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A Posteriori Estimation of Correlated
Jointly Gaussian Mean Vectors
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Abstract-This paper describes the use of maximum a posteriori
probability (MAP) techniques to estimate the mean values of features
used in statistical pattern classification problems, when these mean
feature values from the various decision classes are jointly Gaussian
random vectors that are correlated across the decision classes. A set of
mathematical formalisms is proposed and used to derive closed-form
expressions for the estimates of the class-conditional mean vectors, and
for the covariance matrix of the errors of these estimates. Finally, the
performance of these algorithms is described for the simple case of a
two-class one-feature pattern recognition problem, and compared to
the performance of classical estimators that do not exploit the class-to-
class correlations of the features' mean values.
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I. INTROODUCTION

Pattern classification systems frequently use parametric prob-
ability density functions (pdf's) to describe the objects to be
classified. In many of these cases the exact statistical param-
eters specifying the data may vary for different data sets to be
classified, and under these circumstances the classifier must
estimate the statistical parameters of the probability densities
as it performs the actual classifications.
Maximum a posteriori probability (MAP) estimation is a

useful approach to the problem if the statistical fluctuations
of the parameters to be estimated may be characterized as
random variables with known a priori probability distributions.
The MAP estimation procedure specifies in effect an optimal
combination of this a priori knowledge of the parameters to
be estimated with the a posteriori knowledge gained from ob-
serving labeled samples of the data to be classified.
In this paper we are concerned with classification problems

in which the classifier uses Bayesian estimation methods to
learn the mean vectors of normally distributed data to be classi-
fied, and in which the values of these mean vectors are correlated
across the various decision classes. (We also assume that the
probability distributions of the mean vectors across the various
data sets to be classified are normally distributed.) In previous
application of MAP estimation to learning the mean vectors of
probability distributions frorn which samples were to be clas-
sified, the means for a given decision class had been assumed
to be dependent only on observations from that decision class,
and hence estimates of the mean vectors of the observations
for that class would be updated only when a new sample from
that particular class is presented to the classifier. In the present
paper we propose an extension to the MAP procedure in which
the mean vectors are assumed to be correlated across decision
classes, and estimates of the means for all of the classes are up-
dated after any new observation from any of the classes. This
procedure, which we refer to as the extended MAP algorithm
(EMAP), has been found useful in estimating statistical param-
eters for a feature-based speech recognition system [ 1 ], [5].
Our research on statistical estimation of correlated mean vec-

tors was originally motivated by a desire to adapt our feature-
based speech recognition system to the acoustical characteristics
of individual speakers. In the simple application we considered.
speaker adaptation consisted of adjusting the mean vectors of
the various decision classes making use of the utterances input
to the system by an individual speaker. We found empirically,
for example, that if the system "knows" how a given speaker
pronounces the letter M, it could infer some information about
how the same speaker will pronounce the letter N, by making
use of correlations of the mean values of the features for the
letters M and N. Thus, the speed of adaptation of the classifier
was increased by exploiting these correlations between the mean
values of features describing the different classes of speech
sounds to be recognized.
In the following sections we describe the mathematical for-

malisms used to derive a closed-form expression of the EMAP
estimation algorithm in the case of multivariate Gaussian dis-
tributions. In Section II, we review the results obtained with
classical application of the MAP estimation for updating the
means of pdf's of normal distributions. In Section III, after
defining a set of notations used to describe the possible inter-
actions of the features within and across the various decision
classes, we derive the EMAP estimation algorithm along with
the estimated values of the class-conditional mean vectors and
covariance matrices, and we describe how EMAP estimation
has been successfully applied to perform speaker-adaptation
on a feature-based speech recognition system. In SectiQn IV,
we examine the particular case of a two-class and one-feature
problem to gain better insight about the performance and
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the limitations of the EMAP estimation procedure. Finally,
Section V summarizes the results obtained in this paper.

