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Abstract

We develop and discuss an approach to the enhancement of speech that is degraded by reverberation

by using a computational model of the human binaural system instead of traditional signal processing

techniques. This model was chosen as the basis for our predictions because it exhibits many of

previous refinements of binaural modelling, and specifically because it exhibits the psychoacoustical

phenomenon known as the precedence effect. The precedence effect refers to the observation that

the reflected signal components are inhibited for a short time after a direct signal is presented to a

human listener in a reverberant room. Our intent was to use the inhibition generated by the model to

filter the reverberation from binaural recordings in typical office environments. While our

implementation of this model did not prove to be effective in enhancing speech, we present and

discuss some of the useful properties and limitations of the model in processing simple binaural

stimuli and speech waveforms.
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Chapter 1

Introduction and Motivation

Over the past 30 years, many researchers have made substantial progress in computer recognition of

human speech. Many speech recognition systems have been able to achieve 60-70% word recognition

rates and recent systems have achieved word recognition rates in excess of 90% (e.g. Lee and Hon,

1988). Unfortunately, current recognition systems almost universally assume noiseless speech input

and have been trained with and expect the incoming signal to be free of any ambient and interfering

noise. Typical solutions to achieve this have been requiring the speaker to be in an acoustically treated

room, restricting ambient noise, or using special microphones. Many systems use the Sennheiser

noise cancelling transducer as the standard input microphone. The Sennheiser microphone is

mounted on a headset with the transducer positioned directly in front of the speaker’s lips. While this

assembly tends to provide a good signal-to-noise ratio, the use of the assembly is cumbersome and

unnatural.

In the general vein of trying to design more ergonomic systems, there has been great interest in using

a desktop microphone as the input device instead of the unnatural headset microphone. Unfortunately,

by making the input device more natural for the user, the word recognition rate of the system can fall

dramatically (Morii, 1988). Most of the degradation is thought to be caused by the acoustical

characteristics of the recording environment. The acquisition process is fundamentally related to the

total speech recognition system, even though it seems to be fairly independent of underlying speech

recognition problems. Original proposals for adapting the current recognition systems suggested

simply retraining the system with speech recorded with a desktop microphone. However, in the long

term, systems should be specified and developed to naturally integrate desktop microphones, and for

that matter, any type of input device and data.

The goal of the present work is to evaluate the extent to which a specific psychophysically-motivated

binaural model can provide enhancement of speech in a reverberant environment. This work was

motivated by three sets of considerations. First, it is well known that the human binaural system

provides a significant subjective enhancement of the effective signal-to-noise ratio of speech signals

in the presence of reverberant distortions (Blauert, 1983). Second, the model chosen for analysis has

Enhancement of Reverberated Speech 1-1



enjoyed great success in elegantly describing a number of diverse binaural perceptual phenomena

including the localization of the direct component of a simple signal presented in a reverberant

environment (Lindemann, 1986a, 1986b). Finally, there has been a number of successful

implementations of signal processing schemes based on monaural models of the auditory periphery

that have demonstrated major improvements in speech recognition performance in the presence of

additive noise (Hunt, 1988; Ghitza, 1988; Seneff, 1986).

In the next chapter, we will review various aspects of the speech enhancement problem and will

discuss some of the signal processing systems that have been partially successful in providing useful

enhancement. We will also discuss in Chapter 2 some characteristics of the human binaural system

that may be useful to the speech enhancement process. Further, we describe the structure of several

computational models based on interaural crosscorrelation that have been developed to describe and

predict the perceptual phenomena. In Chapter 3, we will discuss and compare the predictions of a

specific binaural model developed by Lindemann to localization and discrimination phenomena.

These comparisons were performed with relatively simple stimuli such as those commonly used in

psychoacoustical experiments in order to obtain a better conceptual understanding of how the model

functioned. 

We consider more realistic speech stimuli in Chapter 4. Specifically, we evaluate the ability of the

model to estimate the spatial location of the speaker in the reverberant environment, as well as the

extent to which the instantaneous output of the crosscorrelation function can provide an intelligible

speech signal.1 Since the latter results were rather disappointing, we also explored the feasibility of

several potential modifications to overcome some of the model’s limitations. For the most part, these

modifications to the model were unsuccessful for the type of simple processing schemes considered

in this project. Finally, we present some suggestions for additional work in Chapter 5 and summarize

our findings in Chapter 6.

Introduction and Motivation

Enhancement of Reverberated Speech 1-2

1. The location of the speaker can be inferred from the location of the maximum of the crosscorrelation function and is
used to specify from which tap of the instantaneous crosscorrelation the output signal will be extracted. 



Chapter 2

Background

2.1 Problems of using a desktop instead of a headset microphone 

Recent experiments using the Carnegie Mellon SPHINX automated speech recognition system have

shown that simply replacing the headset microphone with a desktop microphone1 has seriously

degraded the word recognition rate (Morii, 1988). With the desktop microphone, the error rate was

over twice that of when the headset microphone was used. Initial evaluations attributed most of the

degradation to the training data. It was claimed that since the system had been trained with speech

collected with a headset microphone, performance would suffer because of the characteristic

differences of the Pressure Zone Microphone (PZM). It was suggested that the SPHINX system be

retrained with data that were collected using the PZM. However, it is not known if merely retraining

this system will yield substantially improved results. Additionally, the idea of retraining the system

with an entirely new data set every time a new microphone or environment was implemented is

intuitively unpleasing. Hence, it became important to be able to provide a normalized or enhanced

input for the recognition system when a desktop microphone was used. For the rest of this subsection,

we will look at some of the practical and theoretical reasons for the degradation caused by desktop

microphones.

A PZM is typically mounted on a desk or wall in the recording environment allowing the speaker to

move freely or for several speakers to use a single microphone. Unfortunately, environmental noise

becomes a major concern since unwanted noise sources can have approximately the same intensity

as the speaker and be at approximately the same distance from the microphone. Thus, the noise signals

in the recorded signal can have the same power levels as the desired signal. While in most headset

recording situations the same noise sources exist, their distance from the headset microphone

compared to that of the speaker’s mouth and the noise-cancelling transducer ensure that the

signal-to-noise ratio is much higher than using a desktop microphone.

Enhancement of Reverberated Speech 2-1
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Sources of distortion can be classified into two broad classifications, correlated noise and

uncorrelated noise. The primary correlated noise source is reverberation caused by the speaker’s own

voice when it has been reflected by the surfaces in the recording environment. These reflected signals

tend to be highly correlated with the original signal since they are just delayed (and attenuated)

versions of the original signal. Since there are typically many surfaces at varying distances, several

delayed and attenuated signals are added into the speaker’s signal when it is being recorded by the

microphone. Depending on the surfaces and distances involved, this correlated noise can be a

significant percentage of the input signal. Uncorrelated noise signals are statistically uncorrelated to

the desired speaker’s signal and include such sources as machine fans, other people talking, and doors

closing.

Another difference to be considered is the frequency response of the different microphones. Each

type (and to a lesser extent, each individual) microphone has its own characteristic signature

associated with its imperfect frequency response. While in practice many microphones have a fairly

flat response over the useful bandwidth, there is enough variation in the frequency response of the

microphones that speech recognition system performance is significantly degraded when different

microphones are used.

2.2 Previous speech enhancement techniques

The problems associated with desktop microphones and environmental noise are not unique to speech

recognition. Bell Laboratories has been studying the same phenomena since the 1960’s trying to

produce a hands-free telephone with sound quality comparable to using a telephone with a handset

(Lim, 1983). Many different approaches and techniques have been proposed to reduce the individual

components of noise. Most of the approaches can be divided into trying to combat uncorrelated or

correlated noise. While techniques to combat uncorrelated noise will also be examined, the current

research focused on reducing the effects of reverberation which is the main source of correlated noise.

A short review of milestone noise reduction techniques is included in an evaluation of the results of

those techniques on the specific problem of reverberation. A complete review of previous techniques

used to enhance reverberated speech can be found in Lim (1983).

2.2.1 Spectral subtraction and normalization

Spectral subtraction algorithms concentrate on reducing the spectral effects of acoustically added

broadband noise in speech. Windowed sections of the signal are transformed to the frequency domain

Background
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using fast Fourier transforms (FFTs). Estimates of the magnitude of the noise spectrum are subtracted

from the signal spectrum. The enhanced speech is obtained by taking the inverse FFT.

