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LATERALIZATION AND DETECTION OF LOW-FREQUENCY BINAURAL STIMULI:
SPECIFICATION OF THE EXTENDED POSITION-VARIABLE MODEL

ABSTRACT
This publication is a companion to a paper by Stern and Shear [R. M. Stern, Jr. and G. D. Shear,

J. Acoust. Soc. Am.  (1996, in press)] which extends the position-variable model to describe and predict

binaural lateralization and detection phenomena at frequencies up to 1200 Hz.  The most important

modification made to the model is the development of a frequency-dependent form of a function referred

to as p(τ | f ) that describes the relative number of binaural concidence detectors in the model as ac

function of their internal delay.  The function p(τ | f ) is fitted to describe the lateralization of pure tones withc

a fixed ITD over a range of frequencies, and to describe the ratio of N S to N S binaural detection0 π π 0

thresholds. In this publication we summarize the discussions leading up to the particular choice of the

function p(τ | f ) and other related parameters that are now part of the current formulation of the position-c

variable model. We also include in two appendices the complete set of equations that specify the position-

variable model in its present form.
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LATERALIZATION AND DETECTION OF LOW-FREQUENCY BINAURAL STIMULI:
SPECIFICATION OF THE EXTENDED POSITION-VARIABLE MODEL

INTRODUCTION

This publication is a companion to a paper by Stern and Shear (1996) that describes recent modifications

to the position-variable model of binaural interaction (Colburn, 1973; Stern and Colburn, 1978, 1985).

The modifications to the model extend the stimulus frequencies over which it can be applied to the range

of 250 to 1200 Hz.  The paper by Stern and Shear (1996) describes how the shape of p(τ | f ), the functionc

that specifies the distribution of internal delays in the model, affects the form of the model’s lateralization

and detection predictions. Stern and Shear (1996) describe several modifications to the model, including

a new frequency-dependent form of p(τ | f ), and they present and discuss several comparisons of thec

lateralization predictions of the revised model to the corresponding experimental data.

In this publication we summarize a series of discussions in Shear (1987) which describe the process by

which the function p(τ | f ) was modified to describe binaural lateralization and detection data over anc

extended range of frequencies.  We also discuss some of the factors underlying the selection of ν, the

order of the half-wave rectifier that is part of the model for auditory-nerve activity, and R and R , thelat det

range of frequencies used to calculate predictions for lateralization and detection experiments.  We

include in two appendices the set of equations that completely specifies the revised model in its present
1form, so that interested researchers may develop similar predictions.

In modifying the position-variable model to extend its coverage beyond 500 Hz, our major goals have

been twofold.  First, we wanted to gain general insight into the dependence of the predictions on p(τ | f ).c

Second, we sought to specify at least one set of the function p(τ | f ) and the parameters ν, R , and Rc lat det

that provides good agreement between predictions and two sets of experimental data: the lateralization of

pure tones with a fixed interaural time delay (ITD) as a function of frequency (Schiano et al., 1986), and

the ratio of N S to N S as summarized by Durlach and Colburn (1978).0 π π 0

We begin our discussion of modifications to the function p(τ | f ) in Sec. I by describing a set ofc

mathematical constraints that p(τ | f ) must satisfy in order to describe the lateralization data of Schiano etc

al. (1986). Two sets of parametric definitions of p(τ | f ) are proposed in Secs. II and III, and we examinec

how the values of the parameters must be chosen in order to comply with the constraints developed in

Sec. I. This initial analysis of the impact of the choice of p(τ | f ) used a value of ν that was arbitrarily set toc

3, and we considered only those fiber pairs with CFs approximately equal to the target frequency in the

lateralization and detection experiments.  In Secs. IV and V we relax these constraints, and we briefly

discuss the effect on the theoretical predictions of specific choices of the parameter ν and the frequency

regions R and R . Finally, the equations that characterize the position-variable model are summarizedlat det

in the two Appendices.

1A software package that implements the predictions of the model in Objective-C is also available from the first author.
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I. LATERALIZATION CONSTRAINTS
ON THE DISTRIBUTION OF FIBER PAIRS

Shear (1987) developed several constraints on the shape of p(τ | f ) that are implied by the data ofc

Schiano et al. (1986) which indicate that the lateral position of a pure tones of frequency f is0

approximately a constant independent of frequency for values of f less than 1200 Hz, and for ITDs less0

than 1 / 4f . In this section we briefly summarize these constraints.  The interested reader is encouraged0

to refer to Chapter 4 of Shear (1987) for a much more detailed discussion of these topics.

The first type of constraint on the nature of p(τ | f ) is obtained if it is assumed that the binaural processorc
∧

only uses those fiber pairs with CFs (nearly) equal to f when computing the position estimate P . For this0

choice of R , Shear (1987) demonstrated that any conditional distribution that can be expressed in thelat

form

p(τ | f ) = [ C f ] p (C τ f ) , for 300 ≤ f ≤ 1200 Hz, (1)c c θ c c

will produce a predicted lateral position for pure tones that is proportional to a fixed target ITD for all target

frequencies, f . In the above expression, C is the appropriate positive constant that causes p (C τ f ) to be0 θ c

a valid probability density function, and p (C τ f ) is an even pulse-shaped function of C τ f for a givenθ c c

value of f . This type of conditional density function is referred to as a phase-based distribution since it isc

simply a function of the product τ f , which is dimensionally equivalent to phase.  This function becomesc