II. REVIEW OF SELECTED CLASSICAL MAP RESULTS

The standard MAP estimation technique results from classical
Bayesian hypothesis testing methods and has been extensively
described in the pattern recognition literature [31]. We briefly
summarize some relevant results for learning the means of
normal densities.
For a given class cOk we assume a multivariate Gaussian con-

ditional probability density function of feature values x

p (X IlAlk ) 1 (14, Sk)(l)
where 1Ak is the mean vector to be estimated, and Sk is the
covariance matrix of the random vector x.
In addition we assume the 11k is a random vector normally

distributed around its mean valueMUOk, with covariance matrix
Sok

P*k) R(1ok, Sok).
We call Xk the set of observations {xl, x2, Xnk,X I ob-

tained thus far from the Class k-k*
Under these assumptions, the MAP estimate ofPk is the value

1-k that maximizes the a posteriori pdf of /Ak given the observa-
tions x1, ,Xnk: P(k IXl, **,xnk k), and it is equal to
[3]

k =Sok(sok + )Ak + (sok + ) A) ok

where
n

Ak = - x
nk j1

is the sample mean of the observation vectors from Class COk.
The MAP estimate &Pk is a linear combination of the a priori

mean IAO k and the a posteriori sample mean A k. For nk = 0,
11k is equal to Pok. As nk becomes large, the contribution of
the a priori mean ,lOk becomes small and ^Pk asymptotes to
the sample mean A k

It can also be shown that given the observations {xl, ,
Xnk} ,1k is normally distributed around i k with a covariance
matrixRk = Sok(Sk + nkS ok) Sk, so that

P(1k 11k) - )l(Ak,Rk). (2)
The matrix Rk is equal to the expected value of (Pk - Pk)

(ILk - Ik)t and can be viewed as the correlation matrix of the
errors [ 6 ]. Thus, the diagonal terms ofRk represent the mean-
square error of the feature mean values for Class .k.
Given (1) and (2), it can be proved [3] that

P(XIlSk) - A( ^kSk +Rk) (3)
which is the updated version of the class- conditional probability
density function. 1
We note that the results derived in this section are based on

the assumption that the class-conditional covariance matrices
are independent of the class- conditional mean vectors. An opti-
mal procedure has been derived for the cases where this assump-
tion is not valid and is reported in [4]. In this procedure, the
covariance matrices as well as the means of normal densities
are estimated on the basis of observed labeled samples, making
use of the properties of Wishart distributions [ 2 ].

'This result can be intuitively understood if we view an observation
vector x as the sum of two random vectors, the mean vector,tk distrib-
uted around its estimate -k with a covariance matrix Rk and an inde-
pendent random vector y with p(y 31 (0, Sk). We can then use the
fact that the sum of two independent normally distributed random
vectors is a random vector whose mean is the sum of the means and
whose covariance matrix is the sum of the covariance matrices.

I- 1 = [Li I

.1[L]2

[P2
1121

LP 22

FP111
P.12

P. 21

LP22
Fig. 1. Composite structure of the generalized mean vector in the case
of a two-class problem with two features. ge 1 is the mean vector ofthe
features for Class 1,I 2 is the mean vector of the features for Class 2,
and IA is the generalized mean vector.

III. THE EXTENDED MAP ESTIMATION PROCEDURE
In the EMAP estimation procedure, the statistical values of

the features for all the decision classes are updated simulta-
neously rather than on a class-by-class basis, making use of the
correlations of feature mean values across the different classes.
We begin this section by defining a set of notational conven-
tions in order to capture and represent the dependencies be-
tween statistical feature values and decision classes. Next, we
obtain closed form expressions for the extended MAP estimate
of the mean vectors of the features for all decision classes, and
the mean-square error of these estimates. Finally, we briefly
describe how this method has been applied to the problem of
speaker-adaptation in a speech recognition system for classi-
fication of isolated English letters.

A. Notational Conventions
We consider a pattern recognition problem with C decision

classes and D features. We assume that a set Xk of nk observa-
tions Xk = {Xk,l, Xk,2, .. I, Xk,nk} belonging to Class -k has
been input to the classifier, where Xk,j is thejth observation ob-
tained from Class f--k. Finally, we assume that for a given class
)k, the random vector, xk i composed of D feature values is

normally distributed around a mean vector Ilk with a covariance
matrix Sk

p (Xk,Jlk) )1(k, Sk)

With these notational conventions, the MAP estimates of the
mean vectors are obtained by maximizing the overall probability

P(A1,JU2, .J*,cXI I 12,I * *,-IC)-
When the mean vectors of the different classes are independent
random vectors, the above expression is equal to

