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Abstract

Spealker-dependent automatic speech recognition systems avenkioooutperform speakinde-
pendent systems when enough data eaéadle for training to wercome the ariability of acous-
tical properties among speak. Speadr normalization techniques modify the spectral
representation of incoming speechveforms in an attempt to reducariability between speak-

ers.

While a number of recent successful sggatormalization algorithms faa incorporated speak
specific frequencwarping to the initial signal processing, these algorithms do no¢ exggnsve

use of acoustic features contained in the incoming speech.

In this work we study the possible benefits of the use of acoustic features that aredbielibe

key to speech perception in speakiormalization algorithms using frequgnearping. W\ study

the etent to which the use of such features, including specifically the first three formant frequen-
cies, can impnee recognition accurgcand reduce computational comyitg for spealer normal-
ization compared to ceentional techniques. &/examine the characteristics and limitations of
several types of feature sets andrnping functions as we compare to their performance velti

that of «isting algorithms.

We have found that the specific shape of tharping function appears to be irned@t in terms of
improvement in recognition accunaclhe use of a linear function, the simplest choiceyatbus

to emply linear rgression to define which features to use and ttoweigh them. W present a
method that finds the optimal set of weights for a set of speaiken the slope of the besawp-

ing function. Selection of a limited subset of features for use is a special case of this method where

the weights are restricted to one or zero.

The application of our speaknormalization algorithm on the ARARResource Management task
resulted in sizable impvements compared to pieus techniques. Speaknormalization applied
to the ARRA Wall Street Journal (WSJ) and Broadcaswil¢Hub 4) tasks resulted in more mod-

est impreements. W hae investigated the possible causes of this. Ogregiments indicate that
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normalization is less fdctive with a lager number of speaks presumably because in this case
the output probability densities of HMMs tend to be broader and hence repregesenitatilage

class of speads. In addition to this, increasing thecalulary size tends to increase the search
space, causing correcypotheses to be replaced by errorful ones. The benefit brought about by

normalization is thus diluted.

The amount of impneement preided by normalization also increases with increasing sentence
duration in Hub 4. Since the actual Hub 4 containsgelaumber of short genents, the normal-

ization pravides a more limited impk@ment in performance.
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Chapter 1
Intr oduction

We present a method of speakiormalization accomplished by a transformation of the frequenc
axis based on speak specific acoustic features. Speakormalization attempts to increase

speech recognition accugaby reducing speak variability.

Spealer dependent systems are Wmoto outperform spea&k independent ones when enough
training data arevailable. Speadr variability seems to account for much of thidetiénce. Thus,

reducing this &riability can decrease this ftifence in performance.

Spealer variability appears for diérent reasons. ®/can point outxdrinsic reasons, which ka to
do with external influences lik a speads’s cultural background, emotional state, etc., and intrinsic
reasons, which lva to do with plsiological diferences between speak such as ddrences in

shapes and sizes of components of theal/tract.

A clear efect of the diferences in ocal tract components slie up in the locations of formants.
Formants are the peaks of therelope of the spectrum. f$ically, they correspond to resonances
of the wocal tract. Preious work [19] has shan that there is a correlation between the position of
the formants andocal tract length. Therefore, speakormalization through aoeal tract length-
dependent transformation of the frequengis should yield formants whichveless ariability.
Furthermore, for some phonemes this dependbetwveen formants anaweal tract length seemed
to be linearsuggesting a scaling of the frequgagis would be a good solution as a normalization
technique. Br some phonemes though the relation does not seem to be $nggesting that

other transformations or ‘avping” of the frequencaxis should be attempted.

Previous attempts inacal tract length normalization [14][40][73]Vvemostly relied upon a “trial
and error” approach: the algorithm testgesal “solutions” for the \arping function and picks the
one producing the best results. Although these techniquesheen motiated by the desire to

compensate for ddrences in theocal tract length, there is no clear relation between #Hrping
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function chosen for a speaikand this speak’s acoustic characteristics.

Other work has relied upon speaikspecific acoustic featuregytlwith constraints placed on the
shape of the arping function taking into account acoustic productigguarents. The choice of

warping function is limited by the assumed model. not by sgresdecific features.

In this work we examine the feasibility of speak normalization by a mapping directly between a
new speakr’s and a standard speak formants. In general, we separately consideraspects of
the warping function that maps one speato another: its shape andyan a shape, the parameters
that define it. In our ok, we select points which will define theasping function, and find a
curve that will fit those points according toyachosen criterion. This framerk allovs us com-
plete freedom in the choice of the shape of thgpimg function, as well as in the acoustic features

which will define the warping function.

We study some of the choices for the selection of points that definatpagvfunction, as well
as the interpolation cuev We study the benefits brought about by each feature sepasaaie|yro-
pose a method to determine their retimportance when used conjurety. These methods are

direct applications of@ensions to the lineargesssion technique.

When fist adaptation is needed and the computational cost of the estimation of formants is unac-
ceptable, it is wrthwhile to catgorize speadrs into classes. 8ixamine the simple case where

spealers are classified according to their gender

Our normalization technique is sengitito errors in the estimation of formants. Ideathese
should be estimated from ad@&r amount of speech recordeden close-talking microphones in
quiet ewironments. Situations arising fromwations of this paradigm makthe estimation of for-
mants less reliable, and might bias featusesaeted from these estimates thus causingyeada-
tion on the performance of the normalization technique. Estimation of formantgasdbthe

scope of this thesis. M@ver we study some conditions where weWkrtbe formant estimation
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will be less than ideal. ¥/ perform &periments where estimation of formants is performed on
speech bandlimited by a telephone channel. In addition, we study cases where we limit the amount
of speech from which we estimate formants and attempt to assedethefdboser constraints in

databases, hamely databases witlpdarocahularies and databases including spontaneous speech.

This thesis is @anized as follws. In Chapter 2 we véew basic concepts relant to this work,
including formants and their estimation, and wadew speakr normalization techniques which
emplgy warping functions. In Chapter 3 we present a brgfrgienv of Sphinx-3, the recognition
engine used throughout this thesis, and a description of the databases weanipl€hapter 4,

we present our speek normalization algorithm, together with important topics related to it.
Among these topics, we point out a study of possible shapearpfng function, a study of the
criteria for selection and weighing of features that define thming function, a comparison
between gender generic normalized models and gender specific models, and a studfeof the ef
performance of telephone-ékchannel. In Chapter 5 we present comparisons of the normalization
technigue applied to ddrent databases and attempt to assess reasonsféoerdies in perfor-
mance. Among the reasons, we study the influence of a limited amount of data and the influence of
database size, both in terms oftalulary size and number of speak. Finally in Chapter 6 we

our present conclusions and suggestions for futoré.w
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Chapter 2
Review of Basic Concepts and Spe&k Normalization
and Adaptation Techniques

2.1. Introduction

Speech from diérent speadrs will sound diferently due todctors that can be classified as both
“extrinsic” and “intrinsic” [19]. Extrinsic &ctors are those that were learned by theviddal,
based on primarily cultural or emotionalcfors. Thg depend on cultural characteristics such as
the ewironment where one greup and the leel of education attained, and emotioradtbrs such

as speech rate, andvihangry or happ or nenous one is.

Intrinsic factors, on the other hand, are anatomically related. Those reasaldsssist no matter
what the particular inglidual circumstances ould be. Theseattors are a consequence afia-
tions in size and shape of the components of dlcaltract. Theseariations lead to changes in the
resonance characteristics of treeal tract. Brmants, which are the peaks of the spectratiep,
are related to the resonances of theal tract, and will therefore befafted by the intrinsicafc-

tors.

Speech recognition is basically a pattern classification problerenGi speech obsetion vec-
tor, we try to identify the phonemes occurring in the oletgya, or at least we try to identify the
class of phonemes to which the obsé¢ion belongs. This is an intrinsically fiiult problem. The
variability of spectral shapesyen for the same phoneme, reakhe classification problem more
difficult for two reasons. First, thariability for the same phoneme neakthis class more spread
out; second, since d#rent phonemes uttered by fdifent speadrs typically hae similar for-

mants, the classes tend tgedap.

Spealer adaptation and normalization techniques attempt to reducdebis ef speadr \ariabil-
ity on the performance of speech recognition systems. The techniques to cope wihahibty,

of course, depend on the technology being eygulo
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Most state-of-the-art speech recognition systems [12][28][70kmak of Hidden Madv Mod-

els (HMMs)[7] as a corenient statistical representation of speech. Oag W account for the
effects of speadr \ariability is to modify these models. “Model transformations” [22][41] are
attempts to map output distutions of HMMs to a n@ set of distrilotions so as to makthem a

better statistical representation of avrepealer.

The other most commonay to cope with the problem of speakariability, which is the focus of
this thesis, is to modify features of the incomingveforms in either the spectral or cepstral
domain. These changes aim at mapping spectra (or cepstra) so as to diminish ietedsferak
ences, so that a phoneme uttered bigiht speadrs will have a characterization as close as pos-

sible to a standard.

Regardless of whether parameters of the internal HMMs or the incoming features are being modi-
fied, the mapping can be thought of as mapping within a spaceafopk, the space of Gaussian
mixtures, in the case of HMMs. Spealadaptation and normalization techniques can be charac-
terized by what the space in which the mappingtailace, and ko this mapping occurs.df
example, approaches for mapping between digtiobs of HMMs or between spectra or cepstra

differ.

The mapping of spectra is usually acki@ by a varping of the frequencaxis. As mentioned pre-
viously, differences in @cal tract dimensions will cause féifences in spectrayen when the
spealers are producing a sound that we pexeis the same phoneme. Tharping of the fre-

gueng axis is an attempt to modify spectra so that the distance between the spectra of sounds per-
ceived as the same phoneme is smafilBistance” might hee seeral meanings. It could simply

be the serage squared d&rence, or it could be theerage distance between formant frequencies.

The definition of distance may yield fdifent optimization criteria on the choice of tharping

function.
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A natural issue is the choice of thanping function, which specifies the relationship between the
frequeny axis used to represent spectra produced by the “standard’es@ak the frequegc

axis describing the spectral productions of & spealer.

Methods that perform mapping of output diaitibns of HMMs are ery flexible, and thg can
provide for compensation not only for speakariability, but also for diferent emironmental con-
ditions. Thg are usually gry computationally x@ensve, though, which renders them unsuitable

for when there is a need for rapid adaptation.

Warping functions are not as dily to be useful in dealing with @inonmental dfects, since the

most common edironmental dgradations are typically modeled as a linear filter fodd by
additive noise applied to the original “clean” speech signal. In general, the types of compensation
approaches that ha been the most useful fonemnmental dgradation are not Iy to be help-

ful in counteracting the &fcts of frequengcwarping (and vice-ersa) because of theny different

nature of the types of distortions introduced.

In the following, we present a veew of the concept of formants and of thefidiilties inolved in
their estimation, folleed by a reiew of techniques to perform speaknormalization of parame-
ters denved from the incoming speechaveforms. W& conclude the chapter with some remarks

regarding the dects of these speaknormalization on formants.

2.2. Formant fr equencies

A well accepted model of speech production characterizeota tract as a tube or concatena-

tion of tubes of arying cross sectional area [61]. The most @nevill be transferred between the
excitation and the output at the resonant frequencies of this resonance tube model. These resonant
frequencies are the so called formant frequencies of the speech signay ésrthspond to high

enegy ragions of the spectrum, the formant frequencies can be identified by the peaks of the spec-

tral ervelope.
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Rabiner and Juang [61] point out that althougivels hae very low relevance for recognition of
written text, most practical speech recognition systems relyilyean vowel recognition for high
performance. If we renve vowels from a tgt, the aerage reader can easily figure out what the
original text was. If we remwe the consonants, the task is a lot morficdit to accomplish. On
the other hand, when it comes to acoustic signalsels are more easily and reliably recognized
because theare produced byxeiting an essentially statiooeal tract shape with a quasi-periodic

excitation signal. Thg are usually long in duration and spectrally well defined.

From a pattern recognition point of wieit becomes relant whether awels’ formants can be
easily clustered. Peterson and Barf&8] carefully measured formants afwel utterances from
several speadrs, and found out that measurements of formants fefelitt vowels tend to cluster
although with somewerlap between clusters. The centroids of these clusters can be represented in

the so called “owel triangle”, which is depicted on Figure 1.