"narrower" as f increases, consistent with intuition.c

A more general constraint can be derived without any assumptions regarding the range of CFs

considered. Specifically, Shear (1987) showed that the predicted lateralization of low-frequency tones will

be directly proportional to their ITD (as in the trends of the data of Schiano et al., 1986) if the following

constraint on p(τ | f ) is satisfied:c

∂Φ (f | f ) −Cτ c ≈ , for 300 ≤ f ≤ 1200 Hz (2)
f∂f

where Φ (f | f ) is the Fourier transform (or characteristic function) of p(τ | f ), and C is an arbitrary positiveτ c c

constant. This constraint implies that the characteristic function Φ (f | f ) should be linearly related to theτ c

logarithm of f between 300 and 1200 Hz, which produces a weak dependence of the width of the function

p(τ | f ) on f . Functions that satisfy Eq. (2) are referred to as log-based distributions.c c

We now consider the lateralization and detection predictions produced by phase-based and log-based

distributions.

II. LATERALIZATION AND DETECTION PREDICTIONS
USING PHASE-BASED DISTRIBUTIONS

In order to demonstrate the ability (or inability) of phase-based distributions to describe both the

lateralization and detection data of interest, we consider the frequency-dependent phased-based

gaussian distribution p (τ | f )G c
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1 2 2p (τ | f ) = exp [− τ / 2 σ (f )] (3)G c c
√2π σ(f )c

with

∆ γC / f , for f < 1200 Hzσ(f ) = . (4)σ c cc { γC / 1200 , for f ≥ 1200 Hzσ c

When γ equals one, the above distribution satisfies the "phase" constraint of Eq. (1). The parameter γ is

introduced in order to examine how the model’s predictions are affected by the rate at which p(τ | f )c

"narrows" as f increases.c

We compared predictions of the position-variable model using p (τ | f ) to the data of Schiano et al. (1986)G c

with values of γ between 0.9 and 1.2, and σ(f ) defined according to Eq. (4).  We found that a value of 1.2c

for γ provides the best description of the actual lateralization data.  As the value of γ is decreased to 0.9,

the ability of the model to describe the data at frequencies below 1200 Hz diminishes. Predictions

obtained using γ equal to 1.0 (the truly phase-based distribution) are in fact approximately constant for

frequencies below 1000 Hz, but the actual observed lateral position varies somewhat with the frequency

of the tone.  Unfortunately, while values of γ less than 1.0 are required to provide a good description of

the masking-level difference for binaural detection thresholds in the N S versus N S configuration,π 0 0 π
values greater than 1.0 are necessary to provide a good description of the lateralization phenomena

(Shear, 1987).  In other words, it is not possible to specify a single density function of the form given by

Eq. (3) that will describe the available psychophysical evidence for the two experiments considered.

Similar observations were made for other phase-based forms of p(τ | f ) such as a double-sidedc

exponential with a "plateau", which resembles the shape of the original p(τ | f ) specified by Colburnc

(1977).

Phase-based distributions for p(τ | f ) have been part of other models of binaural interaction.  For example,c

the model of Lindemann (1986) uses a phase-based distribution, but he has considered neither the

lateralization nor the detection data discussed in Shear (1987) and Stern and Shear (1996).  In light of our

results, we believe that Lindemann’s model would have difficulty describing at least some of these

lateralization and detection data, and the inclusion into the Lindemann model of a log-based density

function such as those described in Sec. III below may be necessary.

III. LATERALIZATION AND DETECTION PREDICTIONS
USING LOG-BASED DISTRIBUTIONS

We now consider log-based functions, and specifically the problem of finding a function p(τ | f ) that has ac

Fourier transform that exhibits the properties described by Eq. (2) over the range of frequencies of

interest. Several such characteristic functions exist.  The function Φ (f) below was selected because itL

has a corresponding density function p (τ) that is analytic in τ.L

1 2 22 2Φ (f) = ln [( f + k ) / ( f + k )] (5)L h l2 ln (k / k )h l
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The density function p (τ), the inverse transform of Φ (f) isL L

−2π k | τ | −2π k | τ |1 e l − e h
p (τ) = (6)L 2 ln (k / k ) | τ |h l

where k and k are constants which can be selected in order to best describe the lateralization andl h
−1detection data.  To best fit the data while satisfying Eq.  (2), k should generally be less than 200 secl

−1and k should generally be greater than 1200 sec .h

−1We found empirically that using Eq. (6) for the function p(τ | f ), the parameter values of k = 50 sec andc l
−1k = 4000 sec jointly minimized the discrepancies between predictions and data for both sets of datah

considered (Shear, 1987).  We found that for frequencies below approximately 1200 Hz there is fairly

good correspondence between the model’s predictions and the lateralization results of Schiano et al.

(1986). However, Shear (1987) also found that p (τ) had too many fiber pairs with internal delays nearL

zero to properly describe the detection data.

In order to provide a better fit to the detection data without adversely affecting the ability of the model to

describe the lateralization data, two additional modifications were implemented: (1) the function p (τ) wasL

"clipped" so that it is constant for small |τ|, and (2) the parameters k and k were allowed to depend onl h

CF. The resulting modified density function defined below, called p (τ | f ), was found to best describeLF c

both the detection and lateralization data.