C
P(Al I 2, . IACM1I 2, I(C) = fj P(ilXk

k=1

and the estimates of the mean vectors are obtained as described
in the previous section. In the following we assume that the
mean vector lk of Class &Ok is a Gaussian random vector with
a known probability density function N (Juok, Sok), and that
all the Ilk's are jointly Gaussian random vectors with cross-
covariance matrix equal to Bk,r = E(GUk - AOk)(4r - Or)t-
These assumptions can be expressed in a simple way by defin-
ing a set of generalized notations, as follows. 2
We define ,u= (jul, I 2, * * , IAC)t as the generalized mean vec-
tor (Fig. 1). Given that the/uk's are jointly Gaussian random vec-
tors of size D, we can view IA as a random vector of size CD, nor-
mally distributed around its mean valueAO = (Ao1,A02, ' ' ' I

ItoC), with a CD X CD covariance matrix So, which we refer
to as the meancrosscovariance matrix.
SO, which is equal to the expected value of (i - AOo) (A - ,uo)t,

can be intuitively viewed as a composite of C2 blocks of size
D X D. The (k, r)th block of SO, equal to the expected value

2The term generalized is used to refer to mathematical objects such
as vectors or matrices that contain information about all the decision
classes.
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Fig. 2. Composite structure of the meancrosscovariance matrix. (a)
The CD X CD meancrosscovariance matrix is composed of C2 blocks
of size D X D. Block Bk,r is a D X D matrix which represents the
covariance between classes k and r. (b) the element hi,j in Bk,r is the
covariance between the mean of feature i in Class k and the mean of
feature j in Class r.

of (Ak - U0k)(Pr - Aor)t is the cross-covariance matrix of uk
and Ar and has been previously defined as Bk, r. As shown in
Fig. 2, the (d1, d2)th element of the (k, r)th block represents
the "influence" of the mean value of Feature d1 for Class k on
the mean value of Feature d2 for Class r.
In the EMAP estimation procedure, we wish to evaluate and

maximize

=p (!1, f2***,X2 C 1JU1 2, * * C)
P(Al l A2, * * C)
P(Xl, * * C)

Using the notational conventions defined above, we can write

P(IAI,A2, IA*8C) = p(.A) = (2 7r)-CD/2 det (SO)-1/2
* exp (- 2 (,u-,uO )So- 1 (,u- ,u)).

Since we assume the observations to be statistically indepen-
dent, and since the pdf of the observations from a given class is
independent of the means of other classes, we obtain

p(%, X2,., XC1|jU1, A2, * * *,AC)- n P( (k ILk)
k=l

and

nk
I)D2 -/

P( 2k ILAk)= (21)D/2 det (SkY112
j=1

exp (-_ (Xk,j - Ak) Sk (Xk,j P-k))X

Therefore, the joint a posteriori pdf of the mean vectors can
be expressed as

P oul XI %**,Xc) = oL exp (/(,U- , O )'So1 (,U - ,to))
C nk

nf
k=l j=l

exp (-
'
(Xk,j - I k)OSk (Xk,j - P k))

where ax is a constant that depends on the determinants of the
various matrices and on the observations but is independent of
the mean vectors, and is the previously defined generalized
mean vector.
The above expression may be rewritten as follows:

(a)

_ Class I

0 Class 2X3 j = t 3. j - O Cas
3j-L ()L Class 3

Class 4

Class I Class 2 Claiss 3 Class 4

(b) a c
S3= [c b

0

0

0

0

0

0

0

0

0

a c
c b

0

0

0

0

0

Class I

Class 2

Class 3

Class 4

Fig. 3. The CD-dimensional extension of vectors and matrices. (a)
X3; is the CD-dimensional extension of the jth observation vector
from Class 3, which is referred to as x3i in the text. (b) S3 is the
CD X CD dimensional extension of S3, the covariance matrix of the
data from Class 3.

pC) = a exp (- 2 (,u-pu0)tSOl(pj-jA0)
C nk

- 1 E L (Xk j -^ k)Sk(Xk,j - 1k))
k=1 j=1

(4)

