
15-122: Principles of Imperative Computation
R5: A Linked List Between Worlds Rob Simmons, Andrew Benson

Linked List Segments

1 struct list_node {
2 int data;
3 struct list_node* next;
4 };
5 typedef struct list_node list;
6
7 bool is_segment(list* start, list* end) {
8 if (start == NULL) return false;
9 if (start == end) return true;

10 return is_segment(start−>next, end);
11 }
12
13 struct linkedlist_header {
14 list* start;
15 list* end;
16 };
17 typedef struct linkedlist_header linkedlist;
18
19 bool is_linkedlist(linkedlist* L) {
20 if (L == NULL) return false;
21 return is_segment(L−>start, L−>end);
22 }

The is_segment(start, end) function tells us that we can go from start to end by following next
pointers without ever encountering NULL (we ignore cyclic linked lists in this recitation). A linkedlist
is a non-NULL pointer that captures a reference to both the start and end of a linked list.

Now that we know what a linked list is, how do we create one?

Creating a new linked list
The following function creates a new linked list with a single data node. Suppose linkedlist_new(12)
is called. Draw the final state of the linked list after that line executes. Use X for struct fields that we
haven’t initialized yet.

1 linkedlist* linkedlist_new(int data)
2 //@ensures is_linkedlist(\result);
3 {
4 list* p = alloc(struct list_node);
5 p−>data = data;
6 p−>next = alloc(struct list_node);
7 linkedlist* L = alloc(struct linkedlist_header);
8 L−>start = p;
9 L−>end = p−>next;

10 return L;
11 }



Adding to the end of a linked list
We can add to either the start or the end of a linked list. When we discussed the implementation of
stacks in lecture, we were adding to the front. The following code adds a new list node to the end, the
way a queue would:

1 void add_end(linkedlist* L, int x)
2 //@requires is_linkedlist(L);
3 //@ensures is_linkedlist(L);
4 {
5 list* p = alloc(struct list_node);
6 L−>end−>data = x;
7 L−>end−>next = p;
8 L−>end = p;
9 }

Suppose add_end(L, 3) is called on a linked list L that contains before the call, from start to end, the
sequence (1, 2).

1. Justify the safety of each pointer dereference.

2. Draw the state of the linked list after each of lines 5 - 8 (inclusive). Include the list struct separately
before it has been added to the linked list.

3. What is the big-O runtime of this function?

Removing the first item from a linked list
As mentioned earlier, add_end can be used to implement enq for a queue. To implement deq, we would
need a function that removes an element from the start of a linked list.

1 int remove(linkedlist* L)
2
3 //@requires

4
5 //@requires

6
7 //@ensures

8 {
9

10
11

12
13

14 }

1. Fill in the code for the function remove that removes the first element of a linked list. Think carefully
about what preconditions you would need.

2. What is the big-O runtime of this function?

3. If you were to remove an element from the end of the linked list instead, how would the big-O runtime
change? Why?