C (f ) , for | τ | ≤ 200 µsp (τ | f ) = (7)LF cLF c { −2πk (f )| τ | −2πk | τ |C (f ) (e l c − e h ) / | τ |, otherwiseLF c

where

1.10.1 f , for f ≤ 1200 Hzk (f ) = , (8)c cl c { 1.10.1 (1200) , for f > 1200 Hzc

−1The parameter k in Eqs. (7) and (8) is set equal to 3000 sec , and C (f ) is chosen so that p (τ | f ) is ah LF c LF c

valid density function.  This is the function used to produce the predictions described in Stern and Shear

(1996) and it is sketched in Fig. 5 of that paper.  Although k (f ) is nearly proportional to f for frequenciesl c c

less than 1200 Hz, p (τ | f ) is not a phase-based distribution because k is independent of CF andLF c h

because p (τ | f ) is constant for | τ | less than 200 µsec.LF c

In developing detection predictions using the function p (τ | f ), we originally considered two types ofLF c
∧

decision statistics for reasons described by Shear (1987).  The first statistic, referred to as Q , considerso

the optimal weighting (for a particular stimulus configuration and target-to-masker ratio) of the outputs of
∧

coincidence-counting units over a range of CFs.  The second statistic, called Q , develops binauralc

predictions by summing the outputs of coincidence-counting units over a range of CFs that is centered at

the target frequency. These decision statistics are formally defined in Appendix A. The detection
∧

predictions described in Fig. 6 of Stern and Shear (1996) were obtained using Q . Predictions using botho
∧ ∧
Q and Q are included in Shear (1987).o c
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For both types of density functions considered [p (τ | f ) and p (τ | f )] lateralization predictions for tonesG c LF c

above 1200 Hz generally indicate a larger displacement of the binaural image from center than do the

data. While it is possible to develop (fairly elaborate) forms of p(τ | f ) that can more accurately describec

the sharp shift in image position above 1200 Hz, we feel that a more plausible cause for this discrepancy

between predictions and data is the lowpass filter function of the auditory-nerve model, G(f ). We have

found that lateralization predictions for tones at high frequencies are strongly dependent on the shape of

this function, which was specified to describe the loss of synchrony exhibited by nerve fibers in cats.

Since the human auditory system is sensitive to a smaller range of frequencies than the auditory system

of cats, it is reasonable to assume that the shape of G(f ) in humans and/or its stopband might also be

more compressed with respect to frequency.  Such a lowpass filter function (with a sharper stop band)

would better describe the lateralization data at frequencies above 1300 Hz.  While we believe that these

observations warrant further consideration of how the lowpass filter should be specified, we do not

attempt such an investigation in this work.  It is sufficient to note that the current model, at the very least,

predicts the general trends of the data at high frequencies.

IV. DEPENDENCE OF THEORETICAL PREDICTIONS
ON THE ORDER OF THE RECTIFIER

We summarize in this section some observations concerning the ways in which predictions of the

extended position-variable model are affected by the model parameter ν, the assumed power of the

half-wave rectifier in the model for auditory-nerve activity.  We include here only the major results of these

studies, and the reader is referred to Shear (1987) for further details.

thWe had found that the ν -law half-wave rectifier of the auditory-nerve model should be of order 1, 2, or 3

to best describe the maximum synchronization index auditory-nerve fibers responding to low frequency

tones, as measured by Johnson (1980).  For the lateralization experiment of Schiano et al. (1986), values

of ν between 1 and 3 all provide a reasonably accurate description of the data. Since it is generally

accepted that the peripheral transformation is somewhat expansive (cf. Kiang et al., 1965; Kiang, 1968;

Johnson, 1980), we reject the use of a half-wave linear rectifier.  Discrepancies between predictions and

data can become significant for values of ν greater than 5.

The predicted difference between N S and N S detection thresholds is more sensitive than theπ 0 0 π
predictions for the lateralization experiment to the specific value chosen for the rectifier power ν, and the

∧ ∧
nature of these dependencies is affected by the choice of decision statistic, Q versus Q . For the optimalo c

∧
detection variable Q we found that an increase in the rectifier power results in an increase in theo

predicted difference between the N S and N S detection thresholds (especially at low frequencies).  Thisπ 0 0 π
is caused by the fact that for small values of ν, the differences which occur in the "valleys" of the

interaural cross-correlation functions are almost as significant as the differences which occur at the

peaks. On the other hand, larger values of ν cause the peaks to dominate the detection process, causing
∧

predicted N S performance to improve relative to N S performance. If the simpler decision statistic Q is0 π π 0 c

used for the predictions, an increase in the rectifier power results in a decrease in the predicted difference
∧

between the N S and N S detection thresholds.  It is not obvious at present why Q should behaveπ 0 0 π c
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∧
oppositely to Q in this respect. For most of the density functions examined, setting ν equal to 3 yieldedo

∧ ∧
similar predictions using either Q or Q .c o

∧
Since we are not aware of any evidence that suggests which definition of Q should be adopted, it is

∧ ∧
convenient to designate a value of ν such as 3 that yields similar predictions for both Q and Q [althougho c

∧
an arbitrary decision was made to use Q in the detection predictions of Stern and Shear (1996)].  Thiso

value also provides reasonably accurate predictions for the data of Schiano et al. (1986), and it is

consistent with the physiological data of Johnson (1980).

V. DEPENDENCE OF THEORETICAL PREDICTIONS
ON THE RANGE OF CHARACTERISTIC FREQUENCIES

In this section we describe how the major results considered depend on R or R , the range of CFsdet lat

over which predictions are evaluated for lateralization or detection experiments.  Again we include here

only the major results of these studies, and we refer the reader to Shear (1987) for further details.