Boll (1979) described a spectral subtraction algorithm where he obtained the estimate of the noise

spectrum during nonspeech periods of the input signal. In the specialized case of using the system

with a Linear Predictive Coding (LPC) bandwidth compression device, he was able to obtain

improvements in intelligibility. However, in the general case, the algorithm was only successful in

improving pleasantness and inconspicuousness of the noise background, intelligibility was relatively

unimproved.

Berouti (1979) noted that Boll’s algorithm had a tendency to induce a ringing or "musical noise" in

the speech estimate. He claimed this noise was derived from the relatively large excursions in the

estimated noise spectrum. He proposed two modifications to the Boll method: subtraction of an

overestimate of the noise spectrum and the imposition of a minimal "spectral floor" beneath which

the spectra components were prevented from descending. The spectral floor was intended to

effectively mask the musical noise cited above. While the subjects preferred the quality of the

enhanced speech, the intelligibility was the same as that of the unprocessed signal. In some noise

situations, the intelligibility was worse.

Morii’s (1988) work is directly related to the current research since he was specifically studying noise

suppression techniques while using a single PZM with the SPHINX system. In addition to

implementing the spectral subtraction algorithms of Boll and Berouti, he also implemented a

microphone spectral normalization process. Unlike the previous spectral subtraction work, he was

specifically interested in improving the recognition accuracy of the SPHINX system, rather than the

quality or pleasantness for human listening. The Boll algorithm reduced the error rate by

approximately 10% and separately, the Berouti algorithm reduced the error rate by approximately

30% compared to the unprocessed input.

The second step, spectral normalization, filtered the sentences recorded with the PZM to have the

same frequency response as if they were recorded with a headset microphone. The long-term

responses of the microphones were generated by averaging the magnitudes of the frequency

spectrums of each microphone during speech periods. The PZM signal was then passed through a

zero-phase filter so that its long-term spectral reponse was the same as the reference. If the Berouti

algorithm and the spectral normalization algorithm were used in cascade, there was an overall 40%

improvement in the error rate.

Background
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2.2.2 Adaptive noise canceling

The adaptive noise canceling (ANC) technique estimates the desired signal by subtracting adaptively

filtered noise from the primary input.  The technique requires that a separate reference microphone

be placed in the environment in addition to the speaker’s primary microphone. The reference

microphone is intended to record noise that is correlated with the noise in the speaker’s microphone,

but not the speaker’s voice.

Widrow et al. (1975) applied his ANC algorithm to a simulated airplane cockpit environment where

the noise source was uncorrelated white noise. The system was able to converge in about 1 second

and provided about 20 to 25 db of noise suppression. In the output estimate, the desired speech was

not noticeably distorted and the original interference was barely perceptible to the listener.

An unfortunate aspect of this technique (along with other adaptive filtering algorithms) was the

tradeoff between the number of taps and the settling time.  A large number of taps yielded reasonable

signal outputs but had a long settling time. With reasonable settling times, a "pronounced echo"

similar to reverberation was actually added to the signal instead of improving the effects of

reverberation (Boll and Pulsipher, 1980). This induced echo in the output speech was attributed to

filter misadjustment generated by the significant amount of feedback used to create the filter

coefficients.

Vea (1987) attempted to apply adaptive filtering with multiple microphones for general speech

enhancement in the office environment. In particular, he implemented Widrow’s Least Mean Squared

(LMS) adaptive noise cancelling algorithm and separately an adaptive microphone array algorithm.

While he found that the ANC algorithm was successful in specialized environments, it was ineffective

in a typical office environment since the reference signal typically was significantly correlated with

the desired speaker’s signal. The adaptive microphone array predictions were based on Frost’s (1972)

algorithm. In Vea’s calculations, simulated multimicrophone recordings were used. Vea also found

that the adaptive microphone array algorithm was also ineffectual in enhancing speech in typical

office environments, although the complete evaluation was inconclusive.

2.2.3 Binaural suppression of reverberation

Allen et al. (1979) suggested a multimicrophone digital processing scheme with which they claimed

to remove much of the perceived distortion of reverberation. The individual microphone signals are

divided into frequency bands whose corresponding outputs are cophased (delayed differences are

Background
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compensated) and added. The gain of each resulting band was based on the degree of correlation

between microphone signals in that band. The operations are equivalent to a linear time-varying filter

whose properties depend on the short term spectra of the two input channels. The system was tested

using real reverberation and was claimed to be effective on two kinds of reverberant degradations:

coloration, early room echoes that are perceived as spectral distortion, and reverberant tails, longer

term reverberation which contributes time-domain noise-like perceptions or tails on speech signals.

However, in a preliminary evaluation, Bloom (1980) found that the dereverberation process had no

statistically significant effect on recognition scores, even though the measured average reverberation

time and the perceived reverberation time were considerably reduced by the processing.

2.3 Characteristics of the human binaural system

While many of the algorithms and techniques have had varying success in speech enhancement, they

still do not compare to the human auditory system. This suggests the development of an automated

speech recognition system based on processing that is analogous to the human auditory system. While

this approach is theoretically pleasing, practical implementation has some formidable limitations

since the intricacies of the auditory system are only partially understood. The characteristics and

phenomena of the ear have been extensively quantified and categorized, but the underlying

mechanisms are still an area of continuing research. In this section, some of the characteristics of the

human binaural system that make it ideally suited for enhancement of degraded signals will be

described. The following section looks at some of the models that have been developed to partially

explain those mechanisms. Finally, Section 2.5 gives an in depth description of the Lindemann model.

One way of categorizing auditory phenomena is to separate monaural and binaural phenomena.

Monaural phenomena require only one ear and would include such tasks as pitch identification and

speaker identification. Conversely, binaural tasks require the use of both ears and some form of central

processing. One of the best examples of binaural perception is the ability to predict the location of a

sound source. The current work concentrates on the binaural phenomena of the human hearing

system.

Simple spatial direction. One of the eminently useful phenomenon of the human binaural systems

is the ability for humans to estimate the location in free space from where a sound originates. While

the eyes may aid in the prediction, the human binaural system is able to make accurate judgements

Background
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independently. This process is referred to as localization. A related phenomenon, lateralization, refers

to when the stimuli are presented via headphones and the binaural system makes a prediction of the

location inside of the head instead of in free space as with localization. Several binaural cues,

including interaural differences in timing, level, spectral content, and onset, have been found to be

useful in explaining localization and lateralization phenomena.

Cocktail party effect. The cocktail party effect refers to the phenomenon where a listener can choose

to focus on a specific speaker in a room where several people are talking concurrently. Even though

there are competing speakers or noise sources, the listener is able to hear and understand the speaker’s

words. While there are several mechanisms at work that help the listener to understand, one of the

major contributions arises from the fact that the perception is based on the input from both ears. One

can easily demonstrate this effect to himself/herself by observing the difference in understanding

when either ear is covered in a multispeaker environment.

Precedence effect. There have been many independent discoveries of the human binaural system’s

ability to detect the location of a sound when there are delayed reflections of the original sound which

might confuse the localization process (see Gardener, 1968). This phenomenon has been termed the

precedence effect or the law of the first wave front. This effect is very useful to humans in rooms

where reverberation threatens to confuse the listener with multiple pseudo sound sources. The

precedence effect describes the phenomenon by which the human binaural system tends to base the

"judgements of localization almost exclusively by the interaural cues carried by the earlier, or direct,

sound" (Zurek, 1980). In general, this applies to pairs of coherent sounds that differ in arrival time

from approximately one to ten milliseconds. The usual assumption behind attempts to explain the

precedence effect is that both ipsilateral and contralateral inhibition (postmasking) are at work

(Blauert, 1983). For a complete description of the precedence effect and a collection of relevant data,

see Section 3.1.2 of Blauert (1983).

Binaural sluggishness. The binaural system’s ability to perceive changes in localization is fairly

sluggish, generally over time intervals on the order of tens or hundreds of milliseconds (Grantham

and Wightman, 1978). This is slightly surprising since other localization phenomena such as the

precedence effect occur within intervals of a few milliseconds. This sluggishness characteristic can

be demonstrated by presenting a subject with dichotic stimuli in which the interaural time difference

(IATD) is sinusoidally varied so that an intracranial image oscillates from side to side in the head.

Background
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When the IATD is varied above approximately 5-Hz, Figure 2-1 shows that it becomes progressively

difficult for a subject to distinguish the "moving stimulus" from spectrally-matched diotic stimuli.