J24r
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16T
14r
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101
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0.2 0.3 04 05 0.6 0.7 0.8

F1 (kHz)
Figure 1.Centroids of clusters of commonwels defining the “swel triangle”.

2.3. Formant fr equency estimation

Although the definition of formants is straightfame and the pfsical concept of formants is easy
to understand, the estimation of formantgegian utterance can be problematic. Estimation on a
frame-by-frame basis is errorful. More®, formants are related to the position of the components
of the wcal tract, which determine the characteristics of thealtract as a resonancevita
Changes of position cannot occur suddenly because of mechanical limitations ofah&act.

This imposes a continuity constraint on the formant track.
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The estimation of formants on a frame-by-frame basis is usually accomplished by finding some
smoothed approximation of the spectrum, fearaple, by LPC or cepstral analysis, and then
locating the peaks on thisvaiope. Among the ditulties one might encounter when estimating
formants on a frame-by-frame basis [56], we can point out:

» Spurious peaks: the process of finding the spectrum might lead to spurious peakamn
ple, if one uses LPC analysis to find the spectrumelepe, the order of analysis is usually
bigger than necessary to pide for fleibility. These etra poles might yield more peaks than
the real ones.

* Blending: tw peaks might be so close together thay tetually get meyed into one during
the peak-finding process.

« High-pitched speech: Makhoul [46] has simathat in this kind of speech LPCwetope peaks
tend to be dnan avay from their true alues twvards the harmonic peaks, which are more

widely spaced in this case.

For each frame, formant traefs find a smoothed approximation of the spectrum and locate peaks

on this approximation. The firdd peaks are assigned to the fikstformants, thus producinyl
formant tracks. These tracksweaver are not necessarily smooth due to errors in the combination

of the spectrum estimation and the peak finding process.

One possible ay to cope with errors in the peak finding process is to use a tracking algorithm, in
which one predicts a range of possitddues for the estimates, and reje@hies out of that range.
This technique is prone to errors itself, because bad judgements will arep&gsides, it

assumes that all transitions will be smooth, and this is natyalthe case with speech.

A better approach euld be to post-process the formant tracks, so théabos outliers can be
eliminated. The simplest idea is avimg average, where a weightedesage is computed on the
values of a sliding winde. This has the &ct of smoothing the sequence of estimates, maybe
more than we ant. The transition is important in some processes in speech, and smoothing is not

desirable in these circumstances.
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A possible alternate is the use of a median smoothing, where the mediaalwés/in a sliding
window is computed instead of ameaage. This has the benefit of preserving most of the real dis-

continuities while being lessfatted by the presence of outliers.

A more sophisticated ay to cope with outliers empte dynamic programming. The basic idea is
that a cost is associated witieey transition, and the path which leads to the minimum cost is cho-

sen as the formant track. The solution isvgted though a Werbi search algorithm.

Formant tracking is by@nd the scope of this thesis. In odperiments, we empjoWaves+ [18],
which finds candidates for formants by finding roots of the LPC polynomial and then performing
formant track smoothing by dynamic programming. This state of the art formardrt@okdes

reliable estimates of formants.
2.4. Review of spealer normalization techniques

2.4.1 Normalization using avping functions

Warping functions are an attempt at mapping between spectra cpeakrs so as to decrease

systematic ariations. Therefore, aawping function in the conté of speakr normalization is a
function mapping tw spectra. If we intend to map the spectPdfw) to the spectruny (w) we
can use a functioh(w) so that

Y(w) = X(f(w)) 1)
The efect of the functionf (w) will be an epansion or compression of the spectrfiw)

depending on whether the first dative of f, f'(w), is bigger or smaller than the unit. Figure 2

illustrates these fdcts. Notice that the general shape of the original spectrum does nhot



Chapter 2. Review of Basic Concepts and Speaker Normalization and Adaptation Techniques 10

Original spectrum

0.0 05 10 15 20 25 30 35 40
Frequency (kHz)

Slope > 1 Expanded spectrum

<80r 0700

T | o

:“_,7'0 2600

gﬁo- %500_

g50 Zm0f

g4.0 r 20k

LI30F ’

B20r 2001

§10f 100}

0.0 10 20 30 40 50 60 70 80 0.0 05 10 15 20 25 30 35 40
Unwarped Frequency (kHz) Frequency (kHz)

Slope <1 Compressed spectrum

<801
701
»601
$50r
3 -
g4.0

L30f
°

020
o
5101

1 1 1 1 1 1 1 ) 1 PN e 1 1 [

0.0 1.0 20 30 40 50 60 7.0 80 0.0 05 1.0 15 20 25 30 35 4.0
Unwarped Frequency (kHz) Frequency (kHz)

Figure 2.Effect of a varping function ger the spectrum. Theasping function causes ¢
expansion or compression of the spectrum depending on whether its slope is bigg
smaller than unit. In thisxample, a linear arping function has been used.

change.

The important issues wheramining normalization techniques are the choicearpimg function

and haov it is selected. A ery popular choice of &rping function, appealing for its simplicitg

the linear function. Other common choices are esivased on speech perception studies, such as
the bilinear transform or transforms based on the mel scale, along withs caased on speech
production models. The selection ofmping function is sometimes based on maximization of
likelihood, and sometimes based directly on spesjiecific parameters. In the fallmg sections,

we present some of the redent normalization techniques thavhaeen ivestigated.



Chapter 2. Review of Basic Concepts and Speaker Normalization and Adaptation Techniques 11

2.4.2 Selection based on maximization oélikood

In a seminal studyCohenet al [14] proposed a frequeywavarping scheme in which theanping
function for a gien speatr is iteratvely chosen as the one which maximizes thelitlood of the
hypothesis transcription at the output of the decotleis criterion taks into accountverything
that is irvolved in the process of recognizing speech, and guarantees that the sespiad w

function will be optimal for the decoder being enyad.

In the training phase, the training set is split i sets, training (T) and aligning (A). HMMs are
created with Tand the best arping function is chosen fovery element of A using these models.
Then, with utterances in Aawped according to this selection, T and A are interchanged, and ne
models are created. This process (training, selection, interchanging) is iterated vetjerwe is
achieved, that is, until the arping function chosen for each speatemains the same. In the test-
ing phase, each sentence iarped using all arping functions, and decoded. The output with
highest lilelihood is chosen as the decoded output. While tirping function used by Cohen

al. was a linear function,e., a linear scaling of the frequenaxis, the general approach could in

principle be applied to arping functions of anshape.

A significant disadantage of this general approach is that running a decoder multiple times is
extremely computationally costhA number of similar studies folleed that of Coheet al, and

most of them proposedsdter alternaties to selection based on decoder outputekample, Vég-
mannet al [73] proposed an algorithm where tharping function for a particular spesakis cho-

sen from a set of arping functions, based on maximization ofelikoods associated with a
Gaussian mixture model that statistically represents the standaresgéekshape of the awp-

ing functions proposed by &ymannet al. corresponds to tavstraight lines whose point of inter-
section aries. Specificallythey define a straight line going through the origin and another straight
line going through the point defined by the Nyquist frequendoth aes. (In their periments

the Nyquist frequencwas 4 kHz.) The first line has a slope between 0.88 and 1.12, to account for

variations in wcal tract length around 12%. Theot¥ines intercept at 3500 Hz (see Figure 3).
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Figure 3.Examples of warping functions used by &mannet al [73]. They are defined by tar
segments of straight lines that meet at 3.5 kHz The first one starts at the origin with slope betw
0.88 and 1.12. The second connects the endpoint of the first with the point defined by the Nyq
frequeng in both aes.

We implemented aersion of the algorithm of ¥gmannet al.[26], but we used a arping cure

derived from the mel scale. The mel scale is wattd by psychoptsical studies that skhothat
human perception of frequgncontent does not folo a linear scale. A reference frequens
chosen, and the subjegipitch \alues are obtained as the ones peeckas half or twice the per-
ceived pitch of the reference. The original Mel scale [78%weeloped to represent the spectral
resolution of the auditory system as a function of frequencour implementation, we approxi-
mated it by a cum that is linear up to a certain frequgnd logrithmic aftervards. \arying this

frequeng, we obtain difierent warping functions (see Figure 4).
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Figure 4.Examples of varping functions used in our implementation [26] afgiiannet
al.'s algorithm. The are \ariations of a cury approximating the mel scale. This approxi-
mation is linear up to a frequen@nd logrithmic aftervards. \arying this frequeng we
obtain diferent varping cures.

The first step in our implementation consists of an iteradiervation of the Gaussian mixture
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model. At each step in this iteration, we first compute the Gaussian mixture model for the proto-
type speadr and then find the optimalanping function for each speak This optimal varping
function is chosen to be the one that maximizes the a posteriori épdied computed using this
Gaussian mixture model. After choosing the optimafping function for all speaks in the set,

we re-compute the Gaussian mixture model, find optimal warping functions based on theane
Gaussian mixture model, and proceed in this manner uniteg@nce is achieed. Conergence

in this case means that for conseaiiterations the same optimahping function is chosen for

every speakt.

The second step of the implementation concerns thgatieri of spea#r-normalized HMMs
from the optimally-varped training set. The training steps of our implementation consist of the
iterative dervation of the Gaussian mixture model and thevdéion of the HMMs. During recog-
nition, the best warping function is obtained for eachwepealer in the same manner that is
derived for the utterances in the training set and thgped utterances are recognized using the

previously-derved HMMs.

This scheme does not presumg aarticular shape of arping function. In dct, we also imple-
mented this normalization method using linearping functions, as opposed to the prse lin-

ear functions used by &ymannet al or the nonlinear function of our implementation.

Lee and Rose [40] propose a method similar to both methods mentiowed e training phase
is exactly the same as Cohen and his colleagueskwA linear varping function is iterately
selected foreery speaér in the training set, according to a maximization dadliilood at the out-
put of the decodeiThe test phase, on the other hand, resembégsm@dhns approach. Instead of

using only one Gaussian mixture to represent the standardegbakgh, thg createN Gaussian

mixture models for a set ®f warping functions. Thecreate the Gaussian mixture modelsing

the unvarped utterances for which the bestrging function is the -th. This approach precludes

the need to arp utterances in the test set in order to select &ngimg function.
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An alternatve to the preious selection criteria, which nonethelessines a lage computational
load, was proposed by Fukada and Sagisaka [20]y Beeomplish a timearying warping of the
frequeng axis. Other algorithms define a speakpecific varping function which remains con-
stant throughout the utterance. In their proposed method, dhging function is chosen not at
front end leel, kut at training and decodingviel. Successful state of the art speech recognition
systems model speech use Hidden Marklodels. An utterance can be modeled as a path on a
two-dimensional space defined by the time or frameximiheone axis and by the HMM state on
the otherFukada and Sagisaka define a three dimensional space, where the third dinseresion v

with the warping function, grmore preciselywith a parameter defining theping function. This

parameter could be, fox@mple, the slope of a linear cenor as in their papetheda parameter

of a bilinear transform.

The decoding, usually performed with théevbi algorithm, emplgs a modified Yerbi search,
which tales into account transition probabilities on tharping function parameter dimension.
This has the adntage wer the preious methods that only one pass of recognition is enough to
simultaneously find the best recognitioypbthesis and to find the besarging function, grmore

appropriatelythe best sequence oawping functions.

Among the drevbacks of these methods is the requirement for a finite numbearping func-
tions. Morewer, we need to compute features (such as cepstra) for allespeéder all varping
functions, and all these data need tomlable at the time theavping functions for each speak
are selected. This means that if, fsaeple, one out of 10 avping functions is to be chosen, we

will need to compute the features 10 times.

2.4.3 Selection based on speiegpecific acoustic parameters

Eide and Gish [17] described a study in which measures of formants are used directly to perform
spealer normalization. Thedevised an algorithm for normalization where the spectra aew

forms would undego warping. The warping function chosen by Eide and Gishswv
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f' = kg 2
wherek, is the median of the speats third formant (F3) wer a set of frames, wided by the

median of F3 taén across the set of training spesak Figure 5 shws this function for tw differ-

ent \alues ofks.
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Figure 5.Warping functions used by Eide and Gish [17]. The constgdatdefined as the
ratio between the median of the sparékthird formant and the median of the third for-
mant across all speais.