It was found in general that for definitions of p(τ | f ) that exhibit only a moderate dependence on CF (suchc

as the log-based distributions), predictions for the lateralization data of Schiano et al. (1986) are fairly

insensitive to the specification of R . However, predictions obtained using distributions that are stronglylat

dependent on CF (such as the phase-based distributions) can be significantly affected by the range of

CFs considered, and the predictions described the lateralization data only when R consists only of alat

narrow range of CFs about the frequency of the target tone.  This is of little concern to us because the

distribution that was eventually adopted for subsequent theoretical predictions, p (τ | f ), is log-based.  InLF c

Stern and Shear (1996) we assume that only fiber pairs receiving inputs from "active" auditory-nerve

fibers from each of the two ears are used by the lateralization mechanism. This is reasonable since little

or no timing information can be extracted from other regions of the correlation display.

Unlike R , R is well specified by the defining assumptions of the model if we assume that this rangelat det
∧

should be chosen to provide optimal performance for the given task.  If the optimal decision statistic Q iso

used, this range theoretically includes all outputs of the binaural displayer since the central processor

simply ignores those units which provide no useful information.  However, we have found that only those

fiber pairs with CFs within ± 75 Hz of the target frequency contribute significantly to improving detection

performance, since peripheral filtering causes the effective target-to-masker ratio to decrease sharply for

fiber pairs with CFs not close to the target frequency.  Similar observations have been made regarding
∧

the optimal range for Q , with one exception: performance actually begins to degrade if R is made tooc det

broad. This is due to the fact that all outputs of the binaural displayer are weighed equally in the
∧

formation of Q and that only those units with CFs near the target frequency are actually useful.c

We have also found that detection threshold computations can be expedited by considering only CFs that

are nearly equal to the target frequency.  Relative detection threshold predictions obtained in this fashion

differ by only a fraction of one dB from predictions obtained using R , the optimal range of frequencies.det

We consider this approximation to be acceptable because this discrepancy is much less than the

measured standard deviation of the data ( ∼ 2 dB).
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VI. SUMMARY

In this publication we described several modifications to the position-variable model (Stern and Colburn,

1978) that enable it to describe binaural lateralization and detection phenomena over a much wider range

of frequencies.  The most important of these modifications concerned the function p(τ | f ) which describesc

the assumed distribution of internal delays in the model.  We showed that the function p(τ | f ) must bec

carefully chosen to enable the model to describe both the lateralization data of Schiano et al. (1986) and

the observed ratio of N S to N S binaural detection thresholds.  We then introduced two types of0 π π 0

classes of specifications for p(τ | f ) that could describe the lateralization data. The first class of distributionc

is "phase-based" in that p(τ | f ) becomes narrower as f increases, and in effect is a function of internalc c

phase difference rather than internal time delay.  The second form of p(τ | f ) is called "log-based" becausec

it is derived from a constraint on the log of the Fourier transform of p(τ).

Using phase-based distributions, we found that although satisfactory descriptions of the lateralization data

could be obtained, predictions for the ratios of N S vs. N S detection thresholds did not exhibit as strongπ 0 0 π
a dependence on target frequency as is observed in the data.  Attempts to improve predictions for these

detection data degraded the ability of the model to describe the lateralization phenomena.

On the other hand, we were able to specify the log-based distribution p (τ | f ) that allows the model toLF c

describe both the lateralization and detection phenomena.  This function is similar in form to the original

function proposed by Colburn (1977) except that (1) the tails of p (τ | f ) decay more rapidly with respectLF c

to τ than the tails of the original function, and (2) the rate at which these tails decay is dependent on CF.

The experimental data considered do not provide a strong indication of the order of the half-wave rectifier

that is most likely to be "correct".  Of the values considered, we prefer using a half-cubic rectifier (i.e.

ν = 3), but this is mainly an issue of convenience.

Using p (τ | f ), predictions of the extended position-variable model for the lateralization of tones are fairlyLF c

insensitive to R , the range of CFs considered by the central processor. Predictions for the relativelat

detection threshold data considered are also somewhat insensitive to the range of CFs considered.  In

particular, predictions obtained considering only fibers for which the CF is approximately equal to the

target frequency are almost identical to predictions obtained using the optimal combination of CFs.
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Appendix A

SUMMARY OF THE MODIFIED POSITION-VARIABLE MODEL

We provide in this Appendix a brief summary of the equations specifying the position-variable model used

for the predictions described in this paper, which is a modification of the model described by Colburn

(1973, 1977) and Stern and Colburn (1978).  A more detailed description of the modified model may be

found in Shear (1987).  We first describe the model for auditory-nerve activity. The model for central

binaural processing is described in the second section of this Appendix, and a summary of the methods

by which lateralization and detection predictions are obtained from the model is included in final two

sections.