2.4 Binaural models

In studying binaural hearing, there has been a considerable amount of theoretical research, often

based on physiological experiments (e.g. Colburn, 1973; Lyon, 1986), and other work with black-box

elements that attempt to mimic some of the attributes of physiological processing (e.g. Lindemann,

1986a). Unfortunately, the models are only able to explain a limited subset of the psychoacoustic

data. For an exhaustive summary and analysis of work in binaural processing models through 1974,

see Colburn and Durlach (1978). In this section, a general model framework will be described and

then various aspects of several models will be highlighted with respect to that framework.

Model framework. Figure 2-2 shows a generalized model of the human binaural system containing

several functional elements. The elements can be partitioned into two hypothetical divisions. First,

there are the various components of the outer, middle, and inner ear which convert sound pressure

waves into frequency-specific neural responses. The other major division describes some of the

components of central processing that compare and process the inputs from the two ears. The models

discussed in this paper primarily deal with the more central processing aspects of the human binaural

system.
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Figure 2-1. Grantham and Wightman IATD Data.  The peak interaural time delay ∆τw required for threshold
discriminability of the "moving stimulus" from a diotic stimulus is plotted as a function of modulation
frequency fm of the moving stimulus. The symbols represent data from three subjects in Grantham and
Wightman (1978). 

Background

Enhancement of Reverberated Speech 2-7



Jeffress model. Jeffress (1948) outlined a hypothetical neural network that converted interaural time

differences (ITDs) into "place information" in the network. It had been documented that a low

frequency (less than 1500-Hz) tone could be localized by the phase (or time) difference of the stimulus

from the two ears (Stevens and Newman, 1936). In Jeffress’s mechanism, the time it took a nerve

impulse to travel through a secondary fiber was specifically related to the length of the fiber. In Figure

2-3(a), pairs of differing length secondary fibers terminate at tertiary fibers which respond to impulses

1

ITD

ILD

Time averagingInhibition

2

3

4

1

Perception

Left

Right

Figure 2-2. Framework for the Human Binaural System. Type 1 elements represent the outer, middle, and
inner ear processing that includes acoustical filtering and transforming acoustic signals into "frequency bands"
of nerve firing patterns. Type 2 elements simulate the correlation and the estimation of interaural timing
differences between the binaural stimuli. The analysis of interaural level differences is represented by Type 3
elements. The fourth element is a mixture of higher order processes.  Binaural perceptions, such as localization
or detection, may be formed by pattern recognition. Some models also include some form of time averaging
and suppression (inhibition) of ITD and ILD information. (after Blauert, 1983)

Figure 2-3. Jeffress Model.  (a) The original mid-brain mechanism used by Jeffress to describe the localization
of low frequency tones. (after Jeffress, 1948) (b) A schematic representation of one half of the Jeffress model
that is in a useful format for comparing with other correlation models.
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from the secondary fibers which are nearly coincident. Thus, interaural time delays are represented

by the distribution of the responses of tertiary fibers at different places. Jeffress also hypothesized

that the same mechanism could account for interaural level differences (ILDs) since the onset time

of the more intense signal would be earlier than the onset time of the less intense signal (the latency

hypothesis).

Sayers and Cherry model. Sayers and Cherry (1957) were among the first researchers to

quantitatively describe binaural phenomena directly in terms of interaural correlation. They realized

the correlation process with the running crosscorrelation function

Ψ(τ,t)=∫ xl
−∞

 t
(ν) xr(ν−τ) W(τ,t) dν (2-1)

where xl and xr are the left and right signals respectively and t represents a time delay between the

signals at a given time t. The correlation function can be can be organized to compute the correlation

for various values of τ as in Figure 2-4. The weighting function W(t,τ) favors the portion of the signals

immediately preceding the given time t. This corresponds to leaky integrators or the running

integration of Figure 2-4. A suitable weighting function is

W(τ,t) = e−(t−ν) ⁄ Tint (2-2)

where Tint is the integration time constant.

While the interaural timing information provided by running crosscorrelation is similar to the

coincidence counting of Jeffress, their model allows explicit quantitative comparison to binaural

l r

Running Crosscorrelation Ψ(τ,   )t

X

Running 
Integration

Multiplication

∆τ

∆τ

X

∫∫∫∫∫

k

XX X

∆τ

∆τ

∆τ

∆τ

∆τ

∆τRight
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Figure 2-4. Model of Running Crosscorrelation.  Various values of t are derived by adding the delay elements
∆τ. The products of the delayed signals are fed into leaky integrators which generate the running
crosscorrelation. (after Lindemann, 1986a)
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hearing data. Specifically, since an interaural time delay in the binaural stimulus corresponds to an

equivalent time delay in the crosscorrelation function, the correlation function is a natural means for

interpreting the lateralization phenomena associated with interaural time delay.

Colburn and Stern model. Colburn (1977) extended and formalized Jeffress’s work by

incorporating auditory-nerve information into his model and yet was still able to give quantitative

predictions similar to the Sayers and Cherry model. His model describes a mechanism for generating

an estimate of the crosscorrelation function in which auditory-nerve fibers are described by

statistically independent Poisson processes. The expected number of coincidences recorded by a fiber

pair is approximately given by

E[Lm] = Tw∫ γl
0

 Ts
(t−τ) γr(t) dt (2-3)

where Tw is the time interval for coincidence of the fiber pair, Ts is the duration of the stimulus tone,

and γl(t) and γr(t) are the rate functions associated with each of the fibers in the pair. The explicit use

of detailed physiological data on the auditory-nerve and its inherent randomness resulted in the ability

to describe a wider variety of behavioral data with fewer arbitrary assumptions. 

Stern (1978) extended the Colburn model by proposing a (nonphysiologically based) mechanism

that generates a position variable by combining the outputs of the binaural displayer with an intensity

function that depends on the interaural level differences of the stimulus. In this work, it is also argued

that theories (including the latency hypothesis) that propose a peripheral interaction of interaural

timing and level information are generally incompatible with physiological data.

2.5 Lindemann model

Lindemann (1986a) also assumes a model of the binaural system based on the running

crosscorrelation function. Figure 2-5 shows Lindemann’s conceptual extensions to his deterministic

correlation model, a contralateral-inhibition mechanism and monaural detectors. Lindemann

(1986b) claims these extensions are necessary in order to simulate some previously unaccounted for

dynamic lateralization phenomena, such as the precedence effect.

The Lindemann algorithm consists of a series of operations on signals that are discrete in both the

time and interaural correlation axes. If the two input signals have been sampled, they can be

represented as l[n] and r[n]. Now, instead of the continuous variable t, n is used as the sample number
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and the integration is changed to a summation. The running crosscorrelation (without the Lindemann

extensions) is now represented as

Ψ[m,n] = ∑ 
i=−∞

n

l[n−i] r[n+i−m] W[i,n] (2-4)

where m denotes the number of samples of delay and the weighting function is

W[ i,n] = e−(n−i) ⁄ Tint (2-5)

Figure 2-6 gives a detailed view of the complete Lindemann algorithm. Each of the extensions will

be discussed in detail, however, only the operations on the right channel will be described. Operations

on the left channel are symmetric with minor modifications of notation.

"left"                          lateralization of the auditory event                         "right"

monaural
detector

left
interaural  cross-correlation

monaural
detector

right

left
ear

right
ear

inhibition

Figure 2-5. Conceptual Representation of Lindemann model.The interaural crosscorrelation model is extend
with monaural detectors and inhibition mechanisms.
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Ampl i f i e r

Running Crosscorrelation Ψ(τ,   )t

∫

Figure 2-6. Schematic Representation of Lindemann model.  Shown here are Lindemann’s extensions to one
of the correlation sections in Figure 2-4. The stationary and dynamic inhibition coefficients attenuate the signals
as they are conducted along the delay lines. The monaural detectors are implemented as gain (that is a function
of section position) on the signals before they are multiplied together. 
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2.5.1 Inhibition mechanism

The inhibition mechanism is composed of two components: stationary inhibition and dynamic

inhibition. Each component is a coefficient that attenuates the signal as it is conducted along the delay

lines. The signals along the delay lines are updated by

r[m+1,n+1] = r[m,n] ir,s[m,n] id[m,n] (2-6a)

l[m−1,n+1] = l[m,n] i l,s[m,n] id[m,n] (2-6b)

where ir,s[m,n] is the stationary inhibition attenuation coefficient for the right channel and id[m,n] is

the dynamic inhibition attenuation coefficient.

