
15-122: Principles of Imperative Computation

Recitation 22 Matt Dee, Josh Zimmerman

Trie-ing is Cool!
The basic idea of a trie is that, for some purposes, like spell checking and boggle, it often makes sense
to see if a string is the prefix of some word in a dictionary. (That way, we can realize that we can stop
checking some sequence of letters in boggle, and more quickly flag that a word is misspelled, without
checking every word)

To do this we keep a tree that contains letters representing prefixes. Each sub-trie is the of all strings
in the original trie that started with the letter of the parent. The diagram below shows an example of
this.(The diagram is an example of a multi-way trie, which is one implementation of the basic idea of
looking up prefixes of strings.)

This multi-way trie contains the words “be”, “bed”, and the start of “baccalaureate”. Image credit:
Frank Pfenning.

The boolean flags in the trie are true if and only if that node in the trie is the end of a word. (It’s useful
to know when we’ve reached the end of a word so we can know that, for instance, “b” and “bacca” are
not words, but are prefixes for other words)

This approach is great, since it lets us look up whether a word of length k is in the trie in O(k) time
(the size of the dictionary does not matter for runtime!).

However, it has some major problems. In particular, we’ll be wasting a lot of space, since we have an
array of 26 elements at each level, of which we’ll only need a few the majority of the time. And thats
just for lowecase! If we tried to make a trie for all ASCII characters (128 chars), we would be in real
trouble, and Unicode is out of the question (>230,000 chars)!

We don’t have unlimited memory, so this is bad.

So, we’ll use a slightly more complicated but far smaller structure, whose size does not depend so much
on the size of the dictionary, a ternary search trie.

1



In a ternary search trie node, we’ll store a character c and three pointers, left, middle, and right.
Similarly to a binary search tree, the left subtree stores words starting with characters ASCIIbetically less
than c and the right subtree stores words starting with characters ASCIIbetically greater than c. middle
stores a subtrie with all words that start with c.

Here’s another image, again from lecture notes. It contains the same words as the image above, with
the addition of “or”, but is represented as a ternary search trie. Here, we represent the end of a word
with an X.

o	  

b	  

e	  

e	  

r	  

d	  

a	  

c	  

First	  Character	  

Second	  Character	  

Third	  Character	  

Interface
Note that we now have two possible implementations for tries. Luckily, as the client, we don’t have to
care about the implementation, as they can both share a interface! This is the interface of tries as we
defined them in class.

1 typedef _____________ ∗trie; // Implementation decides what type this is
2 trie trie_new();
3 void trie_free(trie TR);
4
5 /∗ Dictionary interface ∗/
6 /∗ These allow us to use tries as a associative array ∗/
7 void trie_insert(trie TR, char ∗s, elem e); /∗ strlen(s) > 0 ∗/
8 elem trie_lookup(trie TR, char ∗s); /∗ strlen(s) > 0 ∗/
9

10 /∗ Prefix search interface − the magic of tries! ∗/
11 typedef ____________ tnode; // Implementation decides what type this is
12 tnode ∗trie_lookup_prefix(trie T, char ∗s);
13 elem tnode_elem(tnode ∗T); /∗ T != NULL ∗/

trie_insert and trie_lookup allow us to use the trie as an associative array, like a hash table or
BST. The real benefit of using a trie over one of these, is to be able to use prefixes to look things up
and potentially short-circuit a search, so we need functions to do that too.

Accordingly, we have trie_lookup_prefix and tnode_elem. trie_lookup_prefix returns a tnode
(which is a pointer to some part of the trie) if the prefix was found in the trie, or NULL otherwise.

This tnode can use the tnode_elem function to get the elem at that point, or NULLif there is none (it
is just a prefix, not a word).

2



Implementation
We will represent these using the following structs, using a structure very reminiscent of a BST:

1 typedef struct tst_node tnode;
2 struct tst_node {
3 char c; /∗ discriminating character ∗/
4 elem data; /∗ possible data element (void pointer) ∗/
5 tnode ∗left; /∗ left child in bst ∗/
6 tnode ∗middle; /∗ subtrie following c ∗/
7 tnode ∗right; /∗ right child in bst ∗/
8 };
9 typedef struct trie_header trie

10 struct trie_header {
11 tnode ∗root;
12 };

Probably the most important functions of the trie are the trie_lookup functions and trie_lookup_prefix,
so we will look at the code to understand how lookups work, and hopefully get a better idea of how data
in tries is organized. Both of these functions share some logic, so we will write a helper function to get
the tnode for a string.