This choice of warping function s motvated by resonance tube models of speech production
[19]. Tube dimensions and configurationsuld differ for each phoneme being produced, and

therefore the dependence of resonance frequencies on tube leaglti€kange. Imagine that all

dimensions in a model are changed baadr ofk. So, for @ample, the length goes frolnto ki .

For some phonemes, this changewd produce a change by acfor of% in the resonance fre-

guencies. Br other phonemes, with &ifent models, this changeould cause a change byaafor

1 . : : : . .
of — in resonance frequencies. Eide and Gish chose a function that represents a compromise

Jk

among all dependencies.

Eide and Gish do not elaborate onywthey chose the third formant rather than some other feature.
However, Claeset al.[13] point out that the third formant is the one with leastation across dif-

ferent phonemes. Therefore, its estimation is statistically moust.ob
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This same point is raised by Zhan andsfjphal [77]. The extend Eide and Gisk'work and per-

form normalization using the same kind o&nwing function bt estimating the parametky, in

equation (2) also from the first and second formants. Merethey compare this particular shape

of function with linear functions obtained with the same paramé&hair results she that for a
nonlinear varping function the first and third formant are equally helpful, although for the linear
case the first formant seems to be most helpfulvéder, they conclude that a maximum &k-

hood approach, based on athaustie searchwer a grid of alues, brings about the best perfor-

mance.

Lin and Che [43] described a ratherfeliEnt approach. Using an articulatory speech synthesizer
they obsered that changes inoegal tract length hee the same &fct on the computedalues of

cepstra as the computation of cepstra using just a limited range of the spectryicarmbeo this
conclusion by synthesizing the same utterance wifardifit \ocal tract lengths, computing cep-

stra, and then comparing these cepstra to the ones computed from “truncated” spectra. Lin and Che

proposed a method in which, instead of computing cepstra from a DFT using the whole frequenc

range from O to the Nyquist frequenthey use just the range from 0 to avier end frequernck,.

This corresponds to a linear scaling of the frequexxis. The end frequep@ssigned to a partic-

ular speakr is presumed to depend on tleeal tract length. Lin and Che suggest that if theaV

tract length isl, thenlF, = constan. If the wocal tract length is notvailable, thg proposed

that seeral diferent end frequencies be tried in parallel, and that the spspdcific end fre-

gueng that yields the greatest ékhood be chosen.

Lincoln et al [44] came up with a diérent approach that resembles tharkvdeveloped in this

thesis in some ays. Thg used the TIMIT database, which igseented and labeled according to
the bginning and ending of each phonemigment. Thg used the time-labeled phonemes in the
database to delop an algorithm that tak adantage of classes of phonemes. Use of a ngn-se

mented databaseowld require anx@ensve preprocessing to perform automatigreentation.
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In their method, the normalization of the training dataks in two stages. In the first stage, esti-
mates for the first and second formants (F1 and F2) are made for each frame aivehdey

ment in the data. Tyeassume a Gaussian distriion for each formant for eaclowel class and
estimate its parameters. In the second stage, which is also the only stage of the normalization of

the test data, the estimates of the farmants for each frame, together with the estimated distrib

tions, are used to compute a normalizatastdra, for each frame:
1|1 2|2
a, = argmax,Pr(af; ‘F )Pr(af; ‘F ) (3)
wherefil andfi2 are the estimates of the first and second formant for framedF = andF~ are

the Gaussian distnitions for F1 and F2, with means; and 4, and \ariancesoi and 0'3,

respectiely. The closed form solution fa; is:

1 2 .2 2
o = fin /o) + fiu,/ o5 @)
! 1 2 2 2

(fi/oy) +(f;/0,)

These frame based normalizati@ctors are then combined into aremll normalization dctor

a(l) for each speai | :

NV
S aPr(a fi|FhPr(a f7|F?)

a(l) = 5 5)

ZV Pr(aifﬂFl)Pr(aifﬂFz)
i=1

whereN,, is the number ofawel frames for speak | .

It is interesting to notice that the solution yicked by Equation 4 isxactly the solution obtained
when fitting the points defined by the means of F1 and F2 with a linear function using the least

squares formulation presented in Appendix A.

2.4.4 \\arping functions in the cepstral domain

Motivated by preious works that used a bilinear transform to mimic the nonlinear characteristics
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of human speech perception, Acero [1] proposed a methoddiqing in the cepstral domain
using a bilinear transform. The bilinear transform is a mapping in the complplee which maps
the unit circle onto itself through the relation:

-1
-1 _ Z —d
Znew = -1

l-az

—l<a<1 (6)

In the general case, taking the edba@quation into account, we can relate thearped and the

warped cepstra by:
¢, = L(a)c (7)
whereL(a) is a matrix which depends an. It can be shen that if a is small and we rgect
higher pavers ofa, the relation abge can bexpressed as:
c,[n] = =(n—=1)ac[n-1] +c[n] + (n+ 1)ac[n+1] (8)

Acero selected the by minimizing the werall VQ distortion of the cepstragutor

Zahorian and Jaghgtni [75] presented a technique for normalization in the cepstral domain which
is an etension of the idea of avping function to this domain. The@roposed the use of a polyno-

mial of the form
c' = acz+Bc+y 9
as the warping function, where corresponds to each cepstral €icefnt before varping, andc',
after warping. The coéitients were chosen to minimize the squared error between the normalized
cepstra and a tget cepstraer an utterance. The gt was chosen as the speaklosest to the

average of all speaks. The concept of the standard speas a single real speakvho is closest

to the @erage is an interesting alternatito just aeraging.

2.5. Effects of normalization on érmants

In this section, we present some resultsnshg the epected formant-relatedfetts caused by
normalization techniques. These results were obtained using a liagangvfunction, as detailed

in [25]. Results presented in this section are supposed to be considered typical among normaliza-
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tion techniques, not a special case of the cited implementation.

2.5.1 Efects related to gender

Females usually e wocal tracts with smaller dimension than males. Therefore, a fenfate’
mants are usually higher than a malie@irmants. W would expect that a reasonable normalization
would cause a femakformants to get compressed in the process, while asfatenants are
expected to bexpanded, so that tiecome closer togetheCompression, as mentioned \pre
ously, can be achied by a varping function that is a straight line with a slope less than one, and

expansion, with a slope greater than one.

Figure 6 shars histograms of slopes of a set of sgaapecific linear warping function separated
by genderWe note that the clusters separate well by genders, and that the dependence of slope on

gender is asxpected.
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Figure 6.Distribution of slopes according to gendéhese are the slopes of a linearp
ing function obtained according to Gouvéa and Stern [25].

2.5.2 Efects on clusters ofowels

The recognition process is ultimately a pattern recognition probleran@n obseation, we aim

to label it as belonging to a particular class, which could be a phonewd, etc. V¢ expect a
normalization algorithm to modify the spatial distiiion of obserations so that clusters result

more easily identifiable. Figure 7 represents a replotting of the data collected by Peterson and Bar-
ney [58], who collected awels uttered by around sixty speag, each speek repeating each of

ten vowels twice, and estimated formants from these data. Figure 8 represents the same data after
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performing normalization. ¢t clarity’s sale, we plotted just three of thosewels in figures 7 and
8. These threeowels are the awels that define the twel triangle” proposed by Peterson and

Barngy.
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Figure 7.Formants of the phonemes /AA/, /1Y/, and /JUW/ before normalization. Data col-
lected by Peterson and Bayne
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Figure 8.Formants of the phonemes /AA/, /IY/, and /JUW/ after normalization. Data col-
lected by Peterson and Bayne

The Fisher ratio [16], which is the ratio of thariance of the meanswuitied by the means of the
variances across\aral diferent clusters, is a commonly-used measure of cluster separation rela-
tive to intrinsic clusterariability. For the data replotted in Figures 7 and 8, the Fisher ratio of the
clusters before normalization is 12; after normalization the Fisher ratio increases to 29. Therefore,
from a pattern recognition perspeeti the transformation is making the classes more compact and

farther apart, which auld provide greater classification accuyac

2.6. Spealkr adaptation with maximum likelihood linear regression

The focus of this wark is on speadr normalization. Heever, we present here a briefsrew of one
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common speak adaptation technique as axample of an alternatt approach to reducing

spealer variability.

Spealer adaptation is usually understood as the modification of output diging of HMMs so
as to better match a speak characteristics. Aery common technique is the Maximum &lik

hood Linear Rgression (MLLR) [41].

MLLR attempts to modify meanectors of the output distuitions so as to maximize the éii
hood of the obserd data from a we spealkr, that is, the meaneetor of the output probability

distribution of the adapted models areagi by:
p'adapted: A“base"' B (10)
whereA is ann x n matrix, B, Wagaptec @NdHp,ee aren dimensional ectors, andA andB are

found through a maximum lgtihood approach.

No restriction is imposed in the mati or the \ector B, thus rendering this techniquery flex-
ible. In fact, although originally designed as a speadaptation technique, MLLR has been suc-
cessfully used to perform compensation tw mgvironments, replacing mgmoise and channel

compensation algorithms.

As MLLR involves reestimation of means of output pdfs of HMMs, the estimation of the entities

A and B in Equation (10) requires estimation of theelikoods of the adaptation sentences
according to the current HMMs. Therefore, there is a need for transcription of the adaptation sen-
tences. If we hae the &act transcriptions for some sentences uttered by a espe@ak can use

these sentences to perform supervised adaptation. A more realistic scenario, though, is one where
transcriptions for the adaptation sentences arevaitahle. In this case, transcriptions produced

by a decoder are an alterwatifor the real perfect transcriptions.

2.7. Conclusions
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We presented a view of basic concepts relant to this werk, as well as a wew of major
approaches to speatknormalization, with representzai examples of their implementation. ith/
the eception of the studies of Eide and Gish and of Lin@ilal, the methods wewed do not
make use of acoustic features that arevaahe to speech perception such as formant frequencies. It
is our belief that the use of acoustic features should be central in the selection afpiing Wunc-

tion, for human perception of speech usescty these clues to perform normalization.
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Chapter 3
The SPHINX-3 Recognition System

3.1. Introduction

Since the normalization algorithms to bereleped will be ealuated in the conké of continuous

speech recognition, this chapteryides an werview of the basic structure of the recognition sys-

tem used for thexperiments described in this thesis. The algorithnveldged in this thesis are
independent of the recognition engine used, andantheg are part of the acoustic preprocessing

of speech. Hence, the results and conclusions of this thesis should be applicable to other recogni-

tion systems.

The most important topic of this chapter is a descriptioradbus aspects of the SPHINX-3 rec-

ognition system. \& also summarize the databases usedvaduation in the thesis.

3.2. An overview of the SPHINX-3 system

SPHINX-3 is a lage-vocalulary, speakrindependent, Hidden Maok Model (HMM)-based con-
tinuous speech recognition systemelilits predecessors, the original SPHINX system and
SPHINX-1l. SPHINX was deeloped at CMU in 1988 [39][37] andas one of the first systems to
demonstrate the feasibility of accurate, speakdependent, lge-vocaklulary continuous speech

recognition. SPHINX-II [28] vas one of the first systems to enypsemi-continuous HMMs.

SPHINX-3 has a more fléble structure than SPHINX-II. The user can determine if continuous or
semi-continuous models will be used, as well ag hwary streams of data the system will be
using and he these streams areganized. In our wrk we alvays mak use of continuous mod-

els. Therefore, the folleing description, especially garding the front end, concentrates on
SPHINX-3 running on continuous mode. In semi-continuous mode, SPHINX-3 is fully compatible

with SPHINX-II.

Figure 9 sharis the fundamental structure of the SPHINX-3 [60] system.bviefly describe the



Chapter 3. The SPHINX-3 Recognition System

functions of each block.

Training
Data

T
e

Feature
Codebook

—
e

T
e

HMM
Senone

Signal Processing <>
; .
i)
. ©
VQ Clustering and £
Quantization ~H= g
&
: =
Senonic
Continuous HMM T

Testing
Data

>
v

24

Signal Processing

;

e

XXXXXXXXXX&(XXXXXXXXXXXXXXXXXXX

—
< 7

T
e

Lexicon

—
—

T
e

Language
Model

Multipass Search

T
N

-

SPHINX-3 Training

Figure 9.Block diagram of SPHINX-3.