Stationary Inhibition . The stationary component is used to equalize the performance of the model

with the psychoacoustical data for stationary signals and is derived from

ir,s[m,n] = 1−cs l[m,n] (2-7a)

il,s[m,n] = 1−cs r[m,n] (2-7b)

where cs is a tuning parameter for the stationary-inhibition component. The stationary inhibition

coefficient for a given channel is inversely proportional to the signal on the contralateral tap. Thus,

the signal continuing in the right channel is attenuated if the corresponding left signal is strong. 

Experimentally, the value of the stationary inhibition coefficient cs affects the "sharpness" of

crosscorrelation peaks. The "width" of the lobe is inversely proportional to cs (see Figure 2-7) and

the overall amplitude of the crosscorrelation is weakly proportional to cs. 

Dynamic Inhibition . The dynamic inhibition scheme is more difficult to describe, as the dynamic

inhibition coefficient id[m,n] is derived from a nonlinear function Φ[m,n] of several variables.

id[m,n] = 1−Φ[m,n] (2-8)

Φ[m,n] = cdk[m,n] + Φ[m,n−1] e−∆τ ⁄ Tinh (1−cdk[m,n−1]) (2-9)

Cd is the dynamic inhibition tuning parameter and Tinh is the fadeoff time constant of the nonlinear

lowpass filtering of the crosscorrelation product k[m,n]. Lindemann set Tinh = 10ms to correspond

to the echo threshold for broadband impulses. Figure 2-8 shows that the nonlinear filter has a very

short onset time compared to the relatively long fadeoff time. Both the onset time and the asymptotic

level of the output are nonlinearly related to the strength of the input signal. As with the stationary

inhibition component, when the response of Φ[m,n] is strong (amplitude approaching 1) the signal

conducted to the next tap will be strongly attenuated by the dynamic inhibition.
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Figure 2-7. Correlation with Inhibition Disabled and Enabled. (a) Inhibition completely disabled (cs = cd = 0). (b) Stationary inhibition enabled only (cs = 1,    cd

= 0). (c) Dynamic inhibition enabled only (cs = 0, cd = 1). (d) Inhibition completely enabled (cs = cd =1). The stimuli are IATD bandpassed noises described in
Appendix A.2 with fm = 2 Hz and ∆τw = .25 ms. The horizontal axis is correlation delay time in ms and the oblique axis is running time in ms.

-.5 0 .5

(b)

0

200

400

600

800

1000

Time (ms)

-.5 0 .5

(d)

0

200

400

600

800

1000

Time (ms)

-.5 0 .5

(c)

0

200

400

600

800

1000

Time (ms)

-.5 0 .5

(a)

0

200

400

600

800

1000

Time (ms)

B
ackground

E
n

h
a

ncem
e

n
t o

f R
e

ve
rbe

ra
te

d S
p

e
ech

2
-1

3



Experimentally, the dynamic inhibition coefficient controls the extent to which  the peaks travel along

the correlation axis. With strong stationary inhibition, as cd is increased, the peaks of the correlation

function move toward each other as in Figure 2-7(d). Values of cd close to 1.0 cause the distance

between correlation peaks to be "compact". However, with little or no stationary inhibition, the peaks

of the correlation function move farther from each other with strong dynamic inhibition as seen in

Figure 2-7(c). While there is mild attenuation of the signals on the fringes of a correlation peak, the

strongest attenuation occurs on the contralateral input signals as they passed through the peak location

of the correlation. This causes the next time step of the instantaneous correlation function to be

decreased, favoring taps closer to the center.

2.5.2 Monaural detector mechanism

The monaural detector components are intended to give lateralization information when the

crosscorrelation processor fails to provide a cue. In the model, it is specified as a weighting function

that is applied to each of the channels.

r′[m,n] = r[m,n] (1−wr[m]) + wr[m] (2-10a)

l′[m,n] = l[m,n] (1−wl[m]) + wl[m] (2-10b)

wr[m] = Wf e
(M−m) ⁄ −Mf (2-11a)

wl[m] = Wf e
(M+m) ⁄ −Mf (2-11b)

Wr[m] is the right channel monaural sensitivity of the correlator at tap m,Wf  is the monaural

sensitivity of a correlator to the signal at the end of a delay line, M is equal to half of the number of

delay elements, and Mf is the fading constant for monaural sensitivity.

Figure 2-8. Response of Φ[m,n]. The time response of Φ[m,n] to various halfwave rectified cosine functions.
The lower curve in each frame is the input stimuli and the upper curve is the response of Φ[m,n]. Note that the
response of Φ[m,n] is similar under fairly different onset and amplitude conditions of the stimuli.
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2.5.3 Input processing

Some of the details of the input processing need to be discussed since we will need to modify the

original architecture in some of experiments. The various processing steps will be listed and a brief

explanation will be given of why Lindemann originally choose each step. As will be explicitly

indicated later, some of these processing steps were modified or removed in order to facilitate an

implementable process for speech signals.

Bandpass Filtering. The input signals were fed into a linear bandpass filterbank. For broadband

stimuli, such as speech, this filtering models the spectral sensitivity of the inner ear where a specific

nerve fiber tends to respond to a limited range of frequencies. Predictions involving single frequency

tones were not bandpassed filtered. None of the stimuli in this work were bandpass filtered.

Halfwave Rectification. In order to simulate the conversion of sound pressure into nerve firings, a

simple halfwave rectifier was used. For localization of broadband tones, a first-order lowpass filter

with cutoff frequency of 800 Hz simulates the smoothing of the firing probability for high

frequencies. For low frequencies, the binaural processor works on the fine structure of the signal

instead of the envelopes

Zero Stuffing. Due to the structure of the binaural processor, the delay time ∆τ is half the sampling

time ts of the input signals. In order to maintain the original sampling rate in the processor, zeros

were inserted between samples of the input signals in order to halve the sampling period.

Normalization. In order to avoid complications in describing the model, Lindemann chose to

normalize the input signals to the interval 0≤l,r≤1. Thus, the correlation algorithm with his extensions

was formulated expecting the inputs to be normalized.

2.5.4 Localization Mechanism 

Lindemann defined two different criteria for predicting the lateral displacement of auditory events.

The criteria, location of the centroid and location of the maximum, were both based on the information

in the running inhibited crosscorrelation function Ψ[m,n]. In our work, the location of the maximum

was primarily used since it required fewer computational steps. Lindemann normally used the

centroid criteria and intended the location of the maximum criteria for when concurrent auditory

events were to be localized. The location of the centroid was computed with

(2-12)d(n) = 
Σm=−M

+M    m Ψ[m,n]

Σm=−M
+M    Ψ[m,n]

.
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Chapter 3

Application of Lindemann Model to Simple
Auditory Stimuli

In this chapter, we will look at the response of the model to four types of simple auditory stimuli that

are used in psychoacoustical experiments, and we evaluate the predictions made by the Lindemann

model. In the first three calculations, the stimuli were designed to simulate some of the distortions

caused by a reflection of a signal in a reverberant environment. The first two calculations evaluated

the model’s localization predictions. In the first calculation, a diotic impulse and a delayed dichotic

impulse simulating a reflection component are presented to the model. The second calculation is

similar except that continuous sinusoids are presented. Although the stimuli were simpler than an

actual environment would produce, they are, nevertheless, reasonable approximations that allow

strict quantitative evaluation. In the third calculation, we wished to quantify the extent to which the

reflected signal is suppressed when an output signal is extracted from the model.

The fourth calculation demonstrates binaural "sluggishness", and the predictions address the

mechanisms which account for this sluggishness in the binaural system. Stern and Bachorski (1983)

had suggested that a simple leaky integrator mechanism was sufficient to describe the interaural

temporal difference data of Grantham and Wightman (1978). Lindemann responded that the

inhibition mechanism in his model was useful for describing the lateralization sluggishness

(Lindemann, 1983). We will evaluate the Lindemann model predictions for binaural sluggishness

and compare those results with the predictions of Stern and Bachorski and with the data of Grantham

and Wightman. These simulations use stimuli similar to those of Grantham and Wightman to

quantitatively evaluate the predictions made by the Lindemann model.

