
Logical specification and coinduction

Robert J. Simmons

Carnegie Mellon University, Pittsburgh PA 15213, USA,
rjsimmon@cs.cmu.edu,

WWW home page: http://www.cs.cmu.edu/∼rjsimmon

Abstract. The notion of an “acceptable analysis” is an important con-
cept in program analysis. Acceptability of a model is defined by coin-
duction, that is, as a greatest fixed–point. We describe a class of specifi-
cations that includes our examples of acceptable analyses, and then we
interpret that specification as a forward reasoning logic program. If this
forward reasoning logic program reaches the point of saturation (where
no new facts are derivable), then the completed database satisfies the
coinductive specification.

Control flow analyses of functional programs (such as 0CFA) are generally
specified by means of a coinductive specification of what it means to be an ac-

ceptable control flow analysis, as described in Nielson et al. [2]. However, this
specification is usually not thought to provide much insight into the design of
an analysis satisfying the specification. For instance, Nielson et al. first define
acceptability for 0CFA and then, later, describe a less precise analysis that may
be run by inducting over the structure of the program expression. Similarly, Van
Horn and Mairson describe instrumented evaluators which provide a procedu-
ral implementation of the declarative specification [5, 7, 6]. We will address this
troubling disconnect between specification and implementation using forward–
chaining logic programming.

McAllester was instrumental in showing that static analyses could be con-
cisely represented and efficiently run as logic programs [1], and previous work by
Simmons and Pfenning has shown that sound–by–construction program analy-
ses in the style of McAllester can be derived from a logical presentation of a
programming language’s dynamic semantics [4]. One of the analyses described
in that paper is a 0CFA–like program approximation derived from dynamic se-
mantics of the call–by–value lambda calculus, but this approximation was never
related to a coinductive specification of 0CFA.

In this paper, we provide the missing link, a formal connection between coin-
ductive specifications and logic programs that compute minimal models satis-
fying those coinductive specifications. In Section 1 we describe a language for
describing sets of acceptable databases, including (co)inductively defined sets
of databases, and give examples. In Section 2 we show how to take a coinduc-
tive specification and derive a forward–chaining logic program that computes
databases satisfying the coinductive specification. Finally, in Section 3, we give
the specification of an acceptable 0CFA analysis along with its corresponding
logic program and discuss the relationship with the derived analysis in [4].

2

1 Specifying properties of databases

Consider a database holding ground atomic propositions of the form reachable(n)
and succ(n, n′). We want to specify those databases G where, for a given number
n, reachable(n′) holds for all (eventual) successors of n as defined by the succ

relation. This specification, written in the style of Nielson et al., might look like
this:

G |= n iff for all n′ where succ(n, n′) ∈ G, reachable(n′) ∈ G and G |= n′ (1)

In other words, G |= n (which we will refer to as an acceptability relation) is
defined as a fixed–point. If we consider a database G that contains succ(n0, n1A)
and succ(n0, n1B) (and no other succ propositions), then G |= n0 precisely if G
also contains reachable(n1A) and reachable(n1B).

Now consider a database G′ that contains succ(n0, n1) and succ(n1, n0) (and
no other succ propositions). Under what additional conditions does G′ |= n0?
It depends! If the acceptability relation is defined coinductively (that is, as the
greatest relation that meets the specification), then the answer is that as long
as G′ also contains reachable(n0) and reachable(n1), we have that G′ |= n0 holds.
However, if the acceptability relation is defined inductively (as the least relation
that meets the specification), then there is no database G′ containing succ(n0, n1)
and succ(n1, n0) such that G′ |= n0. The culprit is the cycle n0 → n1 → n0 in the
successor relation; it means that to prove G′ |= n0 we must prove G′ |= n1, which
means we must prove G′ |= n0, and so on forever. If we hope to prove that for
any G and n there exists some G′ ⊇ G such that G′ |= n, we must therefore
consider the coinductive interpretation of the acceptability relation.

1.1 A language of database specifications

We will develop what at first can be seen as merely a more concise language for
specifying properties of databases, where databases are define as possibly infinite
sets of ground facts a(t̄).

Consider the grammar below, where P is a proposition describing a set of
databases. Q is an atomic proposition a(t̄) where the terms t̄ may include free
variables.

P ::= Q | P ∧ P | ∀x.P | Q → P | t1
.
= t2 → P (2)

We assume that we have some fixed signature Σ that allows us to define
the largest possible database as a Herbrand universe. The set of all possible
databases is the power set of this database, and we give an interpretation of a
proposition P (which we write as |P |) as a set of databases, that is, as a member
of the power set of the set of all possible databases. We will also write D |= P
to mean that D ∈ |P |.