[0.0.0.0.0.6.0.0.0.0.9.0.0.6.0.¢

SPHINX-3 Testing



Chapter 3. The SPHINX-3 Recognition System 25

3.2.1 Signal processing

Almost all speech recognition systems use a parametric representation of speech rather than the
waveform itself as the basis for pattern recognition. The parameters usually carry the information
about the short-time spectrum of the signal. SPHINX-3 uses mel-frequepstral codicients

(MFCC) as static features for speech recognition [15]. First-order and second-order time deri
tives of the cepstral cdalients are then obtained, andyms information is included as a fourth

feature.

The front end of SPHINX-3 is illustrated in Figure 10e Wummarize this featurgteaction pro-
cedure as follws:

1) The input speech signal is digitized at a sampling rate of 16 kHz.

2) A pre-emphasis filteH(z) = 1-0.977 " is applied to the speech samples. The pre-
emphasis filter is used to reduce thie@b of the glottal pulses and radiation impedance
[47] and to focus on the spectral properties of teal/tract.

3) Hamming windws of 25.6-ms duration are applied to the pre-emphasized speech samples
at an analysis rate (frame rate) of 100 winslzec.

4) The paver spectrum of the winaeed signal in each frame is computed using a 512-point
DFT.

5) 40 mel-frequenc spectral coditients (MFSC) [15] are demd based on mel-frequanc
bandpass filters using 13 constant-bandwidth filters from 100 Hz to 1 kHz and 27 constant-
Q filters from 1 kHz to 7 kHz.

6) For each 10-ms time frame, 13 mel-frequenepstral codicients (MFCCs) are computed
using the cosine transform, as wiman Equation (11)

39

X[k = ¥ X[i] coslk(i+1/2)(/40)]  0<k<12 (11)
i=0

where X,[i] represents the log-emgr output of thei™ mel-frequeng bandpass filter at
time framet and x,[K] represents thié" cepstral ector component at time franheNote

that unlile other speech recognition systemmg.(74]), thex,[0] cepstrum coditient here
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is the sum of the log spectral band ges as opposed to the wghm of the sum of the
spectral band engies. The relationship between the cepstraatar and the log spectrum

vector can bexpressed in matrix form as

' x,[0] | ' X,[0]|

«ik | = [a ]| %00 12)

2 |xisa
dy, = cosk(i +1/2)(1/40)]

where [dk J is a 13x40 dimensional matrix.

7) The denative features are computed from the static MFCCs asifs)lo

(a) Differenced cepstralectors consist of 40-ms thfences with 12 coktients
AX[K] = X4 o[K] =X _,[K] 1sk<12 (13)
(b) Second-order direnced MFCCs are then dexd in similar &shion, with 12 dimen-

sions.

AAX K] = AX,, 1[K] —Ax,_[K],1<ks12 (14)

(c) Pawver features consist of normalizedws, differenced paer and second-order dif-
ferenced poer.
%,[0] = x,[0] —max{ x;[0]}
AX[0] = X;,,[0] —x;_,[0] (15)
AAX[0] = AX,,,[0] =AX,_4[0]
In SPHINX-3, the speech representation uses only one stream of features including: (1) 12 Mel-
frequeng cepstral codicients (MFCC); (2) 12 40-ms difrenced MFCC; (3) 12 second-order dif-
ferenced cepstralectors; and (4) peer, 40-ms diferenced pwer, and second-order €&frenced
power. These features are all assumed to be statistically independent for mathematical and imple-

mentational simplicity

The normalization technique presented in this Thesis adds one step to the algorithm described

above. Warping of the frequenycaxis is performed between steps 4 and 5.
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Figure 10.Block diagram of SPHINX-3 front end.

3.2.2 Hidden Mar&v Models

In the contgt of statistical methods for speech recognition, hidden dankodels (HMM) hae
become a well kngn and widely used statistical approach to characterizing the spectral properties
of frames of speech. As a stochastic modeling tool, HMMe ha adantage of praiding a natu-

ral and highly reliable ay of recognizing speech for a widariety of applications. Since the
HMM also intgyrates well into systems incorporating information about both acoustics and syntax,
it is currently the predominant approach for speech recognitieprééent here a brief summary

of the fundamentals of HMMs. More details about the fundamentals of HMMs can be found in

[71[30][37][42][61].
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Hidden Marlov models are a “doubly stochastic process” in which the obdetata are vieed as
the result of h@ing passed the true (hidden) process through a function that produces the second
process (obseed). The hidden process consists of a collection of states (which are presumed
abstractly to correspond to states of the speech production process) connected by transitions. Each
transition is described by twsets of probabilities:
* A transition probability, which praides the probability of making a transition from one
state to another
» An output probability density function, which defines the conditional probability of observ-
ing a set of speech features when a particular transitias tplace. & semicontinuous
HMM systems (such as SPHINX-II) or fully continuous HMMs [31], pre-defined continuous
distribution functions are used for obsaetions that are multi-dimensionatators. The con-
tinuous density function most frequently used for this purpose is thevamnigite Gaussian
mixture density function.
The goal of the decoding (or recognition) process in HMMs is to determine a sequence of (hidden)
states (or transitions) that the obsshsignal has gone through. The second goal is to define the
likelihood of observing that particularemt given a state determined in the first procesgefsthe
definition of hidden Marév models, there are three problems of interest:
» The Evaluation Problem: Given a model and a sequence of obstons, what is the proba-
bility that the model generated the obsgions? This solution can be found using the for-
ward-backvard algorithm [9][61].
» The Decoding Poblem: Given a model and a sequence of obsgons, what is the most
likely state sequence in the model that produced the @liser¥ This solution can be found
using the Verbi algorithm [72].
» The Leamning Problem: Given a model and a sequence of olsons, what should the
model’s parameters be so that it has the maximum probability of generating theatbasf/
This solution can be found using the Bauretdtt algorithm (or the forard-backvard algo-
rithm) [5][9].

3.2.3 Recognition unit
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An HMM can be used to model a specific unit of speech. The specific unit of speech can be a
word, a subwrd, or a complete sentence or paragraph. elancalulary systems, HMMs are
usually used to model sulowd units [7][12][36][38] such as phonemes, while in smabialulary
systems HMMs tend to be used to model theds themsels.

SPHINX-3 is based on phonetic models because the amount of training data and storage required
for word models is enormous. In addition, phonetic models are easily trainablevdtothe

phone model is inadequate to capture dugability of acoustical beléor for a given phoneme in
different contets. In order to enable detailed modeling of these co-articulatfentgf triphone

models were proposed [67] to account for the influence by the neighboringtsonte

Because the number of triphones to model can be tge &nd because triphone modeling does
not tale into account the similarity of certain phones in thefieatfon neighboring phones, a
parametesharing technique called distuition sharing [29] is used to describe the cxtrtepen-

dent characteristics for the same phones.

3.2.4 Training

Bl B M

Figure 11.The topology of the phonetic HMM used in the SPHINX-3 system.

SPHINX-3 is a triphone-based HMM speech recognition system. Figure W% # basic struc-
ture of the phonetic model for HMMs used in SPHINX-3. Each phonetic model is a left-to-right
Bakis HMM [8] with 5 distinct output distriltions.
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SPHINX-3 [28] uses a subphonetic clustering approach to share parameters among models. The
output of clustering is a pre-specified number of shared distiis, which are called senones

[29]. The senone, then, is a state-related modeling unit. By using subphonetic units for clustering,
the distrilution-level clustering preides more flgibility in parameter reduction and more accurate

acoustic representation than the mode¢lelustering based on triphones.

The training procedurewolves optimizing HMM parametersvgin an ensemble of training data.
An iteratve procedure, the Baumal¢h or forvard-backvard algorithm [9][61], is empiged to
estimate transition probabilities, output distitibns, and codebook means amdiances under a

unified probabilistic framaork.

The optimal number of senonegries from application to application. It depends on the amount of
available training data and the number of triphones present in the tagkeRraining corpus and
experiments in this thesis which will be described in Section 3.3, we use 2500 senones for the
Resource Management task with 5000 training sentences, whereas we use 7000 senones for the
ARPA Wall Street Journal task with 7200 training sentences and 6000 for the Broadeast Ne

task.

3.2.5 Recognition

For continuous speech recognition applied tgdavocalulary tasks, the search algorithm needs to
apply all aailable acoustic and linguistic kiwedge to maximize recognition accuyaln order to
integrate the use of all thexieal, linguistic, and acoustic sources of Wwiedge, SPHINX-3 uses a
multi-pass search approach [2]. This approach usestimblalgorithm [72] as aast-match algo-
rithm, and a detailed re-scoring approach to the N-hgsitheses [66] to produce the final recog-

nition output.

The SPHINX-3 decoder [62] is designed upleit all available acoustic and linguistic kwtedge

in several search phases. Initiglly \iterbi beam search produces a single recognitjgrotinesis
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as well as a wrd lattice that includes avd sgmentations and acoustic scores. Thedrattice is
transformed into a directedyadic graph (AG). With DAGs, it is possible to use other possibly
larger language models and perform a much auriskarch for the besypothesis. BGs are also
used to generate N-best lists for rescoring with parameters that are empirically optiméziag- lik

guage weight and insertion penalty

3.3. Experimental tasks and cqgoora

To develop the algorithm reported in this thesis, weehaainly used the BRPA Naval Resource
Management Continuous Speech Database (RM1). This database is small enoughftor allo
bearably short train-tesyycle and yet lage enough to makcomparisons significant. The main
limitation of this database is thadt its language model is too restseti If we allav the recogni-

tion engine to ta& the language model into account, performanderdiices of dferent imple-
mentations of theacal tract length normalization algorithms considered are not discernible. In
order to obsem more clearly the ffct on recognition of thearious normalization algorithms
considered, we disable the language model for the RM1 task irxperiraents. This is accom-

plished by setting the language weight teansmall alue.

Other foci of &periments, although to a much more limitedeat, were the \All Street Journal
(WSJ) and Broadcast Ms (Hub-4 or H4) tasks. These database®ica much broader range of
spealers and speaking styles, as described. |[Btereach database, wevieacreated a single set of

gendefindependent HMMs.

3.3.1 Resource Management (RM1)

The Resource Management (RM1) corpus is a collection of recordings @nspektences per-
taining to a na@al resource management task. Subjects read the sentences from written prompts in
low background noise. The materiaasvrecorded using a Sennheiser HMD-414 headset micro-
phone and digitized at a 20-kHz sampling freqyemith 16-bit quantization. The digitized speech

data were dansampled to 16 kHz andgmented into files corresponding to widual sentence-

utterances. Most of these sentence utterances are approximately 3 to 5 seconds in duration.
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The corpus s originally partitioned into training, delopment testing, andvaluation testing
data. In the xperiments reported on this thesis, weedased the training andw#opment testing
data as training material, totalling 4797 sentences uttered by 12@spedkmale and 35 female
spealer. The test portion consists of 1600 sentences uttered by 4Cespealit of which 23 are
male and 17 are female. It contains 14968ds from a 1000-ards wcahlulary. The language

weight is 0.001 unless otherwise noted.

3.3.2 Wall Street Journal (WSJ)

The WSJ database [57] consists ofesal subsets encompassingaliént \ocahulary sizes, eri-

ronmental conditions, foreign accents, etc.

In our periments with the \all Street Journal corpus, we use thic@l speakrindependent

training corpus, referred to as “WSJO+1-si_trn”, or “SI-284", supplied by the National Institute of
Standards andethnology (NIST) containing 35776 utterances of read W&JTthese sentences

were recorded using a Sennheiser close-talking noise-cancelling headset. The training utterances
are collected from 284 spesk. All these data are used tolt a single set of gender independent

HMMs to train the SPHINX-3 system.