For most of these calculations, the algorithm described in Lindemann (1986a) was duplicated as

closely as possible in order to replicate Lindemann’s results. Unless otherwise noted, all parameters

were set to the values originally specified by Lindemann.
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3.1 Binaural impulses

This first calculation demonstrates the binaural suppression effect and verifies our implementation

of the model. The stimuli are patterned after Lindemann’s (1986b) experiment to predict the lateral

displacement of the auditory event as a function of arrival time difference ti. Figure 3-1 shows the

two pairs of binaural impulses or "clicks", one diotic and the other dichotic, that were presented to

the model. The first pair of impulses is simultaneously presented in order to simulate the direct sound

or "first wave front". A second set of impulses is presented with an interaural time delay td and is

intended to simulate a single nondirect reflection of the first impulse pair. 

Figure 3-2 shows crosscorrelation functions where the impulse stimuli are presented to the

Lindemann model with both of the inhibition components turned off. Under these conditions, the

model behaves as a pure running crosscorrelation mechanism. The correlation peak of the reflected

signal has roughly the same amplitude as the initial peak from the direct sound for all three arrival

delay times ti.

With both the stationary and dynamic inhibition components enabled, the same stimuli produce the

responses shown in Figure 3-3. These predictions are equivalent to Lindemann’s predictions, and

indicate that we have successfully implemented Lindemann’s original algorithm. For ti = 5 ms, the

correlation peak for the reflected impulse has been suppressed. With increasing arrival time difference

ti, the peaks are still relatively suppressed even though they fall outside the 10 ms fadeoff constant

of the dynamic inhibition. Note that in all cases, the width of the correlation lobes is much narrower

with inhibition enabled compared to a pure running crosscorrelation. It is apparent that the Lindemann

r i gh t

l e f t

t i m e

Direct sound
impulse pair

Reflection
impulse pair

i
d

t
t

Figure 3-1. Binaural Impulse Stimuli. All of the impulses have an amplitude of 1 and are .5 ms long. The
reflected impulses are presented with interaural delay times ti of 5, 15, and 25 ms, and the interaural delay time
td was .5 ms.
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Figure 3-2. Running Correlation with Inhibition Disabled. The binaural impulses of Figure 3-1 were presented
to the Lindemann model with the inhibition mechanism disabled. The horizontal axis is correlation delay time
in ms and the oblique axis is running time in ms. (a) ti = 5 ms. (b) ti = 15 ms. (c) ti = 25 ms. 
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Figure 3-3. Running Correlation with Inhibition Enabled.  The correlation function are calculated from the
same stimuli as Figure 3-2 except that the inhibition mechanism has been enabled (cs = cd = 1).  (a) ti = 5 ms.
(b) ti = 15 ms. (c) ti = 25 ms. 
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model is successful in suppressing the simulated reflection of a direct wave pulse. This is the general

suppression property that we will attempt to exploit with speech signals in reverberant environments.

3.2 Continuous signal localization

In this series of calculations, the localization prediction of continuous signals with and without

inhibition is compared. The stimuli are similar to the binaural impulse data but instead of impulses,

sine wave functions are presented. Additionally, the amplitude Ar of the simulated reverberation was

varied as a parameter. 

Equations (3-1) through (3-4) describe the continuous stimuli. The first wavefront is simulated by

an 1000-Hz sinusoid that is presented identically to both input channels. The simulated reflection is

an 800-Hz sinusoid that is presented to both channels, with the left channel presented with a fixed

delay td of .5 ms with respect to the right channel. 

x1(t) = sin(2π1000t) u(t) (3-1)

x2(t) = sin(2π800t) u(t) (3-2)

xl(t) = x1(t) + Ar x2(t−ti−td) (3-3)

xr(t) = x1(t) + Ar x2(t−ti) (3-4)

Ar is the amplitude of the simulated reflection relative to the direct signal amplitude. While in actual

conditions reflected signals mostly differ in arrival time and not in frequency, this paradigm allows

us to differentiate the locations of each of the signals. Figure 3-4 shows the differences in the

correlation function when the inhibition mechanism is disabled or enabled.

Figure 3-4. Continuous Signal Correlation Functions.  (a) Inhibition Disabled. (b) Inhibition Enabled. There
is approximately a 5 ms improvement in the localization prediction with the inhibition mechanism enabled.
The horizontal axis is correlation time in ms. (Ar = 1, ti = 15ms) 
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Figure 3-5 shows that the inhibition mechanism provides a 5 ms improvement in the localization

prediction with continuous signals. If the reverberation signal amplitude Ar is less than -2 dB of the

direct amplitude, the inhibition prevents the localization prediction from ever being shifted away

from the direct signal location. At equal amplitudes, the localization prediction is not relocated for

an additional 5 ms. With ti = 5 ms, the localization prediction improvement envelope was pushed out

farther than the later delay times ti since it falls within the inhibition fadeoff constant Tinh of 10 ms.

Thus under typical situations with speech, we would expect the inhibition mechanism to provide an

improvement in the localization prediction.

3.3 Extraction of on-axis components of continuous signals

This is the first attempt to extract a signal from the processing of the Lindemann model. Stimuli that

are identical to the calculations in Section 3.2 are presented to the model and a signal is extracted

from the center tap of the instantaneous crosscorrelation. We assume that the direct signal is localized

at the center tap since it is presented diotically. We are interested if there is any improvement in the

signal-to-noise ratio of the direct signal to the reflected signal with the inhibition mechanism enabled.

The stimuli are generated with equations (3-1) through (3-4) with Ar fixed at unity and the delay

times td and ti are varied. Again, this paradigm allows us to directly measure the signal-to-noise ratio

by calculating the power in each of the two frequencies contained in the output signal. This was

accomplished by using the quadrature decomposition method described in Ziemer and Tranter (1985)

shown in Figure 3-6 to determine the resulting power of each frequency. An example of the

improvement in signal-to-noise ratio is shown in Figure 3-7. For all of the combinations of the

Figure 3-5. Localization of Continuous Signals. Each of the panels shows the time in ms at which the
localization prediction changed from the direct location to the simulated reverberation location as a function
of reverberated signal amplitude Ar in dB. The upper curve (squares) is with both inhibition mechanisms
enabled and the lower curve (circles) is with inhibition disabled. (a) ti = 5 ms. (b) ti = 15 ms. (c) ti = 25 ms. 
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parameters, there was virtually no improvement in the signal-to-noise ratio. The portions of 6-dB

improvement in Figure 3-7 are attributed to beating effects between the two frequencies.

3.4 Localization sluggishness predictions

In these predictions, we are testing to see if the inhibition mechanism of the Lindemann model can

account for the observed sluggishness in response to binaural stimuli with time-varying interaural

differences (IATDs). Tones with sinusoidally varying IATDs similar to Grantham and Wightman

(1978) are presented to the Lindemann model. The predictions are then qualitatively compared to

the measured data of Grantham and Wightman and the theoretical predictions of Stern and Bachorski

(1983).

Σ
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( )2
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+ Bω

Figure 3-6. Schematic of Quadrature Decomposition.  The relative power Bω at  frequency ω is calculated by
integrating the products of x(t) over one period of the test frequency ω. (after Ziemer and Tranter, 1985)
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Figure 3-7. Continuous Signal SNR Improvement. The z-axis plots the improvement in signal-to-noise ratio
(SNR) in dB with inhibition enabled. The delay along the y-axis is interaural delay td. (Ar = 1, ti = 15ms).
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The binaural stimuli approximate the auditory nerve response when the output of a noise generator

N(t) is presented to one ear, and the same output is passed through a sinusoidally varying time delay

to the other ear.

xl(t) = N(t) (3-5)

xr(t)=N(t − ∆τw sin(2πfmt) ) (3-6)

The two parameters of interest are fm, the frequency at which the delay line is modulated, and ∆τw,

the maximum amplitude of the modulation. Details for creating the stimuli can be found in Appendix

A.2.

Grantham and Wightman’s experiments indicate that for increasing fm, ∆τw must be increased in

order to distinguish the IATD stimuli  from spectrally-matched diotic stimuli as was shown in Figure

1-1. Figure 3-8(a) shows the predictions with the Lindemann model, where this trend is also observed

but with some limitations. First, in order to observe detectable predictions, ∆τw had to be increased

approximately an order of magnitude compared to the thresholds observed in the Grantham and

Wightman experiments. This difficulty is attributed to the inhibition mechanism which tends to

compress the width of the crosscorrelation function lobes by a factor of about 10 compared to a pure

crosscorrelation function. Thus, in order to view variation of the localization data that was in the

10-100 microsecond range of Grantham and Wightman, the discrete-time crosscorrelation function

must have resolution on the order of fractions of a microsecond. This would require sampling rates

of several MHz which are not feasible in our current computing environment. In general, this

compression, and the sub-microsecond resolution it implies, seems slightly disturbing for describing

psychoacoustical data.