The vectors and matrices inside the exponential are of differ-
ent size. Sol is a CD X CD matrix while each of the matrices
of type S1k1 is only of size D X D. Similarly, I and ,uO are of
length CD while the Xkj's and the Ak's are of length D. In
order to facilitate subsequent computations, we avoid this
nonhomogeneity of dimensionalities by padding the xk's, lAk's,
and Sk's with appropriate vectors and matrices containing zeros.
Specifically, we define

* Xk,j as the CD -dimensional extension of Xk,,
* Ilk as the CD -dimensional extension Of lAk
* Sk as the CD X CD extension of Sk
* Qk as the CD X CD extension Of Qk, where Qk =Sj-1 iS

defined as the inverse covariance matrix of Class 0k.
If (,4j)i is the ith component ofX we define

,j)i = (Xk,j)i-(k.1)D if (k - I)D < i S kD

O otherwise.

Similarly, if (Sk)ij is the (ij)th element of Sk we define

(Sk)if = (Sk i-(k-i)D,J-(k-1)D if (k- 1)D <ijkD
O0 otherwise.

These notational conventions are illustrated in Fig. 3. The ex-
tended vector Ilk is obtained from IAk in the same fashion as
Xk,j iS obtained from Xk, and Qk is obtained from Qk in the
same fashion as Sk is obtained from Sk. It is important to note
that Sk is not invertible since it is block-diagonal and some of
its diagonal blocks are equal to the null matrix. Therefore Qk
does not refer to the inverse of Sk but rather to the CD-dimen-
sional extension Of Qk = Sk1
In addition, we define S = ck=I Sk, and N as a CD X CD di-

agonal matrix where the diagonal terms in the kthD X D diag-
onal block are equal to nk (the number of observations from
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[a cl
- a---S
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a2 c2 _ X L ° ca2 c2

Fig. 4. Composite structure of the generalized covariance matrix in the
case of a two-class problem with two features. SI and S2 are the co-
variance matrices of the data from Classes xl and W 2, and S is the
generalized covariance matrix of the data.

This pdf can be rewritten as

P (JA X I, * *, X C) = 5 exp (- ' (IA A)tH(IA S.X))
where the values ofH and ,u are obtained by equating the cor-
responding coefficients:

H=S-' +NS-1
HA=S -'po +NS 'A.

(8)

(9)

Combining (8) and (9), and using basic properties of matrix
inversion and multiplication, we finally obtain

A= S(S + SON)-'Ito + SO(S +NSO)1'NA. (10)
Class (k). We call S the generalized covariance matrix (Fig. 4),
and N the generalized number of observations matrix.

Finally, we define A k = (1 nk) .7k= Xkj,j as the sample mean
(average) or the observation from Class Ok and Ak as its CD -
dimensional extension.

B. Derivation of the Extended MAP Estimate
Using the above notational conventions, we can now write

(Xk,j -ILk)Sk (Xkj,j-k) = (Ok,j /k)Qk(Xk,j k)O-
Summing over j, and collecting like terms, we obtain

nk

£ (Xk,j - lAk)tSk- (Xk,j - Ak)
j=1

/nk\

(| E 2k,jUkXk,j nkpJkQkAk + nk/LkQkAk (5)

For a given k, Qk is a CD X CD matrix that contains only zeros
except in the kth diagonal block, in which it is equal to the
inverse covariance matrix of Class LOk. Therefore,

c

E nk,lkQkAk =ptNSl1Ak=1

and

C

,: nk,u*ktQ*Ak = ,tNS-1
k=1

where A = Ic= I Ak. (A is the generalized average observa-
tion vector.) Equation (5) can now be written as

C nk
E E (Xk,Q,--2k)SkA(Xk,j+-tNj
k=1j=i

an (4) Cno

=£EXk jQx-* X- 2,tN -1A + 11tNS -1E.A
k=1 j=1

and (4) becomes

P (.ul%X ,***,XC)=, exp '(- (A-I,Uo )'S- l(,U - )
+At (NS-l)A - 2pt(NS-l)p) (6)

The parameter depends on the ae from (4) and on the observa-
tions, but it is independent of ,u. If we now keep only the
terms that depend on ,u under the exponential and incorporate
the other terms in a new parameter 'y, (6) can be written as

P(,uA X1, * * *,Xc) = exp (- ( NSA(S+NS-' ),u
- 2Wu(S- 1,O + NS-'AX))). (7)

