Porter Hall A18B

Topics that will be covered

We'll emphasize the following topics on the exam, but we'll expect you to be familiar with what we covered earlier in
the semester as well (for example, you should still know how to use loop invariants, arrays, etc.)

Unbounded arrays

Amortized analysis

Hash tables

Interfaces vs. implementations (Do NOT rely on a particular implementation of an interface)

Binary search trees

Priority queues

Heaps (a way of implementing the priority queue interface)

Restoring invariants (a library function may temporarily violate invariants and restore them before it returns)
Backtracking search

C
Memory management (Both with malloc and friends and with local variables on the stack)
Undefined behavior
Macros

& operator (address-of), switch statements, structs without pointers, integer types.

AVL Trees



Unbounded Arrays

Quick Recap
e The costs are amortized
e Cost of insertion and deletion is O(1) amortized
e Double the size of the array when size == limit
e Don't reduce by half when it is half full - may lead to O(n) operations
e While removing elements, resize when the array is a quarter full

Hash Tables

Quick Recap
e O(1) finding of an element

e Hash function must be randomized and deterministic

Collisions occur when multiple keys have the same value

Collisions are resolved by separate chaining or probing (linear/quadratic) - Focus on separate chaining

Average chain length is the load factor

e 1o = (number of keys in hash table)/(size of the underlying table)

Amortized Analysis
Quick Recap

e Used when you have different amounts of work at different steps and using Big O analysis doesn't give you a
realistic bound

e Expressed as "O(x) amortized"
e Aggregate Method - Calculate the average over n steps and then use n — oo

e Accounting Method - Allocate tokens for each operation

Important examples include :

e Unbounded Arrays
e Binary Counter

e Queue as two Stacks - which we'll go over if we have time at the end of recitation



Heaps/Priority Queues
Quick Recap

e We usually deal with min-heaps

e The root is the minimum element

e Finding minimum element is O(1)

e Deleting minimum element is O(logn)

e Inserting an element is O(logn)

e Ordering Invariant : Any element in the heap is smaller than both its children

e Shape invariant: An element is inserted in a manner that at any point only the last level is unfilled and
elements are filled in this level from left to right

Quick Exercise: Insert elements from 1 to 15 into a heap in such a way to get the smallest possible number in the
last level:



Binary Search Trees
Quick Recap

e Ordering Invariant : states that every element in the left subtree must be less than the root and every element
in the right subtree must be greater than the root.

e There is no shape invariant - so the wort case is a linked list

Quick Exercise: Construct a BST by inserting 4,2,3,1,5,7,6 in the given order

Write code to print out the elements in ascending order
(Assume that you have a print_elem function)



What was the cost of printing the entire tree in ascending order?

So we printed out the elements in sorted order in less than O(nlogn) time!! Did we just come up with a more
efficient sorting algorithm?

AVL Trees
Quick Recap

For unbalanced trees, where P is the node at which it is unbalanced:

Single rotation-

\ /\

\ \ / \

Quick Exercise:

Is the tree in the previous part balanced? Is it left heavy or right heavy? Perform operations to balance the tree



Bactracking

Breadth-first: Here we traverse a particular level before going to the next level.
In the tree from the previous sections, this is the order:

Depth-first: Here we simply go as deep as possible in the tree and if we don't find our desired solution, we
come back up and follow the other another branches in a similar manner.
In the tree from the previous sections, this is the order:

Best-first: This follows a heuristic, which is a kind of rule that helps us estimate how likely it is that a particular
branch will lead us to a solution.

Let's C
Quick Recap

Most code that you wrote in Cj is valid C code. So don't panic! There are some exception though, just be
careful.

Strings are represented as char* in C and are terminated by ‘\0’. Thus, to allocate memory for a string, you
must allocate memory for one extra character.

You can use macros, which are declared using #define

You can create a pointer using & - the address-of operator.

You can directly access elements of a struct using the dot operator.

You can use switch statements.

There is a lot of undefined behavior to pay attention to - refer to lecture notes and recitation handouts.

voidx is the generic datatype which we usually use to pass pointers around. These need to be cast into appro-
priate types before use.

Quick Exercise:

What does the following function do?
(Hint: In C, the assignment statement (=) returns the assigned value)

void mystery(char* p, char*x q){ while (kp++ = *q++); }



Memory Management in C

Quick Recap

You use malloc in C and give it a size as the argument
You must free all memory that you allocate

The Golden Rule
Always free what you malloc
Remember that C is not garbage collected

Don't free memory that you didn't allocate. This can lead to undefined behaviour

Usually you are only responsible for freeing memory that you have allocated.
| like to think of this as

number of mallocs = number of frees