1 /∗ Returns the tnode for the given string, starting at character i ∗/
2 tnode ∗tnode_lookup(tnode ∗T, char ∗s, size_t i)
3 {
4 REQUIRES(is_tnode_root(T));
5 REQUIRES(s != NULL);
6 REQUIRES(i < strlen(s));
7 if (T == NULL) return NULL;
8 // If the character we are looking for is less than this node, look left
9 if (s[i] < T−>c) return tnode_lookup(T−>left, s, i);

10 // if the character is greater, look right
11 if (s[i] > T−>c) return tnode_lookup(T−>right, s, i);
12 ASSERT(s[i] == T−>c);
13 // We have found the character!
14 if (s[i+1] == ’\0’) return T; //We are at the end, return this node
15 return tnode_lookup(T−>middle, s, i+1); //Continue the search on the next character
16 }
17 /∗ Returns a tnode∗ if it is a valid prefix, NULL otherwise ∗/
18 tnode ∗trie_lookup_prefix(trie ∗TR, char ∗s) {
19 REQUIRES(is_trie(TR));
20 REQUIRES(s != NULL);
21 return tnode_lookup(TR−>root, s, 0);
22 }
23 /∗ Returns the elem associated with s, if it exists ∗/
24 elem trie_lookup(trie TR, char ∗s)
25 {
26 REQUIRES(is_trie(TR));
27 REQUIRES(s != NULL);
28 tnode ∗T = trie_lookup_prefix(TR, s);
29 if (T == NULL) // This isn’t even a valid prefix...
30 return NULL;
31 else // Return the element there (may be NULL if s is a prefix but not a key)
32 return tnode_elem(T);
33 }

3



Invariants
Tries, like any good data structure, have invariants that we need to ensure hold true. Specifically, lets
look at the is_tnode function for ternary search tries. Because NULL represents the empty trie, this is
a valid tnode. For any non-null trie, the trie invariants are:

• The left and right fields act as a BST. In other words, for any tnode T, IGNORING middle
pointers, every tnode in the T->left subtree represents a character whose ASCII value is less
than T->c, and every tnode in the T->right subtree represents a character whose ASCII value is
greater than T->c.

• For any tnode T, T->middle is a valid tnode.

• If, for some tnode T, T->middle == NULL, then T->elem must not be NULL (otherwise this trie
would not be a prefix for any element!).

To check this, we use mutually recursive functions. This refers to two functions, which each call
each other. Note that in order to do this, we have to forward-declare the second function so that
the first function won’t cause a compiler error when it calls the second.

1 // We need this declaration so that is_tnode knows about is_tnode_root
2 bool is_tnode(tnode ∗T, int lower, int upper);
3 bool is_tnode_root(tnode ∗T);
4
5 // Ensure that, each node is a valid tnode, and that every character on this level
6 // (without taking a middle) is less than lower and greater than upper
7 bool is_tnode(tnode ∗T, int lower, int upper) {
8 if (T == NULL) return true; // Empty tnode is valid tnode
9 // Check bounds (BST invariant)

10 if (!(lower < T−>c && T−>c < upper)) return false;
11 // Recusively check children
12 if (!(is_tnode(T−>left, lower, T−>c))) return false;
13 if (!(is_tnode(T−>right, T−>c, upper))) return false;
14 // T−>middle does not need to be within the same limits since it is a "root"
15 // for another tree so we call this to check those invariants.
16 if (!(is_tnode_root(T−>middle))) return false;
17 if (T−>middle == NULL && T−>data == NULL) return false;
18 return true;
19 }
20 bool is_tnode_root(tnode ∗T) {
21 return is_tnode(T, 0, ((int)CHAR_MAX)+1);
22 }

Node that is_tnode_root is the entry point, checking validity for a root node (whose character
value has no limits), and is_tnode checks the ordering invariants that come with the BST structure
in addition to checking that each middle field points to a valid root node.

Can we trie Boggle?
Boggle is a word game that we can use a trie to solve. The basic idea is that we have a four-by-four grid
of random letters. We try to make words out of them by drawing a line through letters.We can use the
trie interface to help us with this. Think about how, and how we might improve the interface to allow
us to find all words in a boggle board as quickly as possible.

4