A. The Model of Auditory-Nerve activity
Following the work of Colburn (1973, 1977) and others, we describe the firing patterns of individual

auditory-nerve fibers as sample functions from nonhomogeneous Poisson processes (Parzen, 1962).
4Each auditory nerve is assumed to be composed of 3x10 fibers, each characterized by a pair of

numbers, the characteristic frequency f , and the sensitivity constant K . Characteristic frequencies arecm m

spaced uniformly on a logarithmic scale between 20 Hz and 20 kHz and sensitivity constants of fibers with

characteristic frequency f are spaced uniformly on a logarithmic scale over a range of 40 dB so that thecm

curve described by the minimum values of K as a function of f has the same shape as the threshold ofm cm

hearing curve for tones (Kiang et al. 1965, p. 89).  Theoretical predictions were obtained using a piece-

wise approximation ζ( f ) to the threshold-of-hearing curve given bycm

ζ( f ) = 4.5 + 44.846 log (500/f ) , for f < 500 Hzcm cm cm
ζ( f ) = 4.5 − 14.9847 log (f /500) , for 500 ≤ f < 1000 Hzcm cm
ζ( f ) = 0 , for 1000 ≤ f < 2500 Hzcm cm
ζ( f ) = 28.7044 log (f /2500) , for f ≥ 2500 Hz (A.1)cm cm cm

where f is in Hz and ζ( f ) is in dB SPL.  This function is sketched in Fig. A-1.cm cm

With each characteristic frequency f , there is associated a filter with impulse response h (t). Wecm m

specify h (t) through H (f), the magnitude of the corresponding frequency response, and θ (f), them m m

minimum-phase characteristic consistent with H (f). As in Colburn (1973) and Stern and Colburn (1978),m

H (f) is given bym

α(f )(f / f ) cm , for 0 ≤ f ≤ fH (f) = (A.2)cm cmm { 2α(f )(f / f) cm , for f > fcm cm

where α(f ) is specified by the equationcm

4 , for 0 ≤ f ≤ 800 Hzα(f ) = (A.3)cmcm {4(f / 800), for f > 800 Hzcm cm
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Intensity functions r (t) for an arbitrary stimulus x(t) are specified by the relationsm

a R [h (t) ∗ x(t)] ∗ g(t), for MS [h (t) ∗ x(t)] > Kr (t) = (A.4)m ν m m mm {50 , otherwise

where MS is a short-time mean-square operator, a is chosen so that the time-average of r (t) is 200 perm m
thsecond. In the expression above, R [z] is the ν -law half-wave rectifier defined by Eq. (1) of Stern andν

Colburn (1992), and the impulse response g(t) is the inverse Fourier transform of a low-pass filter which

has a frequency response with magnitude G( f ) described by Eq.  (2) of that paper.

Most of the assumptions summarized in this Appendix were also used in developing predictions for the

model that were described in previous papers (e.g. Stern and Colburn, 1978, 1985).

B. The Model of Binaural Processing
The model for binaural processing features a display of binaural information containing a network of units

that, effectively, estimates the interaural cross-correlation function of binaural stimuli after peripheral

frequency analysis.  Specifically, each unit is assumed to record coincidences in firing times (within 10 µs)

from auditory-nerve units of comparable characteristic frequency from the two ears, after a small fixed

internal interaural time delay τ . The values of τ are distributed over all fiber pairs independently of allm m

parameters other than characteristic frequency, and their distribution is specified by the conditional

density function p(τ | f ), which is an even, pulse-shaped function of τ for a given value of f . Thec c

derivation of an appropriate function p(τ | f ) is discussed in Sec. I of this publication. For a particularc
thstimulus the expression L (τ , f ) refers to the number of coincidences observed by the m fiber pairm m cm

with internal delay τ and characteristic frequency f .m cm

Following Colburn (1973), the variance of the displayer output L is assumed to bem

Var[ L ] = E{ Var[ L | x(t)] }, (A.5)m m

where Var[ L | x(t)] denotes the conditional variance of L given the stimulus waveforms x (t) and x (t). Inm m R L

other words, the variance in the coincidence counts is assumed to be dominated by the contribution of the

Poisson process that models the auditory-nerve activity, and it is assumed that the contribution of the

variability of the stimulus to Var[ L ] can be ignored.  While we regard this assumption to be adequate form

the present calculations, experimental data by Siegel and Colburn (1983) indicate that the variance due to

the stimulus can play a role in determining overall performance in binaural detection experiments.

If the stimulus is assumed to be of duration T and the final expectation is taken over the binaural inputsS

x(t), we obtain

TS
E [ L ] = E [ Var { L | x(t) }] ≈ T E [ r (z − τ ) r (z) ] dz ≡ T T R (τ ) (A.6)m m w Lm m Rm w S RLm m∫0

where R (τ ) is the time-averaged (or ensemble-averaged) interaural crosscorrelation function of theRLm m

deterministic (or stochastic) stimulus after it is passed through the band-pass filter, nonlinear rectifier, and

lowpass filter of the model for auditory-nerve activity.  The expectations in the above expressions are
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2taken with respect to the neural point processes.

If the fiber pair is "doubly active" (i.e. each fiber is firing at a rate above the spontaneous rate), the form of

R (τ ) will depend on the type of stimulus employed, as well as on the characteristic frequency f andRLm m cm

interaural delay τ . In Appendix B, we derive expressions for this correlation function when the binauralm

input is a pure tone, a Gaussian noise, the sum of a tone and noise, and amplitude-modulated tones.