Furthermore, the a posteriori probability density function of
the generalized mean vector is equal to

p(JAIX1, C)= 5 exp (- 2(A- 'U)K - (I- A)) (11)
where

K =Hl = (S-1 +NS-1)-1 =SO(S +NSO)'S (12)
and ,i is given by (10).
Since ,I is the value of p that maximizes the a posteriori den-

sity p (Il XI , , X c), it is the MAP estimate of the generalized
mean vector,u.
The expressions obtained for ,u and K make intuitive sense:

,A is a combination of the a priori generalized mean vector and
the average observation vector. When the number of observa-
tions becomes large, the norm of the matrix N becomes large
too, and the contribution of the observations predominates
the contribution of the a priori mean. When there are no ob-
servations, the matrix N contains only zeros and (10) yields
P =,u-O . Similarly, the covariance matrix K, given by (12), is
equal to the meancrosscovariance matrix- SO when no observa-
tions have been obtained (i.e., N = 0) and its norm decreases
when the number of observations increases, so that the distribu-
tion of IA becomes "tighter" around its estimate , as more
observations are obtained.

C. Performance of the Extended MAP Estimate

From (1 1), we learn that the a posteriori pdf of the random
vector pA given the sets of observations (11, ** , X c) is Gaussian
with mean ,u and covariance matrix K = SO (S +NSo) -1 S. Be-
cause the mode of a Gaussian pdf is also its mean, ,u can also
be interpreted as the minimum mean-square estimate (MMSE)
of IA and the correlation matrix of the errors for that estimate
is equal to

E(
^

-A1)( -1)t =R.-

If we consider the vector ,u as a composite of C vectors ,u\
* JlAC of size D, and the matrixK as a composite of C2 blocks
of sizeD X D, then ifRk is the (k, k)th block ofK

Rk=E(,4 -ILk)(Qk /Lk)

and

P(lk X1, , C) (.Uk 5Rk)-

Rk can be viewed as the correlation matrix of the errors of the
random vector,uk, or as the conditional variance of,IAk given
the sets of observations 1, * * , Xc. Thejth diagonal term of
Rk is the mean-square error of the class-conditional mean of
Feature j in Class WDk. Hence the performance of the extended
MAP estimate of the mean vectors, including the advantage
obtained by considering the samples from other correlated de-
cision classes can easily be obtained by examining the diagonal
elements of the matrix K.
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D. Application to Pattern Classification Problems

The MAP estimation procedutre can be successfully applied
to a number of pattern classification problems for which the
mean vectors characterizing the various decision classes are
random and jointly Gaussian. In feature-based speech recogni-
tion systems, for example, the mean values of the features used
for classification of unknown sounds may vary greatly from
one speaker to another [ 5 ] . If the pdf 's of the class-conditional
mean vectors over the entire population of speakers are known
in such cases, we can use the EMAP estimation procedure to
adjust them to the characteristics of individual speakers. After
the recognition system classifies each incoming utterance it
receives feedback from the user indicating which class has
been input. The system uses this labeled observation as well
as the previous ones to update the mean values of all features
for all decision classes. The modified values of the pdf's of
all decision classes are then used in performing subsequent
classifications.
Specifically we assume that p(Xk IWk) - (pk,Sk), and that

P(Qk 5'l ) I(pk,Rk) as discussed in Section II.
We then obtain, as in (3),

P(Xk I C,*5c) -l(Ikk Sk +Rk)

where xk is a random observation from Class uk. The matrix
K previously defined and its diagonal blocks, the Rk's, have to
be recomputed after each new observation since the obtention
of mnore accurate estimates of the class-conditional mean vec-
tors reduces the contribution of imperfect knowledge of those
mean vectors to the covariance of the observations used in per-
forming the classifications. In particular, when the number of
observations is very large, the matrices Rk approach the null
matrix so thatSk +RkkSk.
Speech recognition is a good application for EMAP estimation

since there exist high correlations between the pronounciation
of different sounds by a given speaker. A preliminary applica-
tion of the EMAP estimation procedure to the isolated-letter
recognition system FEATURE [5] produced a decrease in the
classification error rate of the English alphabet from 12.5 per-
cent to approximately 6 percent after four presentations of
each letter from a new speaker, and decreases in error rates from
14 percent to less than 5 percent for the confusable sets of
letters {M, N}and { B, D. P, T.