We define what it means to be a member of |P | inductively on the structure
of P . The definition has a “classical” feel (in the sense of classical logic), due to
the way Q → P and t1

.
= t2 → P are defined.

3

D |= Q iff Q ∈ D.
D |= P1 ∧ P2 iff D |= P1 and D |= P2.
D |= ∀x.P iff for all ground terms t, D |= P [t/x].
D |= Q → P iff either Q 6∈ D or D |= P .
D |= t1

.
= t2 → P iff either t1 6= t2 or D |= P .

Examples This language does not yet give us the ability to specify acceptable
databases as described by Eqn. 1, but many other sets of databases can be
characterized; we will give three examples.

Every database containing at least reachable(n0) and reachable(n1) can be
specified by either the proposition reachable(n0)∧ reachable(n1) or, equivalently,
by the proposition ∀n. (n

.
= n0 → reachable(n)) ∧ (n

.
= n1 → reachable(n)).

If we want to consider the transitive closure of the succ relation from before
(call it succ∗), then we can specify the analogue of Eqn. 1 as follows:

λn.∀n′. succ∗(n, n′) → reachable(n′) (3)

Notice the λn, indicating that Eqn. 3 is actually a function taking a term n and
returning a proposition.

Finally, we can specify the databases containing nat(n) for every unary nat-
ural number n as follows:

nat(z) ∧ ∀n. nat(n) → nat(s(n)) (4)

This allows us to point out an important distinction between the database itself

and sets of databases. Depending on the signature Σ, there may be zero, one, or
an infinite number of databases G satisfying the specification in Eqn. 4. However,
each database G within this set must be countably infinite, as it has to include
nat(n) for every unary natural number n in order to meet the specification.

1.2 Greatest fixed–points

We say that P1 ⇒ P2 if D |= P1 implies D |= P2 (in other words, if |P1| ⊆ |P2|).
We can lift this notion to propositions with free variables: P ′

1
⇒ P ′

2
if, for all t̄,

P ′

1
(t̄) ⇒ P ′

2
(t̄).

We are interested in the monotone functions F from propositions (with free
variables) to propositions (with the same free variables). Monotonicity of F
means that for all ground terms t̄, and propositions P1, and P2, if P1(t̄) ⇒ P2(t̄)
then (FP1)(t̄) ⇒ (FP2)(t̄) holds.

Lemma 1. If F is a substitution function λP.λx̄.Pf (x̄), that is, if there is some

proposition Pf with one or more “holes” and FP simply plugs P into all of the

holes, then F is monotone.

Proof. By induction on the structure of Pf , the proposition with holes.

If F is monotone, then by the Knaster–Tarski theorem there exists a greatest
(and least) fixed–point of F . Using greatest fixed–points νF , we can finally give
a specification corresponding to Eqn. 1:

νλP. λn. ∀n′. succ(n, n′) → reachable(n′) ∧ P (n) (5)

4

2 Implementing specifications as logic programs

We have described a clean, logical notation for specifying sets of databases,
including coinductively defined sets of databases; now we want to use logic pro-
gramming to compute databases which satisfy those specifications. Our specifi-
cation language is already a subset of a logic programming language [3]. This
observation allows us to state our main result:

Theorem 1. If F is a substitution function that does not include the predicate

symbol eval, then for all terms t̄, if eval(t̄) ∧ ∀ȳ. eval(ȳ) → (F (eval))(ȳ) is a

range–restricted logic program that runs to saturation from an initial database

G to produce a database G′, then G′ |= (νF)(t̄).

Proof. By Lemma 2, we know that eval(t̄) ∧ ∀ȳ. eval(ȳ) → (F (eval))(ȳ) is a
pre–fixed–point of F . By premise, we can produce a saturated database G′ by
exhaustive forward reasoning, which by Lemma 3 means that we have G′ |=
eval(t̄) ∧ ∀ȳ. eval(ȳ) → (F (eval))(ȳ).

Because νF is the greatest pre–fixed–point, for any pre–fixed–point S of F ,
G′ ∈ |S(t̄)| implies G′ ∈ |(νF)(t̄)|. This means that G′ |= (νF)(t̄).

This proof relies on two lemmas, which we will describe in turn. The first
proves that propositions of a certain form are pre–fixed–points of F , and the
second establishes that, given specifications in the grammar of Eqn. 2, we can
compute by exhaustive forward reasoning databases that meet the specification.