C. Estimates of Lateral Position
The predicted position etimate of the position-variable model is the centroid along the internal-delay axis

of the number of coincidence counts, Lm

τ L∑ m m
m ∈ Z∧ lat

P ≈ (A.7)

L∑ m
m ∈ Zlat

3where Z is defined to be the indices for the set of fiber pairs that are used for lateralization calculations.lat

∧
In order to compute the expected value of P , we make the following approximation,

τ L∑ m m
m ∈ Z∧ lat

P ≈ (A.8)

E [ L ]∑ m
m ∈ Zlat

which is justified by the observation that the standard deviation of the term in the denominator of Eq. (A.8)

is much smaller than its mean for the stimuli considered.  Thus, the mean of the position variable is given

by

E [ τ L ] τ E [ L ]∑ ∑m m m m
m ∈ Z m ∈ Z∧ lat lat

E[P ] ≈ = (A.9)

E [ L ] E [ L ]∑ ∑m m
m ∈ Z m ∈ Zlat lat

In the above expressions, it is assumed that we are using some particular realization of the binaural

displayer with fixed, known values of the characterizing parameters f , τ , and the sensitivity constantscm m

2The above expressions for the mean and variance of L should actually be considered accurate only to within some arbitrarym
mulitplicative constant.  This is due to the dependence of these expressions on the specific assumptions regarding various
properties of the coincidence counters including the shape of the coincidence window.  While this degree of inaccuracy does not
affect most calculations of interest, it does prevent us from generating meaningful predictions for absolute detection thresholds.

3The original position-variable model (Stern and Colburn, 1978) included an additional weighting function for characterizing the
effects of the interaural intensity difference (IID) of the stimulus. The present paper is concerned only with stimuli with zero IID, and
the effects of the intensity-weighting function are ignored at present.  As discussed in Stern and Shear (1996), the intensity-
weighting function will be re-incorporated into the model when the model is extended to describe broadband stimuli presented with
IIDs.
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for the left and right fibers, K and K . In actuality we do not know their values, and it is necessary toLm Rm

compute the expectation over these parameters.  Thus, using continuous approximations to the

summations, and using the functions p(f ) and p(τ | f ) to indicate the distributions of CFs and internalc c

delays, the mean of the position estimate can also be given by

∞
p(f ) τ L(τ, f ) p(τ | f ) dτ dfc c c c∫ ∫R −∞∧ lat

E[P ] = , (A.10)
∞

p(f ) L(τ, f ) p(τ | f ) dτ dfc c c c∫ ∫R −∞lat

with R defined to be the range of CFs over which lateralization predictions are calculated, andlat

∞ ∞∆
L(τ, f ) = E [ L | τ = τ, f = f , K = K , K = K ] p(k |f ) p(k |f ) dK dK (A.11)c m m cm c Lm L Rm R L c R c L R∫ ∫−∞ −∞

As defined above, p(f ) is uniformly distributed with respect to log frequency over a range of 20 Hz to 20c

kHz, and p(k |f ) and p(k |f ) are uniformly distributed with respect to intensity in dB over a range of 40 dB.L c R c

The remaining expectation is computed with respect to the stimulus and the auditory-nerve model, and it

is computed as in Eq. (A.6). The above expression can be simplified by noting that the sensitivity

constants only determine whether or not a fiber is active.  There are three distinct cases to be considered:

both fibers active, only one active, and neither active.  Thus, L(τ, f ) can be expressed as,c

L(τ, f ) = η (f ) L (τ, f ) + η (f ) L + η (f ) L (A.12)c 2 c 2 c 1 c 1 0 c 0

where

∆
L (τ, f ) = E[ L |τ =τ, f =f , " i fibers are active" ] for i = 0, 1, 2 (A.13)i c m m cm c

and η (f ) is defined to be the fraction of fiber pairs with characteristic frequency f that have i active fibersi c c

( i = 0, 1, 2 ) for a particular stimulus.

If either fiber in a pair is firing spontaneously, the two intensity functions are statistically independent and

the interaural crosscorrelation R (τ ) is simply the product of the two mean firing rates.  Thus,RLm m

L = T T (50)(200) and L = T T (50)(50), independently of the stimulus properties (and the characteristics1 w S 0 w S

of the fiber pair).  On the other hand, the function L (τ, f ) does depend on the type of input involved.2 c

D. Calculation of Detection-Threshold Predictions
Predictions for binaural detection thresholds are based on the values of one of two decision statistics: an

∧ ∧ ∧
"optimal" decision statistic Q , and Q , a "constant" decision statistic.  Specifically, we define Q to beo c o

∧
Q = c L (A.14)∑o m m

m ∈ Ztask
where each coefficient c is chosen to yield optimal performance in the detection task, and its value maym

thdepend on the characteristics of the m fiber pair and the stimulus.

∧
Q is simply the sum of all coincidence counts from the fibers considered,c

∧
Q = C L (A.15)∑c m

m ∈ Ztask
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Again we assume that all fibers of a given CF are either used or not used in calculating the decision

statistics, so the set of indices Z may be replaced by a set of characteristic frequencies R such thattask task

Z = { m | m = 1 to M and f ∈ R } ,task cm task

In order to calculate predicted performance for detection experiments, we assume that a symmetric,

two-interval, two-alternative-forced-choice (2I-2AFC) paradigm is used.  Detection threshold is achieved
∧ ∧

when the decision statistic Q or Q is reduced by more than its intrinsic standard deviation as the target iso c

added to the masker.  Specifically, the detection threshold is defined to be the target-to-masker ratio for

which the performance index Q has unit value, where Q is defined byd d

∧ ∧ 2( E[Q | Target Plus Masker ] − E[Q | Masker Alone ] )
Q = , (A.16)d ∧

Var{ Q }

∧ ∧ ∧
where Q equals either Q or Q .o c

∧
For the optimal statistic Q it is argued in Shear (1987) thato

2( L (τ, f | Target Plus Masker ) − L (τ, f | Masker Alone ) )∞ 2 c 2 c
Q = p(τ ,f ) dτ df (A.17)d c c∫ ∫R −∞ √L (τ, f | Target Plus Masker ) L (τ, f | Masker Alone )det 2 c 2 c

thwhere L (τ, f | Target Plus Masker ) is the mean of L given (1) that the m fiber pair is doubly active, (2)2 c m

that the target is presented as well as the masker, (3) that τ = τ, and (4) that f = f . L (τ, f | Maskerm cm c 2 c

Alone ) is similarly defined.