For testing purposes, weveused ARR 1994 CSR Ealuation H1 Hub test data [33]. This cor-

pus was similarly collected with a high quality close-talking, noise-cancelling microphone. Each

of 20 subjects produced about 15 sentences to a total of 316 sentences containiragy @.8rhe
sentences were read from articles published iargety of North American Business We Ser-

vices: Reuters Nes Service, Ne York Times, Washington Post and Los Angelesnés as well

as WSJ; all tets were dravn from financial ne's articles. The testing domain is therefore consis-

tent with the training data. hae emplged a dictionary with around 20000wls and a lan-

guage weight of 9.5. These settings are more realistic than the ones used for RML1 in the sense that

a real life system for this taskowld have similar settings.
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3.3.3 Broadcast Nes (Hub-4)

The Hub-4 corpus [27] has been recorded from broadceast siegovs, both from TV and radio
broadcasts. It consists entirely of “found speech”, that is, speech that has beeadohisdroap-
tured in actual day-to-day usage, contrasting completely with the other corpora, which were based

on speech elicited solely for purposes of speech recognition research.

Television broadcasts were reeed via cable TV netark and recorded simultaneously to both
SuperVHS video tape and digital audio tapeAD. Radio broadcasts were re@d by means of

a common high-fidelity stereo reger with a digital FM tunerAn amplifying FM antenna as
attached to the recgir to maximize receed signal strength. Distance to the broadcasting anten-
nas vas approximately 10 miles, well within the broadcasting range of the local NiP&Reasta-

tion (which reaches a radius of at least 60 miles).

The DAT recordings were played through awhshend BTLink digital audio comerter for
downsampling from the 32-kHzAT sample rate to 16 KHz and storage of the left channel only to
16-bit PCM-encoded aweform sample files. In most cases where a single broadcast episode lasted
for an hour or more, theaweform data were split into conseaati30-minute sgments for tran-

scription and distribtion.

The \ariety of conditions in this kind of task ledARPA to classify diferent sgments of each

shaw into a number of focus conditions [21], summarizedwelo

We followed two approaches for training models. In one of them we use alvtiklae data,

which is around 109 hours of recording. In the second approach, we use just a portion of the FO
focus condition containing about 8 hours of speech. The best performancevsaegitien mod-

els are trained using alvailable data. The mafation to limit training to a portion of one of the
conditions stems from the dependgmd parts of the algorithm deloped in this thesis on the
availability of speech with clean background and high fidelity development purposes, we also

limited the amount of speech twpedite training, &eping in mind that performanceould deteri-
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Condition Dialect Mode Fidelity Background
Baseline Broadcast (FO) natwve Planned High Clean
Spontaneous Speech (F1) natve | Spontaneous High Clean
Reduced Bandwidth (F2) natve (ary Mode) | Med/Low Clean
Background Music (F3)| natwve (any Mode) High Music

U

Degraded Acoustics (F4) native (ary Mode) High Speech or Nois¢

Nonnatve Speaékrs (F5) | nonnatve Planned High Clean
Other Combinations (FX — — — —

Table 1.Hub-4 focus condition definitions

orate.

The testing data were recorded under the same conditions, althoughfetteatdédpoch from the
training data. Deelopment and Ealuation test data are dedred as half an hour long blocks. No
information is preided as to where utterances start or end or who the esjgeate. Een if this

piece of information were pvided, there is no controlver the amount of speech from each
spealer. We emplged a one hour subset of the Hub-4 199vdl@pment €st data. This subset

was designed so as to reflect the amount of speech under each condition contained in the whole

Development test data. Results obtained with this subseldvthen be scalable.

3.4. Statistical significance of diffeences in ecognition accuracy

The algorithms we propose in this dissertation amduated in terms of recognition accuac
obsened using a common standardized corpus of speech material for testing and training. Recog-
nition accurag is obtained by comparing theovd-string output produced from the recognizer
(hereafter referred to as thegdothesis) to the wrd string that had been actually uttered (hereafter
referred to as the reference). Based on a standard nonlinear string-matching programr¢b3], w
error rate is computed as the percentage of errors including insertion, deletion and substitution of

words.
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It is important to kne whether ay apparent dference in performance of algorithms is statisti-
cally significant in order to interprexgerimental results in an objeai mannerGillick and Cox

[23] proposed the use of McNemmitest and a matched-pairs test for determining the statistical
significance of recognition results. Recognition errors are assumed to be independent in the
McNemars test or independent acrossfaliént sentence gments in the matched-pairs test,
respectiely. This assumption implies that the McNermsagst is meaningful only if the errors are
sufficiently far from each othePiconeet al. [59] also adecated a phone-mediated altermatio

the cowentional alignment of reference angbbthesis wrd strings for the purpose of analyzing

word errors. NIST has implementedsresl automated benchmark scoring programsvatuate

statistical significance of performancefdiEnces between systems.

Many results produced by dérent algorithms do not dér from each other by aew substantial
maigin, and it is to our interest to kwavhether these performancefdiences are statistically sig-
nificant. A straightfonard solution is to apply the NIST “standard” benchmark scoring program to

compare a pair of results.

In general, the statistical significance of a particular performanceampent is closely related to

the diferences in error rates, and it also depends on the number of testing utterances, the task
vocahulary size, the positions of errors, the gramraad the range ofverall accurag. Neverthe-

less, for the RM1 task with the SPHINX-3 system, a rule of thumb wedizsered is that perfor-

mance impreement is usually considered to be significant if the absolUeratice in accurgc
between tw results is greater than 3%orRhe other databases, the rule of thumb we obddsy

that an absolute ddrence greater then 1% is significant. Wiven¢here vas ary doubt about sig-

nificance of diferences in results, wev&used the scoring program piced by NIST

3.5. Conclusions

In this chapterwe reviewed the werall structure of SPHINX-3 that will be used as the recognition

system in our study\e also described the training andleation speech corpora that we engplo
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to evaluate the performance of our algorithm in the feifeg chapters. The primaryehicle for
research of this thesis will be the RM1 1,126rav4797 sentences training corpora from which a
single set of gender independent 2500-senonic HMMs will be constructed, together with the 1600
sentenceswvaluation test data. The other databases we will gmalthough to a lessextent, are

the WSJO+1 and Hub-4 corpora.
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Chapter 4
Vocal Tract Length Spealer Normalization

4.1. Introduction

Spealer normalization through aakping function can be thought of as a mapping between tw
spectra. Speak normalization techniques deal withotwroblems that are dérent in nature. One

of them is hav to model this mapping, i.e., Woto choose a generic mathematical description
relating two spectra. The second problem isiegi the function, he to choose the parameters that

uniquely define the mapping betweerotparticular spectra.

Mathematicallywe can see the problem of defining a speakecific varping function as the def-
inition of a cune on a plane whose ex are the frequepncscales before and aftetawping. VW
approach this problem by defining points on this plane and fitting a tmttese points as in Fig-
ure 12. The problem is therefore restricted to choosing the points and what kindeotfocuse to

fit them.

Unwarped Frequeryc(Hz)

Warped Frequeryc(Hz)

Figure 12.Warping function is chosen by defining points on a plane and fitting a tarv
the points.

The speakr dependencobviously lies in the choice of points. 8\efine these points based on
acoustically-related features, diKiormants and high frequgnparameters. ¥/ compute histo-

grams of distriitions of these features and enypkiatistics computed from these histograms in
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the definition of the prgéously mentioned points. Initially we empl@ach parameter separately to

analyze their possible inddual benefits to speech recognition performance.

Thereafterwe study some aspectvatved in the combination of features. These aspects are the
choice of what features to combine anavtto weigh them so as to achéethe best combination.

The problem of choosing what features to use can be interpreted as a special case where the
weights are 1 or 0 depending on whether the feature is utilized or not reslgeltibnetheless, we

treat the choice of features and their weighing separaédystart with adirly large number of

possible features, select a possibly small number of them, and determine weights for this final set.

Given a set of points with respeiweights, wedce the problem of moto fit a cune to them.

Linear reggression is a peerful tool for this purpose. Linear,anore genericallyaffine functions

can easily be found to fit the mentioned points. Nonlinear functions can be mapped to another
space where points along the nonlinear ewan be fitted to a straight lineeWtudy some possi-
bilities and analyze the influence offdifent choices of cues on the performance of the recogni-

tion system.

A crucial point in the estimation of theawping function is the definition of points based on acous-
tic features, which arexracted from formant distriliions. There is an inherent dependeoc a
formant trackr. This dependencaffects the werall performance of the algorithm in terms of

computational cost and reliability

Computational cost can be reduced by defining a small number of classes efspadiperform-
ing normalization based on these classes instead of on asppakific basis. W examine the
extreme case where these classes are thgénders. The cost of classifying an utterance &s ha
ing been spadn by a male or female spesks much less than that of estimating a speskor-

mants.

The reliability of a formant tragk can be &cted by the quality of the recorded speech. The pres-
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ence of disturbances, such as noise, music, or concurrent speech, can undermine the estimates of
formants. Limited bandwidth can easily mislead the formantéraicko picking the wrong peaks

of the spectral erlope. If, havever, we hae high-quality speech recorded by a speake can

estimate formants taking aavtage of these gments of speech alone.eVétudy the xdent to

which our algorithm can still be empied for normalization in this scenario where both clean and

noisy speech arevailable from a speai

In this chapter wexglore the issues outlined in this introductiore Wamine the décts on rec-
ognition accurag of the shape of the awping function, the features used to define thepimg
function, and arious computational simplifications. Akgeriments reported in this chapter reak

use of the Resource Management (RM1) database described in Section 3.3.1.

4.2. Speakr normalization methods proposed by other authors

In this section we present recognition results obtained with spe@kmalization methods pro-
posed by other researchers. These methods were described in Chamqurasiit recognition
results on the Resource Management (RM1) databasaldeZTl Notice that these implementa-
tions are our implementations of algorithmseleped by other authors. Our implementations dif-
fer from WWegmannet al in the shape of theaping function and thediffer from Eide and Gish in
the parameter used to define tharming function. SpecificallyEide and Gish use the median of
the third formant F3, whereas we raqperiments using the medians of the first three formants. In
fact, our vork differs from the one carried on by Zhan andstghal in that theuse means instead

of medians.

These results seem to confirm results obtained by Zhan astphdl in the sense that the best
result is achieed when selecting avping functions based on maximization oklikood. More-
over, these gperiments seem to slahat the linear warping function, besides the appeal of sim-
plicity, which brings about lesser cost, alsovies the best benefit. A linearawping function

seems to capture most of the information necessary tovackpea&r normalization.



Chapter 4. Vocal Tract Length Speaker Normalization 40

Our implementation of method originally byWER

Baseline 38.0

Wegmannet al. with nonlinear function | 35.1

Wegmannet al with linear function 31.2
Eide and Gish using F1 37.3
Eide and Gish using F2 33.0
Eide and Gish using F3 34.5

Table 2.Word Error Rate (WER) on Resource Management (RM1) for our implementation of
some normalization techniques presented on thewe

Results based on Eide and Gssibrk also seem to indicate that we caingoy eploring differ-
ent choices of parameters. It has theaatlyge of not requiring an itenadiprocess in the definition

of the warping function, thus being a simpler process.

In the remainder of thisevk, we will explore these ta dimensions: diérent shapes and tifent

parameters defining aanping function.

4.3. Issues elated to shape of the waring function

As mentioned in the introduction to this chaptee define points on a plane whosesare the
frequeny axes before and afterasping. The warping function is a cus/fitting these points. The
coordinates of these points are defined according to sps@adcific acoustic features, such as sta-
tistics extracted from distribtions of formants. \& search for a best combination airping func-

tion shapes and acoustic features by choosing a set of features, testinfefentd#hapes of
warping functions, and choosing the best set of features according to the resulting best shape of
function. Iterations of these steps might be performed as needed. Therefore, the first step in this

iteration is the choice of a set of features.

We hare chosen to use the medians of the three first formants as the features defining points on the

plane. No assumption is made of the optimality of this choice. Some other authors [1AIEF7] ha
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used medians of formants as the guiding acoustic features in tr&s, Wuggesting that medians

are a good choice at least for an initial approach toxperenents.

After we define points on a plane, we attempt to find a function that uses those points as con-
straints or guidelines. ®/male a distinction between interpolation and fitting of points. When we
interpolate, we end up with a certhat necessarily contains the points, as if we utilized a data-
driven method to find a function. When we fit a @uto the points, we use a model-based
approach: we ha a model for what theawping cure should be in the form of a mathematical
description, and we find the parameters of this model so that theedife between the mode¢,,

the warping function, and the data is minimal.