IV. PERFORMANCE OF THE EXTENDED MAP ESTIMATE
FOR A SIMPLEF TWO-CLASS ONE-FEATURE PROBLEM

In this section, we consider a simple problem with two de-
cision classes coi and cc2 and only one feature, and we derive
the closed form expression of the pdf's of the means of that
feature for ccl and c2, p, and P2, respectively. The optimal
estimate for this simple case can be described analytically in an
intuitively pleasing fashion, and it provides additional insight
into the conditions for which the additional information pro-
vided by observations from other decision classes is most
useful.
We assume that P1 and /2 are correlated jointly Gaussian

random variables with meansPlo andP02, variances U0 and
aU, and cross-covariance PCrOu02, where p is the correlation
coefficient. We also assume that the conditional pdf's of the
observations from Class cc1 and Class Cc2 given P I and /2 are
Gaussian with variancesaland a2, respectively. Thus, if x and
.2 are random observations from wc and cc2, respectively, we
have

P(Xlpl) (j21>) p(lo t(1n(2)P(Ut )~ X(H1 o)P(Y12) N(1V2 , a2)

EF(P - 101t)(P12-/102)-PU'01U02.
Finally, we assume that n1 observations x1,* , Xn have been
obtained from Class co. and that n2 observations y 1, - Yn2

cn
cn

z
(I

C:)lJ

0

LL

0

cr:
z

cr

w

w

cc

a

(1)
z
w

0

= 0

_p =0.5
V sp=0.8
P= 0.98

N (OBSERVATIONS FROM EACH CLASS)
Fig. 5. Evolution of the mean-squared error of an estimated mean in
the case of a two-class problem with one feature, as a function of the
number of observations n and the a priori class-to-class correlation of
the feature means, p. In this example it is assumed that n, = n2 = n
and that o1 = O2 = Ol = 902 = 1.

have been obtained from Class Cc2. If we replace S, SO,N, and
A in (10) by their actual values, we obtain the estimates,p and
/2 ofp1 and 12:

nlaou(u2 +n2 02(l p2))
Pi (ul +fnlU0 2( +n22 2) n1 n2p2uo1 a02

+u(u22 +n2u02)p01
+r2 1 (y2\)(a2 + 2 22 2
1 +n1 01 2 +n2 02)n n~2P U0ilU02

+

/2

n2 Pal JO1 02 (A2 - /02 )
(r222 2n 20 )(r2 + 2 2 21ol2~J1fl1LnQ1J 2fl 2I02J nl1n2pPU01a02

n202 (U2 +n1a21 (1
(a1 +nj 0)(c2 +n2uO2) -

+

(13)

- p2))3A 2

n2n2a 20t20oU2

OF2(2 + n 1 orl )p02
12 + n 0a2 )22 + n2f02 ) - nl n2 02o 02

n,P2 O'02 (Al1 - pol )
(U2 n21)(G2 orn2a -l

2 2 2
1 +lnl1OJkL2 n2 02J)- nf2P U71OlUO2

(14)

The three terms of the above equations for I-k (k = 1, 2) rep-
resent the contributions of the observations from Class('-k,
the a priori mean of Class CJk, and the observations from the
other class, respectively. From the covariance matrix K of the
generalized mean vector, we can obtain the mean-square errors
r2 andr2 of, and 12, where

2-ri =E(j 1 P)

- UfU0t(102 +n2U02(l - p2))

(a1 +nj02)(a2 +n2 02)- nln2p U01U02
r2 =E(22 - 2)
222)~ ~ ~~~2( a2u+n 2(Ig2 +n2Ou21(l p2))
(a1 + nj 01 (2+ n2202) - n In2P CrOl 902

(15)

(16)