∧
For the "constant" statistic Q it is argued in Shear (1987) thatc

∞ ∞ 2
[ L (τ, f | Target Plus Masker ) p(τ ,f ) dτ df − L (τ, f | Masker Alone ) p(τ ,f ) dτ df ]2 c c c 2 c c c∫ ∫ ∫ ∫R −∞ R −∞det det

Q =d
∞ ∞

√ L (τ, f | Target Plus Masker ) p(τ ,f ) dτ df √ L (τ, f | Masker Alone ) p(τ ,f ) dτ df2 c c c 2 c c c∫ ∫ ∫ ∫R −∞ R −∞det det
(A.18)

where L (τ, f | Target Plus Masker ) and L (τ, f | Masker Alone ) are the conditional means of L , as2 c 2 c m

defined in Equation (A.11), but further conditioned on whether the target is present or absent in the

stimulus presentation.
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Appendix B

Response of the Binaural Displayer to Tones, Noise,
Combinations of Tones and Noise, and Amplitude-Modulated Tones

In this appendix we present expressions for the interaural correlation function L (τ, f ) when the input2 c

stimulus is an additive combination of a tone and Gaussian noise.

A. Response to a Tone with Additive Noise
Consider the binaural stimulus given by

x (t) = n (t) + A cos 2πf tL L 0

x (t) = n (t) + A cos 2πf (t − τ ) ,R R 0 s
(B.1)

where the noise process n (t) has the one-sided spectral density function N(f ). The noise component toL

the right ear n (t) is obtained by time-delaying and phase-shifting n (t) by τ and φ , respectively.R L n n

thWhen considering the response of the m fiber pair to this input, it is helpful to define the following

quantities.

2
N (f ) = H (f ) N(f )m m

∞2 2σ = H (f ) N(f ) dfn m m∫0

−1R (τ) = F { N (f ) exp(−j2πfτ − jφ ) }n m m n n

2 2H (f ) A0m2σ =s m 2

2 2 2σ = σ + σm s m n m

−1g(τ ) = F { G(f) }m

−1where F { } represents the inverse Fourier transform operation (accounting for the fact that N (f ) is onem

sided).

If both fibers are active, then the interaural correlation function R (τ ) [as defined in Equation (A6)] willRLm m

depend on the values f and τ , as well as on the properties of the binaural stimulus.  In order tocm m
thdetermine this value, we must compute the crosscorrelation of the outputs of the ν -law half-wave
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4rectifiers from each ear.  Using the results of Davenport and Root (1958, pp. 277-308) we obtain

2∞ ∞ ε hi ik k
R (τ ) = R (τ ) cos [2πif (τ − τ )] ∗ g(τ ) ∗ g(−τ ) (B.2)∑ ∑RLm m m 0 m s m mn mk!i=0 k=0

where ε is the Neumann factor ε = 1, ε = 2 (i = 1, 2, ...),i 0 i

2 2 νi/2 k/2 2200 (σ /σ ) Γ (1+ ) 2 σs m n m 2 i+k−ν s m
h = F ( ; i+1; − ) , (B.3)ik 1 1k 22i! Γ [1 − (i+k−ν)/2] σ σn m n m

and F (a; c; z) is the confluent hypergeometric function defined by the series1 1

k∞ 2(a) z a z a(a+1) zk
F (a; c; z) = = 1 + + + ⋅ ⋅ ⋅ (B.4)∑1 1 (c) k! c 1! c(c+1) 2!kk=0

The expression for the cross-correlation given above reduces to the simple power series

νk 22 Γ (1+ )∞ 2 22 kR (τ ) = 200 { 1 + [ R (τ )/σ ] }∗g(τ ) ∗g(τ ) (B.5)∑RLm m n m m m mn m2k! Γ [1−(k−ν)/2]k=1

2when there is no tone present (i.e., σ equals zero).s m

In both cases,

L (τ, f ) = R (τ ) T T (B.6)2 c RLm m S W

where T is the width of the coincidence window and T is the duration of the stimulus.W S

B. Response to a Pure Tone
2Equation (B.3) does not converge when the stimulus is a pure tone (i.e., σ equals zero).  This stimulusn m

configuration must be considered as a special case.

As was already mentioned, the mean of L is a constant when either of the input fibers to the coincidencem

counter is inactive.  If we consider a single fiber pair and assume that the input tone is sufficiently intense

to activate both fibers, it is apparent that the automatic gain control element causes the intensity function

for each fiber to be independent of the characteristic frequency of the fiber. In addition, each intensity

function is periodic with fundamental frequency f . These observations suggest the following means of0

expressing the crosscorrelation R (τ ),RLm m

∞
22 2R (τ ) = (200) { 1 + 2 S G (nf ) cos [2πnf (τ − τ )] } (B.7)∑RLm m 0 0 m sn

n=1

thwhere S is the magnitude of the n coefficient of the Fourier series of the output of the rectifiern

normalized by the mean firing rate (200 per second).  The coefficients {S } depend on the order of then

4Davenport and Root (1958) derive an expression for the autocorrelation of the output of the rectifier.  However, since the
intensities of the component stimuli of interest are identical in each ear, these results can be applied directly to the crosscorrelation
considered.
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half-wave rectifier being used.  Table B-1 gives the values of the first eight coefficients when ν equals 1,

2, and 3.  The more expansive the rectifier is (i.e., the larger ν is), the larger the coefficients of the second

and third order terms are.