When interpolating points, we are completelywen by data, so it maks no sense to impose con-
straints on the shape the final function wilvbaA simple pieosise-linear cure connecting
points has been used in oxperiments. The number of points changes only the coarseness of the

interpolating cure.

As a matter ofdct, we can takthe idea of interpolation to arteeme and define a @ amount

of points on the plane, so the interpolation can be as refined asameis lage amount of
points can be chosen based on aeresion of hw we previously defined medians andteemal

points: mapping points that defingiens of equal areas in the histograms of formant frequencies.
Therefore, we can slice the histograms into, $89 pieces, corresponding to thdetiént percen-

tiles. These percentiles will define 101 points on the plane which will be interpolated defining the
warping function. The resultingamping function maps gions of equal area of both disuiibns

and is referred to as “Equal areaanping function in follaving sections.

When using a model to fit to the data, though, the restrictions on the shape become important.
Vocal tract length studies [19]V¥&shavn that for some phonemes, the formants arersely pro-

portional to the gcal tract length, that is, formant frequencies for some phonemes depend on the

inverse of the ecal tract lengtH . Some phonemes thoughvhaa dependegawith powers ofl .
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This suggests that a lineaakping function might be a good choice for spratormalization, bt

the use of nonlinear functions might lead &ng.

Regarding the linear function, there are still sormgeasions that can be applied. The linear func-
tion y = ax can be used,ub the afine functiony = ax + b can also be empfed. This choice

would imply we do not impose constraintgaeding whether the arping function maps the fre-
gueng 0 Hz to the frequencO Hz. Intuitively this constraint sounds appropriatat e do not

have experimental gidence to impose it. An alterned would be to use the fafe function with

the additional condition that the origin will be one of the points in the collection of points we use
to fit the line. This additional condition represents and intermediate solution between the linear

function and the #éihe function using merely the acoustic features.

We hare not imposed constraints on the choice of nonlinear funckoepé that it should be
monotonically increasing. It does not neagense to mapwofrequencies to higher frequencies
while mapping the high frequencies tevier ones. The monotonicity can be justified on tigyelar

ment that we do notant to map tw different frequencies to the same one.

In speech recognition, we traditionally emplearping cures based on studies from speech per-
ception. These studies, especially the concept of critical band, led to the use of the mel and Bark
scales. W reasoned that thisanping can be thought of as a mapping from a generic sptak
standard speak We selected arping functions that approximate or resemble these functigns b

which can be completely defined with avfparameters.

One such a function is the normalide obtained in the conteof “receiver operating character-

istic” (ROC) or “isosensitiity curve”. In this contgt, if we are gien two sources which generate
signal with a Gaussian distttion, the ROC cune, which relates the probability of detectiBy,
to probability of filse alarmP, has a shape that fits the criteria describediquiely. Moreover,

when this cure is transformed from the linear coordinate system to a normiteeoordinate

system, the resulting@®C cune is a straight line. The transformation from the linear coordinates
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(Pg, Pp) to the normal-déate coordinate§Z, Zp) is defined by:

Z:

P = J’ exp Bjx (16)
Zs

Pp = I exp ij a7)

The straight line defined by the coordinaf#s:, Z5) can be defined in terms of a paraméer

and the means an@nances of the tavGaussians as:

—C

ZF = (ulo_—l) (18)
C

Z, = (Ilzcz ) (19)

In the cont&t of speakr normalization, we arexgn speadr specific features and we fit a celte

these points. Considering the normalddée transform, we transform the features to the normal-
deviate space, fit a straight line to the points in that space, and map points along this line back to
the linear system to find theawping function. The same idea of mapping a nonlinearectgv

another space where this cerg linear can bexéended to other cues.

We hare benchmarkd the shapes described in this section using the medians of the three first for-
mants as the speakspecific features. Results are presentedabieT3. Notice that as mentioned

in Section 3.3.1 we lva used a ery small language weight which essentially disables the lan-
guage model. The reason behind this choice lies iratttdtfat the language model for this task is

so constrained that difrences between implementations cannot be assessed.

All dif ferent implementations ofavping function result in impk@ment compared to no normal-
ization. Morewer, differences between implementations are not statistically significaat iEv
the shape of theavping function implies a countartuitive transformation, li& the mapping of O

Hz to nonzero, the specifics of the shape seem to bevanelé\s diferences are not significant,
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Warping function Datapoints WER
Baseline — 38.0
Affine (y = ax+b) Medians 31.1
Affine (y = ax+b) | Medians + Origin| 30.7
Linear (y = ax) Medians 31.1
Normal-deviate Medians 30.7
Equal Area Percentile 30.4

Table 3.Word error rate (WER) for normalization using the medians of the three first formants
several diferent shapes of avping function. Normalization isfetctive, kut differences in
implementation do not seem to be vealet.

we can ma& no claim as to whether this constraimud bring dgradation or impreement. If
the particular shape is not important, weviobsly choose the simplest function, the linear func-

tion, in most of the remainingperiments in this thesis.

4.4, Formant-based featues

As pointed out in Section 2.2, formants areeayvimportant cue in the identification ofwels.
Motivated by thisdct, we sought to achie normalization by the use of featuredracted from

formants. Statistical measures were ery@tbfor mathematical simplicity and practicakftality .

Means are the simplest and most straightfwsdvmeasure we could nmalof a distrilntion of
points. In the conté of speakr normalization through aagping function, though, tigemight not
make much sense. If we attempt to map distitns of formants using aasping function, the
mean is most ligly not going to be mapped correctiynless the arping function is an &he

function [54], due to the linearity of themectation operator

Medians represent a naft statistic of a set of data. Its estimate is lefext@fd by outliers than
means, for xample. Morewer, we intend to map betweenadvdistritutions of formant frequen-

cies. The use of a median point is a good first approximation for this mappingayping, pro-
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vided it is monotonically increasing, will map the medians of the digiobs onto each other

based on the definition of medians.

Extending this idea of medians mapping to medians, we also chosdrdraa points of the dis-
tribution as features to be mapped. In the estimationxtoéraal points, the presence of outliers
would be deastating. © cope with thisdct, we made use not of the minimum or maximum points
themseles, lut of points defining the 5% and 95% percentiles under the assumption that the mea-

surement of areas is less susceptible tofeetatl by meericks.

4.5. Non-brmant-based featues

Formants that can be consistently estimated, that is, the first three or four formavitse pro
enough information to define theayping function in the frequepcange from 0 to around 3H.

Most of the speech used in thgeriments reported on this thesiasassampled at 16 kHz, ptid-

ing us with signals whose spectrum ranges from O to 8 kHz. The range from 3.5 to 8 kHz goes
unattended. As we intend to use spEapecific features to constrain and define theping func-

tion, we fice the problem of oto handle frequencies in this range.

Formants are essentially awel-like-phonemes characteristic. Fricates hae spectra that resem-
ble white or colored noise in a range that usually gogsrite4 kHz. The could therefore prade

us with features in the range noweced by formants.

The problem of what measures to use arisagnag\th fricatives, there is no clear peak in the
spectrogram as in the case of formantsavel-like phonemes. Heever, the spectra of fricate

sounds resemble a Gaussian-mixture distidim. \e male use of the mathematical description of
the spectrum as a distution for modeling covenience, without rigorously imposing all con-

straints the concept of distution would require.

The fitting of a mixture of Gaussians to the spectrunwallos to gtend the idea of formants to

fricative sounds. Instead of the peak of the spectredlepe, we collect at each frame the mean of



Chapter 4. Vocal Tract Length Speaker Normalization 46

each Gaussian component, or at least the means located in a high fyequngec If we utilize

only one Gaussian, wefettively compute the center of mass of the spectrum of a frame of signal.
If we male use of a mixture of twGaussian components, we discard the smaller one, and so on.
We then estimate the distution of these peaks, or of the means of Gaussian components. Statis-

tics from these distriltions are the high frequenéeatures.

4.6. Features in isolation

Although we hae complete freedom to choose features, we should not do so bhndiyevs et
al. [3] report on an attempt to select features mechaniddily authors désed a method to auto-
matically select features from adarnumber of randomly chosen ones.ylfeport this approach

was a &ilure, and advise to use intuition as a guide on the search of features.

In the preious sections, we mentioned the reasons for choices of the parametgpevimented

with. In a first attempt to try to understand their importance for gpeskmalization, we studied

the separate benefits of using each feature sepaiataly attempt to once aigp assess the rele-
vance of the choice of the shape of treping function, we ha used both a linear function and a
normal-deiate cure. Notice that if we use only one feature at a time, we define only one point on
the plane where theasping function is to be defined. Therefore we need to impose further con-

straints at least for the normalvitte cure. For this cune, we further require the normalviiate

curve to be symmetric around the diagogak 1 —X. Recognition results with inddual fea-

tures for both the linear and the normalidée cure are presented omfle 4.

Some of the numbers presented in the table ang alose. Brticularly for these numbers, it is
important to consider statistical significance. As a rule of thumb, wedizsered that diferences

in word error rates around%® can be considered significant. This empirical rule is based on our
obsenration of results of the matched pairs test appliekpe@ments on RM1 in the same condi-
tions as the »geriments reported in this section. Matched pairs test, whachused whemer
there vas an doubt about significance in imp@ments, is a more precis@ayto male pairwise

comparisons that tekstatistical &riations into account. Similarly to other statistical significance
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Warping function

Feature Formant| Normal-
Linear .
deviate
Baseline — 38.0
Maxima fl 45.1 43.7

f2 43.4 45.8
f3 43.8 46.9
Median fl 36.3 35.3
f2 29.5 30.7
f3 325 33.2
Minima fl 40.5 38.7
f2 35.2 34.2
f3 34.1 34.9
Mean fl 36.1 35.3
f2 30.1 30.9
f3 33.7 34.0
High Frequeng #1 38.3 37.9
#2 37.2 36.6
#3 36.9 36.4

Table 4.Word error rate (WER) for normalization emyilog linear and normal-déate-based
warping functions defined by features used separd&gperiments on Resource Management
(RM1). Baseline implies no speaknormalization performed atyastage. Otherwise,
normalization is applied to training and testing data.

tests, it requires analysis of where the errors occur and whether both systems produced the same

kinds of errors, as mentioned in Sect®4.

Firstly, we can re@anize the table abe in order of relatie benefit to performance in terms of
word error rates. Wthout regard for the absolute numbers, we sorted the results fabie B to

produce able 5. Features which are not statistically significant according to the matched pairs test
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[23] are grouped together

48

Order Linear Normal-deviate
Best Med F2 Med F2
Mean F2 Mean F2
Med F3 Med F3
Mean F3 Mean F3
Min F3 Min F2
Min F2 Min F3
Mean F1 I\I<I/|eeacljnFFll
Med F1
HF 3 HF 3
HF 2 HF 2
HF 1 HF 1
Min F1 Min F1
Max F2 Max F1
Max F3 Max E2
Worst Max F1 Max F3

Table 5.Isolated features sorted by WER. Features in the same cell do not present statistically

significant diferences.

The relatve position of features is essentially the same for both the linear and nornaaé-de
based warping functions, although these functiongséntairly dissimilar characteristics. One is lin-

ear and unconstrained on the upper end of the freguange. The other is nonlinear and bounded
both at the origin and at the Nyquist frequenthe lagest dissimilarity appears when we use
maximal points to define theanping function. Buten in this case it might well be the case that
differences arise because the maximum of F1, which is “out of order”, just should not be used at

all.

We hare attempted to relate the order of features foundadaeTs with the distriltions of slopes

produced by these featurese\Ware measured distances between distiiims of slopes grouped
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by genderWe hare assumed these distitions to be Gaussians. Distance between the distrib

, , : 2 2.
tions with meangl, andp, and \arianceso; andd, is given by

D = H1—Hp

911 9r
0 5 C

(20)

We have computed the distance D for slopes produced with each of the features preseatdd on T

5 and plotted the results on Figure 13.

Figure 13 clearly displays a relation between the distance between theitiistsland the relat
importance of the feature. This relation is to kpeeted. A smaller distance implies either that the
means of the distriltions are closer or that thariances are lger. In either case, the disttiions

will have a lager overlap, meaning that there are more spemakeing varped in the wrong “direc-

tion”.
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Figure 13.Distance between distritions of slopes according to gender foresal fea-
tures @amined in this section. §\tan see a clear relation between the best features and a
greater distance between distrions.