(a) (b)

Figure 3-8. Comparision of IATD Predictions.  Interaural time delay discrimination thresholds for (a) the
Lindemann Model (b) the Stern and Bachorski model with the Grantham and Wightman data of Figure 1-1
superimposed.
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Secondly, Grantham and Wightman claim that the ∆τw and fm proportionality is nonlinear.

Specifically, around 5-Hz, there appears to be a "knee" in the curve after which point a larger

modulation amplitude ratio is necessary as the frequency is increased. With the Lindemann model,

it appears that the proportionality is almost linear in the entire range.

In an attempt to further compare the predictions of the Lindemann model with the Stern and Bachorski

model, varying the integration constant of the running crosscorrelation function was also explored.

However, increasing Tint from Lindemann’s 5ms to Stern and Bachorski’s 30ms did not change the

localization predictions. Thus, while Stern and Bachorski’s predictions were fundamentally

dependent on the integration time constant of 30ms, the Lindemann model predictions were

independent. The inhibition mechanism, and its fadeoff time constant, seem to dominate the

Lindemann model predictions. The discrimination thresholds of the Lindemann model are about an

order magnitude greater than Grantham and Wightman’s data in Figure 3-8.

Although higher resolution predictions should be pursued, it appears that the Lindemann model does

not describe the thresholds observed by Grantham and Wightman as accurately as the Stern and

Bachorski model. In addition, the higher computational burden makes it even less tractable.

3.5 Discussion: the inhibition mechanism and simple stimuli

The predictions of the Lindemann model with the previous simple auditory stimuli impart conflicting

information about the usefulness of the inhibition mechanism for enhancing reverberated signals.

While the localization predictions for the discrete and continuous stimuli were improved with

inhibition by not being confused by reflection correlations peaks, the inhibition mechanism did not

improve the signal-to-noise ratio of signals extracted from the instantaneous crosscorrelation. Even

though the simulations with sinewaves were unsuccessful in single frequency band extractions, they

did not indicate that the processing, with possible modifications, would also be unsuccessful in the

general case. Unfortunately, none of the previous calculations were performed with stimuli that had

the identical characteristics of speech. While speech contains continuous excitations, it is not the

uniform excitation of a pure sinusoid. Likewise, the discrete stimuli of the binaural impulse

calculations also do not accurately represent speech signals. Hence, while we can gain insight on the

performance of the model with these contrived stimuli, it is also important to consider how the model

performs with actual speech.

Application of Lindemann Model to Simple Auditory Stimuli
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Chapter 4

Application of Lindemann Model to Speech
Processing

This chapter focuses on attempts to enhance real speech in the presence of reverberant signals. We

will discuss two important stages in this type of technique, localization and extraction, and some of

the calculations used to evaluate the model in both of those areas. In these discussions and

experiments, we have tended to separate the performance of the two stages in order to quantitatively

analyze each individually, but an actual system implementation would not have the benefit of

separation since the extraction performance would be dependent on the localization performance.

This class of binaural-based enhancement techniques is fundamentally dependent upon knowing the

location of the direct sound source. This differs greatly from most of the techniques discussed in

Section 2.2 where the enhancement comes from modifying the frequency spectra. We assume that

the direct sound source will be correlated first and that reflections will arrive later and from different

locations than the direct signal.

4.1 Localization predictions

The localization predictions for real stimuli were evaluated by applying two channels of speech

recorded in a reverberant environment to the Lindemann model and observing the location of the tap

with the maximum value of the crosscorrelation function. Lindemann’s original specification of the

model was very robust as it always provided an accurate prediction of the physical delay time between

the channels of the direct signal and did not localize on any reflected signals. It is not clear whether

it was the inhibition mechanism or the smoothing of the running integrator that caused the predictions

to be robust, but a minimum integration time of Tint = 5 ms was needed to smooth out the instantaneous

correlation function. It appears that the inhibition mechanism does not play as important a role in

predictions with speech since accurate localization prediction could be obtained with a modest

integration time of Tint = 200 ms and the inhibition mechanism disabled. This differs strongly from

localization predictions with discrete binaural impulses where the inhibition mechanism played the

fundamental role in providing accurate predictions.
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4.2 Initial signal extraction

Once we have localized the speaker, the other major stage in this speech enhancement technique is

the extraction of the desired signal. It is our intention that the signal extracted from the processing

of the two channels will provide a better word recognition rate compared to simple single channel

processing. As was stated before, Lindemann designed his model to be an analysis tool primarily for

localization predictions. Our intent was to use the same processing that was useful in improving

localization predictions to enhance speech that was degraded by reverberation. Following previous

binaural studies, the central processor in Lindemann’s model was based on the crosscorrelation

function. In the literature, the crosscorrelation scheme has proved very useful for localization

predictions, but its use with signal extraction has been relatively unexplored. Part of this lack of

application can be attributed to some fundamental limitations of the output signals because of the

specific mathematical operations that are performed in the correlation function. The first limitation

that we will discuss, frequency doubling, is a fundamental problem for all correlation-based schemes.

The other limitation, nonrecoverable rectification, is specifically associated with Lindemann’s

formulation of the algorithm. The remainder of this chapter will address some of the techniques that

were explored in various attempts to circumvent these limitations. 

In this set of extraction experiments with actual speech, the signals were recorded such that the

speaker was equidistant between the two microphones. This allowed us to evaluate enhancement

techniques independent of the localization considerations since we assumed that the signal would

always be localized in the center tap of the crosscorrelation function as was demonstrated from our

earlier calculations. The output signals were subjectively evaluated by a human listener. For many

of the processing schemes, the signals were obviously more distorted than either of the single input

channels, dominated by harmonics and a general noisiness. Some of the enhanced speech was also

objectively evaluated by the SPHINX system, and it was confirmed that the signals that sounded

inferior in the subjective evaluations also produced poor recognition rates. 

4.2.1 Frequency doubling

One of the fundamental limitations of the crosscorrelation function is that its multiplication operation

causes frequency doubling in the output. If we multiply two cosine functions with the same frequency

ω, the output is a cosine at twice the original frequency as shown in equation (4-1) by the cosine

function-product relation in equation (4-2).

cos(ωt) cos(ωt) = 1⁄2 cos(2ωt) + 1⁄2 (4-1)
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cos(a)cos(b) = 1⁄2 cos(a+b)+1⁄2 cos(a−b) (4-2)

Although multiplication is the basis of correlation functions, the detrimental side effect is that the

frequencies are doubled. The other side effect, a constant associated with the phase shift, is easily

removed by DC filtering. Thus if a correlator is used as a signal combiner, two signals of a certain

frequency will be output at double that frequency. Figure 4-1(b) shows the spectrogram of the signals

multiplied together. It is obvious that this is a counterproductive operation for recovering the original

signal.

4.2.2 Nonrecoverable rectification

The second limitation arose because Lindemann’s implementation of the algorithm and other

psychophysically based models required that the input signals be rectified. Since the model was

originally intended for localization predictions, many nonrecoverable processes could be used and

yet still lead to accurate localization predictions. The original halfwave rectification was another

serious source of distortion in the speech, but Lindemann’s restrictions on the nature of the signals

required some form of rectification. Figure 4-2 shows the spectrogram of a halfwave rectified signal

with its spectral splattering caused by shifting the power into the harmonic frequencies.

Due to these limitations in the original formulation, we attempted to develop several other processing

schemes which would use the same inhibition mechanism to enhance a speech signal without

increasing the distortion that would be caused by the correlation and rectification.

Figure 4-1. Spectrograms (Frequency Doubling).  (a) Left channel of original speech signal. (b) Multiplied
signal. The upper boxes contains the time domain waveform of 180 ms of speech. The Lower boxes contain
a frequency domain spectrogram of the speech. The range is 0 through 8 kHz with each horizontal line at 1
kHz increments. 
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4.2.3 Input processing modification

DC offset mapping. Instead of the halfwave rectification, a simple DC offset for the input signals

was examined. Unfortunately, a magnitude warping is introduced since this input mapping is

incompatible with the operations of the inhibition mechanism. Specifically, the amount of attenuation

applied to a signal is related to the instantaneous magnitude of the signal. Since the original negative

components of the signal were mapped into small positive values, and the positive components were

mapped into even larger positive values, the inhibition mechanism would attenuate the positive

components more than the negative components as they proceeded down the delay lines. Further,

when the signal is recovered by subtracting the DC offset, the magnitudes of the original negative

components have actually increased instead of decreased. These distortions can be seen in Figure

4-3(b). Further, this modification still suffered from the frequency doubling problem since the two

signals, although DC offset, were still being multiplied.