2
Sn

n ν = 1 ν = 2 ν = 3

1 0.61685028 0.72050619 0.78070113

2 0.11111111 0.25 0.36

3 0.0 0.02882025 0.08674457

4 0.00444444 0.0 0.00734694

5 0.0 0.00058817 0.0

6 0.00081633 0.0 0.00009070

7 0.0 0.00006535 0.0

8 0.00043403 0.0 0.00000675

thTable B-1: Normalized coefficients of the Fourier series of the output of a ν -law half-wave
rectifier when the input is a tone.

C. Response to Amplitude-Modulated Tones
Unlike the previous cases, the response to amplitude-modulated tones was determined computationally

rather than analytically.

The stimuli for these experiments are of the form

x ( t ) = A(1 + m cos (2π f t)) cos (2π f t)L m c
and

x ( t ) = A(1 + m cos (2π f (t−τ )) cos (2π f (t−τ )) (B.8)R m d c c

or, equivalently,

mA mA
x ( t ) = A cos (2π f t) + cos ((2π f + 2π f )t) + cos ((2π f − 2π f )t)L c c m c m2 2

and
(2π f τ + 2π f τ )mA c c m d

x ( t ) = A cos (2π f (t−τ )) + cos ((2π f + 2π f ) (t − ))R c c c m2 (2π f + 2π f )c m

(2π f τ − 2π f τ )mA c c m d
+ cos ((2π f − 2π f ) (t − )) (B.9)c m2 (2π f − 2π f )c m

where f is the carrier frequency and f is the modulator frequency, and τ and τ are the interaural carrierc m c d

and modulator delays respectively.  (A waveform delay τ is obtained by setting both τ and τ equal tow c d

τ .)w

The correlation operation was implemented using discrete Fourier transforms (DFTs; Oppenheim and

Schafer, 1989).  This requires that both the carrier and modulation frequencies be integer multiples of the

quantity 1 / NT Hz, where N is the size of the DFT and T is the sampling time of the discrete-timei i
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approximation to the continuous-time signal. Hence the quantities f and f are approximated by thec d
~ ~

values f and f , the closest integer multiples of 1 / NT to f and f . In general we use parameter values ofc d i c d

N = 4096 and T = .025 ms, so frequencies are quantized to integer multiples of approximately 9.8 Hz.i

The outputs of the peripheral linear bandpass filters are characterized by the equations

~ ~ ~ ~ ~ ~ ~ ~ ~ ~mA mA
y ( t ) = A H ( f ) cos (2π f t) + H ( f +f ) cos ((2π( f + f ))t) + H ( f −f ) cos ((2π( f − f ))t)L m c c m c m c m m c m c m2 2

and
~ ~

(2π (f τ + f )τ )~ ~ ~ ~ ~ ~mA c c m d
y ( t ) = A H ( f ) cos (2π f (t−τ )) + H ( f +f ) cos ((2π (f + f )) (t − ))R m c c c m c m c m ~ ~2 (2π f + 2π f )c m

~ ~
(2π f τ − 2π f τ )~ ~ ~ ~mA c c m d

+ H ( f −f ) cos ((2π (f − f )) (t − )) (B.10)m c m c m ~2 (2π f − 2π f )c m

The effects of the rectifier and lowpass filter are expressed by the equations

z ( t ) = a R [y ( t )]∗g( t )L L ν L
z ( t ) = a R [y ( t )]∗g( t ) (B.11)R R ν R

thwhere R [ ] is the half-wave ν -law rectifier defined in Stern and Shear (1992), g( t ) is the impulseν
response of the lowpass filter of the model for auditory-nerve activity defined in Stern and Shear (1992),

and the normalizing constants a and a are chosen such thatL R
T TS S

z ( t ) dt = z ( t ) dt = 200 T (B.12)L R S∫ ∫0 0

Using DFTs, the function R (τ ) is obtained by performing the circular convolution of z ( t ) and z (−t):RLm m L R

R (τ ) = z ( t ) ⊕⊗ z (−t) (B.13)RLm m L R

D. Implementation Notes on the Generation of Predictions
In this section we describe the details of the computer algorithms used to generate the predictions

presented in this report.

All integrals were computed as discrete Riemann sums with a time step of 0.025 ms and a log-frequency

step of 0.01 log (Hz). The limits on the time summations were between ± 8 ms for detection10

experiments and ± 12.75 ms for lateralization experiments.

For detection experiments, threshold was declared when the square root of Q was between 0.975 andd

1.025.

In order to determine samples of R (τ) (as defined at the beginning of this Appendix), a 4096-pointn m

inverse discrete Fourier transform was used.  Similarly, lowpass filtering was accomplished by means of a

4096-point discrete Fourier transform.

The infinite summations of Equation (B.2) were truncated to include only terms 0 through 14. For pure

tones, the Fourier series of Equation (B.7) was truncated to include only terms 0 through 8. (Values of

these coefficients for ν equals 1, 2, and 3 are given in Table B-1.) Terms of the confluent hypergeometric
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function given by Equation (B.4) were computed and summed until the absolute value of a given term
−5divided by the summation at that point was less than 10 .
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Figure A-1. The threshold-of-hearing curve ζ( f ) plotted as a function of f .cm cm
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