Lemma 2. If F is a substitution function λP.λx̄.Pf (x̄) and the predicate eval

does not appear in P ′, then S = λx̄. eval(x̄) ∧ ∀ȳ. eval(ȳ) → (F (eval))(ȳ) is a

pre–fixed–point of F .

Proof. Given an arbitrary t̄ and a database G such that G |= S(t̄), we must show
G |= (FS)(t̄). By definition, G |= eval(t̄) and G |= ∀ȳ. eval(ȳ) → (F (eval))(ȳ),
and therefore G |= (F (eval))(t̄). We then proceed, as in Lemma 1, by induc-
tion on the structure of Pf to prove that (F (eval))(t̄) ⇒ (FS)(t̄). The only
interesting case is when we reach the substitution and have G |= eval(s̄) and
must prove G |= S(s̄). But this only requires that we prove G |= eval(s̄) and
G |= ∀ȳ. eval(ȳ) → (F (eval))(ȳ), which we have already proved.

Lemma 3. If the proposition P is run as an a forward reasoning logic program

starting with the initial database G, and the result is a saturated database G′,

then G′ |= P .

Proof. By contradiction and by induction on the structure of P . If it is not the
case that G′ |= P , then G′ is not in fact a saturated database.

3 Specifying 0CFA

Now we can give a coinductive specification of a control flow analysis in the
style of Nielson et al. and describe the forward–chaining logic program that

5

implements the specification. We do not have space to relate a coinductive spec-
ification to the 0CFA analysis derived from an operational semantics in [4], but
this example illustrates the issues. We are interested in control flow analysis for
a language of labeled terms from the lambda calculus. Variables are represented
as constants (as opposed to a higher–order abstract syntax representation).

e ::= tl t ::= app(e1, e2) | λ(x, e) | x (6)

Straightforwardly transcribing 0CFA as it appears in [2] or [6] is not partic-
ularly illustrative:

νλP. λe. ∀x.∀l. e
.
= xl → bind(x, v) → return(l, v)

∧ ∀x.∀e.∀l. e
.
= λ(x, e0)

l → return(l, λ(x, e0)
l)

∧ ∀t1.∀l1.∀t2.∀l2.∀ e
.
= app(tl1

1
, tl2

2
)l →

P (tl1
1

) ∧ P (tl2
2

)
∧ ∀x.∀t.∀l0. return(l1, λ(x, tl0)) →

(∀v2. return(l2, v2) → bind(x, v2))
∧ P (tl0) ∧ (∀v0. return(l0, v) → return(l, v)

(7)

However, the corresponding logic program, after being transformed to remove
equalities, factored by introducing the new predicate comp, and flattened into
the Horn fragment, begins to resemble the derived 0CFA in [4].

eval(xl) → bind(x, v) → return(l, v)
eval(λ(x, e)l) → return(l, λ(x, e))

eval(app(tl1
1

, tl2
2

)l) → (eval(tl1
1

) ∧ eval(tl2
2

) ∧ comp(l, l1, l2))
comp(l, l1, l2) → return(l1, λ(x, tl0)) → return(l2, v2) → bind(x, v2)
comp(l, l1, l2) → return(l1, λ(x, tl0)) → eval(tl0)
comp(l, l1, l2) → return(l1, λ(x, tl0)) → return(l0, v) → return(l, v)

The differences are partly a manner of program transformation, but they
are also partly a result of the fact that the specification of an acceptable 0CFA
analysis in Nielson et al. is slightly less precise than the derived one by Simmons
and Pfenning.

References

1. D. A. McAllester. On the complexity analysis of static analyses. J. ACM, 49(4):512–
537, 2002.

2. F. Nielson, H. R. Nielson, and C. Hankin. Principles of Program Analysis. Springer-
Verlag New York, Inc., Secaucus, NJ, USA, 1999.

3. F. Nielson, H. Seidl, and H. R. Nielson. A Succinct Solver for ALFP. Nord. J.

Comput., 9(4):335–372, 2002.
4. R. J. Simmons and F. Pfenning. Linear logical approximations. In G. Puebla and

G. Vidal, editors, PEPM, pages 9–20. ACM, 2009.
5. D. Van Horn and H. G. Mairson. Relating complexity and precision in control flow

analysis. In ICFP ’07, pages 85–96, New York, NY, USA, 2007. ACM.

6

6. D. Van Horn and H. G. Mairson. Deciding kCFA is complete for EXPTIME. In
ICFP ’08, pages 275–282, New York, NY, USA, 2008. ACM.

7. D. Van Horn and H. G. Mairson. Flow analysis, linearity, and PTIME. In SAS,
volume 5079 of LNCS, pages 255–269. Springer, 2008.