Figure 4-2. Halfwave Rectified Speech. (a) The original speech signal and its spectrogram. (b) The halfwave
rectified signal and its spectrogram.

Figure 4-3. DC Offset Mapping. (a) The original speech signal and its spectrogram. (b) The Dc offset rectified
signal and its spectrogram.
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Exponential mapping. An exponential input mapping, motivated by Siebert, (1968), alleviates some

of the problems of the previous mappings. The exponential function is a recoverable rectification

function since the original signal can be perfectly recovered by simply taking the logarithm. Further,

when the exponentiated components are being multiplied by the correlator, the original signals are

effectively added as shown in equation (4-3). Thus, using an expontial mapping also alleviates the

frequency doubling distortion. The particular mapping shown in equation (4-3) and Figure 4-4 was

chosen to satisfy both the range (0≤l,r≤1) and rectification requirements. The multiplication of the

exponentiated inputs in (4-4) can be exactly recovered by (4-5). However, this mapping function still

suffers from the magnitude warping by the inhibition mechanisms that was discussed with DC offset.

x′ = ex−1 (4-3)

k′ = er−1el−1 = er+l−2 (4-4)

output = ln(k′) + 2 = r + l (4-5)

4.2.4 Allowing negative signals in the model

One of the limiting factors of the original Lindemann model was the restriction that all components

of the signal must be positive. The original algorithm was altered to accommodate negative signals

while preserving the fundamental inhibition aspects of the model. See Appendix B for the specifics

of the modification. The major problem with this technique still lies in the fact that the signals are

multiplied together in the correlation process. Thus, if both samples of input signals were negative,

the result of their multiplication would be positive, not very useful in preserving the original signal.
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Figure 4-4. Exponential Mapping Function. 
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To maintain the fundamental frequency, a heuristic modification to the correlation was to still multiply

the samples together but assign the sign of the product the same sign as the input sample with the

maximum magnitude.  Unfortunately, this was not very successful with real speech, the output was

dominated with high frequency noise as shown in Figure 4-5.

A final algorithm modification was to use the algorithm allowing negative signals but to correlate by

adding instead of multiplying. This algorithm is incompatible with the assumption that the direct

signals will correlate first. When the signals are multiplied together, the outside taps of the correlation

function are zero, and the first values on the correlation function will occur in the center of the

crosscorrelation function. When the signals are added, nonzero values of the crosscorrelation function

will occur at the edges of the correlation axis before they appear in the center.  Since the correlation

peaks were at the edges, the inhibition mechanism would severely attenuate the signals travelling

down the delay lines, and the signals would never correlate in the correct positions of the center.

4.3 Discussion

While the Lindemann model did provide accurate localization information, we were unable to directly

extract a useful enhanced speech signal from the instantaneous crosscorrelation. By studying the

intermediate inhibition variables and the propagation of the signals in the crosscorrelation we

concluded that both the signal and the undesired reverberation were both being suppressed. In Figure

4-6, a closer examination of the algorithm shows that even the taps with high correlation levels were

being suppressed along with the neighboring taps. This suppression did not affect localization

(a) (b)

Figure 4-5. Heuristic Multiplication Spectrogram. (a) The original speech signal and its spectrogram. (b) The
heuristic multiplication signal and its spectrogram.
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Figure 4-6. Inhibition Coefficients.  The inhibition coefficients are shown as a function of time (oblique axis)
and position on the correlation axis (horizontal axis) for a signal that was localized in the center tap. (a) Dynamic
(b) Left Stationary (c) Right Stationary.
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(analysis) predictions, but the signal was distorted, preventing a useful extracted signal. In order to

successfully extract the signal using this type of algorithm, only linear or recoverable processes must

be used.

While the Lindemann model was successful for localization predictions, we have not been able to

use it successfully for extracting an enhanced signal. Real and simulated signals were used as inputs

to the system that showed significant reduction of the reflected correlation peaks. This would lead

one to believe that the power of the reverberated signals was also being reduced. However, extracting

that information for an enhanced output has proved to be a difficult problem because of the non-linear

processing in the algorithm. While we believe that some form of inhibition is necessary to help reduce

reverberation, we are convinced that the current implementation found in the Lindemann model is

not useful for extracting signals.
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Chapter 5

Future Work

An analysis of some of the shortcomings of the current approach has led to several extensions and

modifications that can be applied to any future work in this area.

5.1 Multiple central processors for bandpassed signals

The input signals should be bandpassed and input into separate processors for each frequency band

as discussed in section 2.5.3 Input Processing. This would allow accurate differentiation between

interaural delays of the same stimuli and the pseudo-correlations of various stimuli of different

frequencies interacting. Although we did not implement separate processors in our work with

broadband stimuli since it was computationally very expensive, the lack of separate frequency

processors was not the primary downfall of our approach. 

Before this multifrequency extension is implemented, some implementation details should be

examined. To obtain localization predictions, the method by which the information from the separate

channels would be combined into a fused single localization prediction needs to be explored. Further,

the method by which the inhibition feedback is applied to the crosscorrelation functions is unknown.

The inhibition could be applied only to the same frequency processor, or the various frequency

channels could be coupled together so that localization predictions in one band could initiate

inhibition in other frequency bands. Perhaps this implementation choice could be answered by

continued pyschoacoustical and psychophysical experiments.

5.2 Analysis controlled variable synthesis filter coefficients

One of the problems of the current enhancement scheme was that it attempted to extract all of their

information from the processed crosscorrelation function. While the Lindemann model does provide

enhanced localization predictions with the inhibition mechanism, the signals are distorted by some

of the processing steps. In this proposed enhancement technique, suggested by Lindemann in a

personal conversation, the system would be divided into an analysis section using the existing

Lindemann model and a separate section that would synthesize the enhanced speech. This technique

was probably also be implemented with many bandpassed processor sections, and if the filters were
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narrow and dense enough, a sinewave corresponding to an appropriate frequency for each band could

be amplitude controlled and filtered from the information in the corresponding analysis band

processor. A drawback of this approach is having two complete systems for signal processing. Further

research is necessary to determine what particular information needs to be extracted from the analysis

section.

5.3 Independent delay lines

We propose that the correlation and inhibition mechanism be implemented with a set of parallel

independent delay lines. While the particular correlation structure that Lindemann developed is

sufficient to give accurate localization predictions, the general nature of the algorithm is

unsatisfactory for speech synthesis. Lindemann’s conceptual description of the inhibition shown in

Figure 2-5 implies a parallel mechanism, but the specific algorithm uses a single delay line where

the inhibition was applied serially as shown in Figure 2-6. Unfortunately with his approach, when

any signal, direct or reverberant, is detected early in the delay line, the entire signal with both the

direct and reverberant signal are attenuated.

Thus independent delay lines are necessary in order to preserve the integrity of the direct signal while

still attenuating the reverberant signal. This follows directly from Jeffress’s (1948) original

coincidence counting mechanism which can be modified to perform correlation with deterministic

signals. The concept of inhibition can still be performed on the individual delays and yet have an

undistorted direct signal.

5.4 Discrete pattern recognition

The independent delay line mechanism will allow the original analog signals to be processed without

distortion, but processing the original signals is not requisite. The human binaural system does not

use analog signals, but rather discrete nerve firings to transfer the "sound information"and form

perceptions. Hence, it is the detection of a sound at a certain frequency and some form of amplitude

information that is transmitted and not the precise fluctuations of the sound pressure. The central

processing operates on these coincidences of neuron firings in forming the perception of sounds.

Therefore, in a simulation of the binaural system, the analog signal does not necessarily need to be

retained, merely the amplitude and timing information. This could be modelled with some form of

random nerve firings or deterministic amplitude information. For a nerve firing model, the coincident

network of Jeffress would be appropriate. For the amplitude level approach, multiplying or summing

Future Work
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combiner elements working with nonlinear quantizer elements could perform the correlation

function.