We restrict our attention to the parameters of Class wl, i.e.,
p1 andr2, but the same type of analysis may be performed for
the parameters of Class -22.
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A. Analysis of the Expression of ji1m
As shown above, ii is the sum of three terms and is of the

form

Pi =aA1 +(l - )gPOI +3(A2 - /A02)
where

nlao21(2 +n2l22 - p2))
(a2 + n 1a21)(u2 + n2U2 ) - n1n2p2u12a22

2n2pa 1Oolao2
M (a2 + nIo )(a2 + n2a02) n1n2p22 a2

For n1 = 0, a = 0 and the first term of i2A (contribution of
the observations from -'l) is equal to 0 as could be expected.
When nI becomes very large, a tends to 1 and, tends to 0, so
that the contribution of the second and third terms of,fi be-
comes negligible. Finally, if p = 0, ,B is equal to 0 and there is
no contribution of the observations from Class 2 ; this could
also be predicted since in that case the random variables M1l and
A12 are independent. ,B increases with pI, so that the contri-
bution of the observations from Class CO2 increases with the
amount of correlation of 11 and /12.

B. Analysis of the Mean-Squared Error
A simple way to evaluate the performance of the EMAP

estimation procedure is by analyzing the expression of the
mean-square error between the random variable /,1 and its
estimate i2-

If no observations have been obtained from Class co,, (i.e.,
n 0), we note from (15) that the mean-squared error of ,>i
is equal to

r2 =E(Q1 )2 = 2g1(u2 + n2a2( - P2)) (17)
2 0

From (17), we see that r42 is always smaller than a2, the a
priori variance of Co1 and is a decreasing function n2. As n2
becomes large, r 2 approaches its lower bound of a2l(l - p2).
As could be expected, this lower bound decreases when the
cross-covariance between 1,i and /12 increases.
Finally, let us consider the case where nI = n2= n, a,= =

a, anda1 =a2 = r. In that case

r2 = o2 ora +na(0 (18)1 0 (a2 + na2)2 - n2p2a4*

Fig. 5 shows the evolution of r4 as a function of n for different
values of p when a2 = g = 1.
We can see that the expected mean-square error asymptotes

to 0 in all curves as n becomes large. We can also see that the
most significant improvement of the mean square error for
small n is obtained in the case of highly correlated mean values.
We note from (16) that for a given n, r1 is an increasing func-
tion of U2/j2. Therefore, the most advantageous conditions
for the use of the extended MAP estimate occur when 1) the
correlation of the mean values across classes is high, 2) the ratio
of the variance of the data to the variance of the mean, a/a0 is
low, and 3) the number of observations is small.

V. SUMMARY AND CONCLUSIONS
In this paper we reviewed the classical MAP estimation pro-

cedure for updating the probability density functions of Gaus-
sian random mean vectors from a set of labeled observations.
We extended the procedure so that it could take into considera-
tion not only the feature-to-feature correlations within a de-
cision class but also the correlations of the features' means from

one class to another. We formally evaluated this procedure for
a simple two-class and one-feature case. We showed that the
mean-squared error of estimates of the mean vectors is always
smaller when the class-to-class correlations are taken into ac-
count, and that the greatest improvement afforded by the ex-
ploitation of class-to-class correlations is obtained when the
number of observed samples is small, the class-to-class correla-
tions of the means are high, and the ratio of the variance of
the data to the variance of the mean is large.
The formulation of the estimation procedure was simplified

by the use of a set of notational conventions that capture the
covariances of the feature mean values within a given class as
well as the cross-covariances between the mean vectors of dif-
ferent classes.
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Estimation of Error Rates in Classification
of Distorted Imagery

M. J. LAHART

Abstract-This correspondence considers the problem of matching
image data to a large library of objects when the image is distorted.
Two types of distortions are considered: blur-type, in which a transfer
function is applied to Fourier components of the image, and scale-type,
in which each Fourier component is mapped into another. The objects
of the library are assumed to be normally distributed in an appropriate
feature space. Approximate expressions are developed for classifilcation
error rates as a function of noise. The error rates they predict are com-
pared with those from classification of artificial data, generated by a
Gaussian random number generator, and with error rates from classifi-
cation of actual data. It is demonstrated that, for classification pur-
poses, distortions can be characterized by a small number of parameters.

Index Tenns-Image classification, image matching, feature extraction,
pattern classification, pattern recognition.

Manuscript received May 26. 1983; revised August 22, 1983.
The author was with the U.S. Naval Research Laboratory, Washington,

DC 20375. He is now with the National Institutes of Health, Bethesda,
MD 20209.

U.S. Government work not protected by U.S. copyright

535