The fact that medians and means tend to be better than the minimal points, together aith the f
that statistics of F2 and F3 tend to be better than those of F1, alscedatsemtion. Extraction of

formants is an errorful process. Mapping of areas, as is the case with medians as weltevith e
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mal points, according to the definitions we usedyailtes this draback. Nonetheless, the defini-
tion of the varping function might be muchfatted by bad estimates. Wever, the frther the
feature is from the origin, the less influence errors in its estimation wel txa the varping func-

tion, provided the varping function is forced to include the origin. If we err by the same amount in
the estimation, sawf the minimum of F1 and the median of F3, this error causes a gréater ef

on the varping function estimated from the former

Our findings that medians of F2 and F3 are among the best features confirm the choice made by
Eide and Gish [17], who used the median of the third formant as the guiding parameter in their
definition of warping function. Havever, we should point out that their selection of featuss w

based on other criteria, and tharping function the use also has a tifent shape. Eide and Gish

chose the median of F3 because this formant has the kr#sion across dérent phonemes
uttered by a speak thus making its estimation more reliable. Their choice arfpimg function

was described in Section 2.4.3.

Zhan and Wstphal [77], on the other hand, found slightlyedifig results. Thehare attempted to

use both linear and nonlinealaxping functions, as described in Section 2.4.3. Their choice of
nonlinear function w&s based on Eide and Gshiork. For both linear and nonlinear shapesythe
reached the conclusion that the mean of the first formaattihe most &ctive in performance
improvement. Thg in fact report that the second formant brings about a deterioration in perfor-
mance. In ourxperiments, we found that the mean of the second formarksvbetter than the

third, and both wrk better than the first. &\still found that, when used in isolation, the median
seems to pnide a better feature than the mean. In either case, using medians or means, the

improvement achieed with the second formant is the best, and with the first, it isdhg.w

4.7. Combination of featues

In this section, we study issues related to the combination of features. If we combine the best fea-
tures from the prgous section, that is, the best features considered sepavetadye not guaran-

teed to achie the best possible result. Other combinations of features could result in a better
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performance.

We eplore two issues related to combination of features: what features will be used and what
weight we will assign to each of themeVéplore the tvo issues with the same approache W
compare estimates of slopes based on uni-dimensional and multi-dimensional Gmessioa

and dene weights from this comparison. @busly, we need somex&a information rgarding

the slopes so we can estimate the weighis.adsume we kmothe optimal slope for a set of

spealers in terms of recognition performance.

Uni-dimensional linear gression gies an estimate of the slope of a linear function that best fits a
set of points on a planevgin the coordinates of these points and corresponding weights. All these
pieces of information refer to one particular sealdowever, the weights and the features of the
standard spe&k are common to all speatis, which suggests we can estimate the slope of the

spealer’s warping function from the speakspecific features alone.

Multi-dimensional linear rgression gies an estimate of the parameters of a linear function where
the independentariable is multi-dimensional. In this cortgthe set of speak specific features is

the independentariable from which we estimate the slope of tlerping function. Each speak
defines a point in this space. A set of spealdefines a “cloud” of points that we model as a
straight line whose parameters we find with multi-dimensional linegression. W assume
knowledge of the best slope of theasging function for each speakin this set. A comparison
between the slope estimate from this multi-dimensional model and the uni-dimensional estimate

allows us to find the optimal set of weights.

The slope of the bestagping function for each spesikis determined byxbaustve search. From
the results of this procedure, we find the weights, common to allesgedlev spealkers will use
the same set of weights, thus precluding the need fofuatiner search. Morer, search ver a
coarser grid of &lues, which reflects in quantization errors in the multi-dimensional lingiaasre

sion space, will not he such a dramaticfett in the weights.
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In this section we present a detailed study of the issues raised in this introduction.

4.7.1 Selection of features

In this section, we present a method for selection of featuves @i lage set of features. This
method taks into account recognition results as a criterion, although indir@élgonstrain the

set of weights of the lineargeession to be either one or zero for each feature. Each combination
gives an estimate for the slopee\&brt the combinations according torhclose thg are to the

best slope, thus obtaining an optimal combination for the set ofesgeak

In general, gien a set of features chosen with arbitrary criteria, we need to select some of them so
that their combination will be optimal for recognition purposes. If we just consider recognition
results of features tak separateJywe might be misled into belizng the combination of the best
features will bring about the best combination. It might be the casexdompde, that the separate
features lead toery similar varping functions for all speaks, @en though this arping function

might not be optimal for anspeakr. In this case, weain nothing from their combination.

The two main techniques to select features from a set of arbitrary ones are essentially complemen-

tary ideas. In one of them, the so called knock-out method [64], performanetuisted for a sys-

tem using allN features togethemhen, performance ivaluated for each combination bf— 1

features, that is, each feature is discarded at a time. The feature which causegddssiatein
performance is eliminated. The process is repeated until there is one feature left. The last feature
left is the most influential and the first one rem is the least important. Besides, combinations

have been xamined with diferent numbers of features.

The other method, named add on [24], starts with separate features. Each feature is combined with
the best one in turn, and the best combination is selected. The process continues, eacli-time gro
ing the set containing the best combination by on@imgombinations with all numbers of fea-

tures hae been gamined.
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A weak point of these techniques is that both of them presume that the optimal set of feature is a
subset or a superset of the current optimal set. Soxdon@e, if the best set of features with three
elements contains the features A, B, andud tle best set with twelements contains the features

A and C, neither of the methodswld find these solutions.

If we consider performance of a systergareling speech recognition, we are of course consider-
ing word error rate. As we need tragnine seeral combinations of features, it implies werd&o
run several passes of recognition. This approaculd be &tremely &pensve. Instead, we adopt

a simplified approach.

According to our gperiments reported in Section 4.3,felient shapes of thearping function

result in statistically insignificant ddrences in recognition performances. Therefore, weernak
of the simplest choice, the linear functign= ax. The use of this function implies that we only

need to find one parameter for each spedke slopea.

In order to find the best combination of features, we will assume we #reoslope of the best
warping function for a set of speak. W will then minimize the diérence between this best

slope and the ones obtained from a linegrassion estimate when wary the weights.

Given a set of featurds(X,, Y, )} and corresponding weigh®,, the slope of the arping func-

tion can be estimated by lineagression as:

Z XY Wi

Z XiWk

If we pool together all of the chosen features, we can setWgctuccessiely to 0 or 1 and com-

A

a= (21)

pute the estimatd' for each speat i . We knav the best slopelI for each speadt i, so we can

easily compute the dérence:
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5 (@ -a)’ 22)

|
for all combinations of the finite s{eWk|Wk =0,1,k=0,1,2,...}. Notice that the criterion

imposed by Equation 22 ixa&ctly the same imposed by the lineagresssion formulation. There-

fore, this method can be interpreted as a special case of the method presented on Section 4.7.2.
However, the set of features might be agjaas the set of speak. An analytical solution euld

be compromised, since weould be attempting to estimate agarnumber of ariables from a

small number of data points.

Setting the weighWW, successiely to 0 or 1, we computed the squared error and found the best

combination for the RM1 taskas achieed using the minimum of F1 and the medians of F1 and
F2. We tested for the optimal combination inotywartitions of the test data (nweslap of speak-

ers), and this combination and sonaiations of it (adding or not the mean of F1 fgample)

were among the top 5 (out 6118) for both partitions. As a comparison, we ran recognition results

for the combination of the 2 and 3 best features accordingltie #. The results are summarized

on Table 6.

Combined Features WER(%)
Baseline 38.0
Min F1, Med F1, F2 29.4
Mean F2, Med F2 30.1
Mean F2, Med F2, F3 30.7
Med F1, F2, F3 31.1

Table 6.Recognition results for combinations of features. The first set (combination of minimur
of F1 and medians of F1 and F2aswselected based on least squared error; the second and thir
sets (mean and median of F2; mean and median of F2 and median of F3) are combinations of
two best and three best features when used in isolation; the final set is a combination of featur
selected intuitiely (medians of F1, F2, F3).
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Results from &ble 4 on pagé7 confirm results from Eide and Gish in that F3 is a good parame-
ters for the definition of the avping function. Haever, our current results shothat when we

seek a combination of features, the best choice might liwledse.

4.7.2 \\eighing of features

The use of ariances as weighingdtors seems intwit because if the feature has a biggai-v
ance, its estimate is less reliable, and therefore its weight should be .skaltee &ct that a fea-
ture has a smalleraviance does not necessarily mean it is more important from a speech

recognition standpoint.

To estimate proper weights, we introduce a method utilizing Multi-Dimensional Lingae$&®n
(MDLR). As mentioned in the introduction to Section 4.7, we will compare the estimates of slope

using uni-dimensional and multi-dimensional lineagression. In the uni-dimensional perspec-

tive, lets assume we kia chosen the arping function to be a linear function = ax, and we
want to find the slopexai for speakr i based on the featuré'sL, k=123, ..., and corre-
sponding weight&V,, k=123, ..., thatis:

a = f(FLFY ... W, W, ..) (23)
where the superscriptindicates a measurement for spaak Notice that the set of weigh®,,,

k = 1,23, ..., is the same for the entire set of sprak

Given the best sIopai for speakr i (for example, found because we performed ghagstve
search of parametees), we can find the weightd/, which would yield the best estimatéé of
each slopeii by minimizing the difierence betweef:li and ai in the least squares sensee ¥én

find the weights/V, based on a subset of speek and use these weights for all speslafter-

wards.
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In the multi-dimensional linear geession perspewi, we model the slope of theamping function

as a linear combination of speaispecific features. &\thus find a model that prides an estimate

A

of the slope so that the flifence between this estimae and the best slopiaeI is minimal in the

least squares sense for a set of spesak

Mathematically let X, be thek-th feature for the standard spealandy, be the corresponding
k-th feature for one particular speaikwith corresponding weight#/, . The dependegdetween
X, andy, can be modeled by the functigh= ax on the plangX, y), where the slopa is

given by:

Zxkykwk
inwk

Applying the normalization constraint for t{&V, } :

a= (24)

2

inwk = Zxk (25)

X, W3 X, W, X3W3
a= 5Y1 >Yo ¥t SY3t .. (26)

P gne x

On the other hand, if we kmothe slope of the bestarping function for a set of speak ut we

we can revrite Equation 24 as:

do not knav the weights, the slope can be modeled by multi-dimensional ling@seton as a
function of the multidimensionalaviable yi = (yil, yiz, yi3, ...) for each spead i of a set of

spealers. MDLR finds the co&€ientsy, of the model:

a = Y Y+ VoYo +VaYat - (27)

If we compare equations (26) and (27) and equate, we get:
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X:-W.
Vi =5 (28)
Zx

which is easily solable foer. We can re-normalize the weights at will.

~ NI—

This technique usually yields weights that are seemingly inconsisteriieli@e this is the conse-

guence of finite precision in the compuserépresentation of real numbers. Figure 14 presents the

0.9r b
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Figure 14.Contour plot of the error between estimated and measured slopes as function of
combinations of W, W,, W5 (which add up to 1). Points in the central ellipse might be

indistinguishable due to limited precision.

contour plot of the errorthat is, of the summation of squaredfafiénces between the slopes
obtained by ehaustve enumeration o and the ones estimated using the set of weights for a

range of weights. Each point in thé, x W, plane represents a combinationWwf , W,, W.

The \alues ofW; andW, are talken directly from the coordinates. Thalwe ofW; is so that the

weights add up to 1.

The error in Figure 14 is minimum at the central ellipse and increasasd®the edges of the

plot. The error at theertices hae values which are consistent with the findings ahl& 5, that is,
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this error is lagest atW,; = 1, decreasing foW; = 1 and decreasing more f&W, = 1.

Table 5 indicates that the best featurestai isolation is the median of F2 folled by the medi-
ans of F3 and F1. A feature in isolation corresponds to setting its weight to one and the other

weights to zero.