This leaves us with a couple of options at this point, use the discrete pulses themselves as the

information presented to a speech recognition system or convert the discrete information back into

an analog signal. Using only the display patterns has already been shown to be successful in the

monaural speech recognition effort by Seneff (1986). Conversely, since the original frequency was

known, amplitude information has been preserved and delay timing information is obtain from the

specific correlator tap, the desired signal could be easily synthesized. This approach also would allow

nonrecoverable processing steps without distorting the output signal.

Future Work
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Chapter 6

Summary

The goal of this project was to gain a better understanding of the extent to which signal processing

schemes based on models of the human binaural system could improve the intelligibility of

reverberated speech. In this work, we analyzed the appropriateness of a single-channel

implementation of a binaural model proposed by Lindemann that was originally developed to

describe binaural localization phenomena. We found that our implementation of his model did indeed

predict the location of the dominant sound source, even in the reverberant acoustical environment of

a typical office. However, several fundamental aspects of the model made it extremely difficult to

extract usable speech from its outputs.

For the simple stimuli predictions in Chapter 3, we were able to verify the model’s ability to suppress

transient reflected components. Additionally, we demonstrated that the inhibition processing was

also useful for continuous tonal stimuli since it provided a measurable advantage (which diminished

over time) over unprocessed localization predictions. Finally, we showed that the model qualitatively,

but not quantitatively, accounts for the "sluggish" response of the binaural system to sinusoidally

varying interaural time differences. The strong compression of the magnitudes suggest that simpler

processing schemes are more plausible.

Calculations using speech stimuli (Chapter 4) suggest that the localization aspects of the Lindemann

model work well even in the reverberant environment described above. We also identified two major

sources of the distortion in the signals extracted from the  instantaneous crosscorrelation function.

First, there is a nonlinearity introduced by the multiplication operation in the crosscorrelation.

Second, the necessity of rectifying the input signals to the model can also produces distortions.

In the suggestions for future work (Chapter 5), we identified four areas of potential improvement. It

is probable that a multichannel implementation of the model could produce a greater amount of

speech enhancement. An analysis-synthesis scheme was proposed that uses the outputs of the present

model to control a resynthesis of the signal. A crosscorrelation network with independent delay lines

was suggested an alternative architecture that would produce a different set of inhibition properties.
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Finally, a pattern classification system based solely on the outputs from the crosscorrelation rather

than a reconstruction of the signal was proposed.

Summary

Enhancement of Reverberated Speech 6-2



Appendix A

Implementation Details

A.1 Computer Algorithms

The model was implemented in the C programming language and could be executed in both the

UNIX and MS-DOS environments. In the later stages, the algorithm was also implemented on the

Connection Machine 2, a 64000 node parallel computer, in order to exploit the parallelism of the

algorithm.  Initially, the algorithm described in Lindemann(1986a) was duplicated as closely as

possible in order to duplicate and verify Lindemann’s results. Unless otherwise noted, all parameters

were set to the values specified by Lindemann.

A.2 Interaural Time Difference Data

This section describes the synthesis of noise with a sinusoidally varying interaural temporal

differences. The signals were 440 mS long with 20 mS of linear rise time and 20 mS of linear decay

time. The signals were sampled at 500-kHz allowing a 2mS resolution of delay times.

xl(t) = Σ
i=1

n

 Ai cos[2π fi (t + 1⁄2∆τw sin(2πfmt)) + θi] (A-1a)

xr(t) = Σ
i=1

n
 Ai cos[2π fi (t − 1⁄2∆τw sin(2πfmt)) + θi] (A-1b)

For a given pair of signals, the maximum interaural time difference ∆τw and the modulation frequency

fm are held constant. The gain Ai is used to simulate the response of the auditory nerve.

Ai = 
(fi ⁄ 500Hz)4

(500Hz ⁄ fi)8
   

fi ≤ 500Hz

fi > 500Hz
(A-2)

The carrier frequency fi is varied between 450-Hz and 550-Hz in 5-Hz increments. The carrier phase

θi is randomly chosen from 0 to 2π for each fi. With the above equations, binary files were created

for the following combination of parameters:

fm = 2, 4, 7, 10, 20, 40, & 100 Hz  and  ∆τw = 50, 100, 200, 300, 500, 700, & 1000 mS
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A.3 Binaural Speech Recordings

The input for the set of speech experiments was 10 sentences recorded in Wean Hall 5302. The room

would be considered a typical office environment with brick walls and carpeting. Two Radio Shack

Pressure Zone Microphones (PZM) were placed on a table 20 cm apart. The speaker was directed to

remain centered between the two microphones and was approximately 60 cm away from the speaker.

The signals were lowpass filtered with a cutoff frequency of 6.4 kHz. The sampling rate was 16 kHz

and the samples were stored with 16-bit linear quantization. 

Implementation Details
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Appendix B

Negative Signals in Lindemann Model

In this appendix, the modifications to the equations in the Lindemann algorithm to allow negative

signals are listed. The first equation in each pair is the original equation specified by Lindemann and

discussed in section 2.5 Lindemann model and the second equation is the modified. In general, the

modifications involve taking the absolute value of variables and changing signs.

ir,s[m,n] = 1 − cs l[m,n] (2-7a)

➮
ir,s[m,n] = 1 − cs l[m,n] (C-1)

Φ[m,n] = cd k[m,n−1] + Φ[m,n−1] e−Td ⁄ Tinh (1 − cd k[m,n−1]) (2-9a)

➮

Φ[m,n] = cd k[m,n−1] + Φ[m,n−1] e−Td ⁄ Tinh (1 − cd k[m,n−1]right|) (C-2)

r′[m,n] = r[m,n] (1 − wr[m]) + wr[m] (2-10a)

➮

r′[m,n] = r[m,n] (1 − wr[m]) + wr[m]
r′[m,n] = r[m,n] (1 − wr[m]) − wr[m]

       r≥0
r<0

(C-3)
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Appendix C

Glossary

binaural:   any stimulus that is presented to both ears. 

contralateral:   taking place or originating in a corresponding part on an opposite side.

dichotic:   binaural stimulus that is different in each ear.

diotic:   binaural stimulus that is identical in both ears.

FFT:   fast Fourier transform.

homomorphic system:   nonlinear systems that obey a generalized principle of superposition;
systems are represented by algebraically linear transformations between input and output
vector spaces.

IATD:   interaural time difference.

ILD:   see interaural level difference.

interaural level difference:   difference in level or intensity of the signal between the two ears.

interaural time difference:   difference in time between the two signals when the reach the ears.

ipsilateral:   affecting or located on the same side.

ITD:   see interaural time difference.

lateralization:   localization inside of the head of sounds that are presented with earphones.

localization:   making predictions of the spatial localization of sounds.

LPC:   linear predictive coding.

monaural:   a stimulus that is presented only to one ear.

temporal:   pertaining to, concerned with, or limited by time.
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Appendix D

List of Variables

Ar relative amplitude of the reflected signal to the direct signal.

cd dynamic inhibition tuning parameter (0 ≤ cd ≤ 1).
cs dynamic inhibition tuning parameter (0 ≤ cs ≤ 1).
d[n] centroid lateralization criteria.
E[Lm] expected number of coincidences for a fiber pair (Colburn model).

fm modulation frequency of dichotic moving stimulus data.

id[m,n] dynamic inhibition component.

i l,s[m,n] left stationary inhibition component.

ir,s[m,n] right stationary inhibition component.

k[m,n] instantaneous crosscorrelation function.
l[n] discrete time left input signal.
l′[m,n] monaural amplified left signal.
m number of samples of delay.
M number of positive correlation taps (total taps = 2M + 1).

n discrete time (samples).
N(t) bandpassed noise.
r[n] discrete time right input signal.
r′[m,n] monaural amplified right signal.
t time.
td interaural delay time.

ti arrival delay time.

Tinh inhibition fadeoff constant.

Tint integration time constant for running crosscorrelation.

Ts duration of stimulus tone (Colburn model).

Tw time interval for to be called a coincidence of firings in a fiber pair (Colburn model).

W(ν,t) weighting function for Ψ(τ,t).
xl(t) left input signal.

xr(t) right input signal.

γ(t) rate functions of the fiber pairs (Colburn model).
∆τ delay time of an individual delay element in a correlation or coincidence network.
∆τw peak interaural time difference for dichotic moving stimulus data.

Φ[m,n] nonlinear lowpass filter.

Ψ[m,n] discrete-time running crosscorrelation function.
Ψ(τ,t) running crosscorrelation function.
τ time delay between xl(t) and xr(t).
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