The central ellipse in Figure 14 represents points thateageclose to the absolute minimum for
which the error function does noary much. Limited precision in the representation of floating
point numbers prents us from finding this minimum. On the other hand, points in thisrr@ro-
duce squared errors close to 0.02 accumulated 40 speadrs. The errgras mentioned pve
ously, is the diference between slopes measured inragstve search and slopes estimated
from a set of weights. If we compare thisfeliénce between slopes with a typical slope, around
1.0, we can see the error aygoint in this rgion as well as the ddrence between errors at dif-
ferent points in this ggon are both ery small. If the diierence in error is so small and if the error
itself is so small, the estimated slopes, no matter which point we use ingibis, neill be \ery
close to the best slope for each speakhis closeness reflects in nofdience in wrd error rate

for points in a rgion around the absolute minimum.

4.7.3 Experiments uolving optimal selection and weighing of features

We hare run eperiments imesticating the dicacy of MDLR in finding weights as opposed to

other more “intuitve” choices of weight for diérent combinations of features e\ised the com-
bination of minimum of F1 and medians of F1 and F2, which according to our findings in Section
4.7.1 preides the best performanceeWlso used a combination of the medians of F1, F2, and F3,
because median has become a popular choice of measurement because of its statistiedsob

to outliers. In &ble7 we present results for some choices of selection of weights. ditpengy
function is a linear function. Experiments were performed on Resource Management, as described

in Section 3.3.1.

MDLR involves the computation of weightssgn the best slope of a lineaasping function for a

set of speadss. In the wperiments reported in this section we used disjoint sets of exsett
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estimation of weights and for recognition tests.

59

Combination of features

Weighing method| Med F1, Min F1,

Med F2, Med F1,

Med F3 Med F2

Baseline 38.0

Equal weights 31.1 29.4
Inverse of ariance 31.1 33.6
MDLR method 29.7 29.5

Table 7.WER for normalization using dérent sets of weights. The weights were chosen to be
equal for all features, thevarse of the ariance of each feature, and based on MDLR.

According to the matched pairs test, théedénce between MDLR and the other choices is statis-
tically significant for the combination of medians of F1, F2, and EBtHe diference between
using MDLR and using equal weights is not statistically significant for the combination of mini-

mum of F1 and medians of F1 and F2.

Although the result for the combination of minimum of F1 and medians of F1 and F2 might seem
disappointing, we hee to consider these features were already selected as an optimal combination
using &actly the same criterion as the one used to find optimal weights. These results indicate that
we can achie improrements in performance if we select a combination of features based on a
guantitatve optimization criterion it might as well achi® a comparable impvement if we

select a combination based on qualiitieasons and optimize the weights so as to minimize

errors in the estimation of slopes.

4.7.4 Exhauste search

In this section, we describe the method used to find the kmping function for a speak
exhaustve search of slopes, as well as report xypeements sh@ing howv this method can be

affected by limiting the search space.
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When performing anxbhaustve search, we select a number @ifrping functions, \arp utterances
by a speadtr according to each of these functions, and selectahgng yielding best recognition
performance as the besamping function for the speak The precision of the set of “best” slopes
of course depends onwanary points we initially chose to search. It isvadusly a costly opera-

tion, since we need to perform recognition for asyrelopes as we ka selected.

As an attempt to decrease this cost, we can choose a coarser giigeef Yhe search results in a
set of “best” slopes subject to much greater quantization errors, because we s&aachparser
grid. A finer grid certainly results in better performanad, we epect the weights we find with

MDLR not to be much &cted by a coarser search space.

In order to erify this claim, we hee run &periments comparing the recognition results we obtain
with the exhaustve search wer a grid of 21 points and another sparser one of 5 poigshg
employed MDLR to find weights from sets of “best” slopes estimated with each grid. Results are

reported on able 8.

Points in the grid Exhaustve search MDLR

21 28.3 29.7
5 29.7 29.9

Table 8.Comparison of the influence of the coarseness of indilales on the estimation of
weights. The xhaustive search presumesgadlability of transcriptions. The estimation of weights
was performed using a set of spei@knot used for test. A coarser grid results in no deterioration i
performance for MDLR.

As expected, the recognition result for a sparser grid resultedynadation in performance for the
exhaustve search. Hoever, the use of a coarser grid with MDLR results ioréverror rates which
are not statistically significantly dérent. A finer grid implies a higher computational cosithw
MDLR, one can search a sparser grid withogrddation in performance. Therefore we do not

need to incur in more computational cost.
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Moreover, MDLR allows us a complete independence between the set ofespadhkere the initial
exhaustve search is performed and the set where recognition is to be performed. Eghausti
search by itself requires\aral runs of recognition on the test set, or at least some sort of maximi-
zation of likelihood wer sereral warped instances of each utterance in the test set to be performed.

MDLR allows for a much simpler scheme of normalization with sliglgrai@ation.

Regarding the results onable 8, the wrd error rate relate to exhaustve search has the addi-
tional constraint that the best slope for each sgrea#ts selected based omnd error rate, which
implies knavledge of the transcriptions. Of course this is not a realistic assumption, because if we
know the transcriptions there is no need for recognitiorwdder, these numbers can be consid-
ered as the best case, that is, the numbersouthwbtain if the selection of slope for each speak

was perfect. The numbers for MDLR on the other handviolorealistic assumption that tran-
scriptions are notvailable for the test set, whereasytineed to beailable for some deslopment

data where the “best” slope for each speak to be found.

Yet exhaustve search seems to pide guin over MDLR, at least when a finer grid is used for
search of the optimum slope. The question arises as to whether MDLR could realize the same

potential of the ¥haustve search. W hare examined the slopes generated by linegrassion

when we wary the set of weight¥V/,, W,, etc. for some speaks. The solution we find with

MDLR corresponds to one point in this spacarnihg the weights, we can seexhmuch \ariabil-
ity we can obtain for the slopes and therefore lpotentially diferent the solutions found with

MDLR will be. We plotted the slopes across weights for a typical sgeakFigure 15.

We can see from this plot that the slope does agt much in this space. There is soraeation
which provides the impreement produced by MDLR ubnot as much as to potentially realize the
improvement brought about bxleaustve search, praded the ghaustve search is performed on

a detailed enough grid.
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Figure 15.Slopes obtained for speakvmh0 when arying W1 leeping W2 fied. Cune
shaws little variation of possible slopes, thus sliag limitation of MDLR.

4.8. Revisiting shapes of waping functions

In the process of optimizing for the features and shapesmging function, we started by choos-

ing a set of features, guided by intuition more thansaientific criterion. Wth this choice of fea-
tures, we eplored diferent shapes of avping functions, and with the optimal shape, we searched
for the optimal combination of features. It might be the case that this optimal combination of fea-
tures results in a ddrent choice of optimal shape ofawping function. Therefore, we need to

benchmark the pwous choices of arping function so as to account for the changes in features.

Initially, we used the combination of medians of F1, F2, and &i3this nev set of &periments,

we hare use the combination of the minimum of F1 and medians of F1 and F2 based on the results
presented on Section 4.7.2. The shapes are the same utilized in SectigoepB3pecourse that

we do not need to benchmark tharping function defined on mapping of equal areas of histo-

grams. Results are presented abl& 9.

Even though our>geriments hae led us to use a €ifrent set of features from the set used ini-
tially, we still find no statistically significant é&rence among most of the féifent warping func-
tions we tried. Indct, we find a slight a@wtage to the specificarping function for which we
optimized the set of features. This slight athage, heever, does not guarantee a much better
performance with anparticular varping function. Therefore, our initial conclusion that the shape

of the warping function is not rel@nt still holds.
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Warping function Datapoints WER
Baseline — 38.0
Affine (y = ax+b) Medians 30.4
Affine (y = ax+b) | Medians + Origin| 29.6
Linear (y = ax) Medians 29.4
Normal-deviate Medians 31.2

Table 9.Word error rate (WER) for normalization using the optimal combination of minimum of
F1 and the medians of F1 and F2 angeea diferent shapes of avping function. Compldty of
implementation and benefit to performancaiagoint to the linear function as the optimal choice
for the shape of aavping function.

4.9. Gender normalization

The need for estimation of formants for each speakight still impose a computational cost
beyond the acceptable for some applications. On the other hand, automatic labelling of an utter-

ance according to the gender of the speakho produced it isafrly cheap and accurate.

Moreover, it has been noted in Secti@rb.1 that the distriltion of spea&r specific parameters
typically follows a bimodal distristion with the modes roughly corresponding tdedt#nt gen-
ders. Speadr specific parameters, when grouped together by gecidarly define distritions

with different modes. In that section, the spapecific parameteras the slope of a linearanp-
ing function. Acero [1] presents a similar result for thgparameter when theasping function is

based on the bilinear transform.

The issue of computational cost and the olaterm of the bimodal distrilion of spea&r-specific
parameters ha led to the idea of using only t&wvarping functions, one for each genddender
normalization precludes the need for formant estimation, thus greatly reducing cost. Gender nor-
malization uses one of twdifferent warping functions defined in adrce rather than a speak
specific one computed from a speek acoustic characteristics. Lineaanping functions require

that two slopes be estimated, one for each gendarder to estimate them, we first computed the
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slopes from formants of speak in the training set. ®then considered speak of each gender
separatelyand computed the medians of slopes of sprsasif each gendefhese medians were

used as the slopes of the gender specHiping functions.

Computational cost is a more important concern during the testing stage, and the computational
cost of the training stage is usually not of utmost importance. TRibifity allows for the use of
spealer-specific normalization of the training data rather than gender normalizatem ifethe
computational cost is an issue. A question that might be raised is whetbaerdihormalization
schemes during the training and testing stages might leadgtada@¢ion in performance, or

whether ag normalization during training is necessary at all.

A related issue concerns the use of gesgecific models. In albg@eriments reported sarf we
have used a single set of generic HMMs, created from speech fromespedboth genders. An
alternatve would be to use gendspecific models, that is, decoding speech from a male aspeak
using a set of HMMs created from speech from male spsabnly and similarly for female
spealers. There is lessaviability among male speaks and among female speek than if we
consider all of them togethefowever, we hae more data if we pool speech from all sprak
when we create models.eMeed to assess if this tradélmdtween ariability and amount of data

is beneficial and e it compares to gendapecific normalization.

We hare run eperiments imesticating these issues. Experiments were performed on Resource
Management (RM1). Originallythis database contains roughly twice asynmaales as females.

In the &periments reported in this section, werdaised the same number of male and female
spealers so that diérences in results could be directly atitidd to diferences in gender rather
than in the amount of data used to create models. Linear funciieemplged as the arping

curwe in all xperiments. Results are reported @fl€ 10.

Regarding gender normalization, results whthat measurable imprement in performance is

achieved with gender normalizatiorven if no normalization is empted with the training data.
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Training conditions Testing conditions WER(%)

Unnormalized Unnormalized 40.0
Unnormalized, Unnormalized, 36.0
male speadrs male speadrs
Unnormalized, Unnormalized, 355
female speadtrs female speadrs
Unnormalized Normalized 36.4
Normalized Normalized 33.5

Table 10.Recognition results for gender normalization on RM1. The same amount ofatata w
used for male and female speekin all cases considered. Thieefs the results for no
normalization to be slightly dérent from other results presented on this Thesis.

Normalization also of the training data results in inveroent which is statistically significantly
better Gender normalization therefore pides impraement, and its potential can be fully real-

ized only when normalization is performed on all the data.

These results also shdhat gender generic models with gender normalization outperform gender
specific models. This result skie that normalization has beerfeetive in bringing closer the
spealers from both genders. Thideftiveness allas us to use allvailable date to produce one

single and ayuably better set of HMMs.

4.10. Normalization on narrowband speech

In this section, we report oxgeriments using nawdband speech.dfmants werexdracted from
narrovband speech. Models were also created from whand speech both when we normalize

speech or not.

Formant estimation is whys prone to errors. The algorithm presented on this chapter has an
intrinsic dependencon the reliability of these estimates. Therefore, conditions that increase the

chances of errors in the estimation of formants will lead to a poorer performance of the algorithm.
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Formant frequencestimation is usually achied by estimating the spectrum of a frame of speech,
finding the peaks, and selecting some of thewo potential problems are the presence of noise
and the bandlimiting of speech, foraenple. These tw conditions de&ct the process of formant

frequeng estimation difierently

Additive noise signals such as music or competing speech will add peaks to the spectrum. The esti-
mation of spectrum as well as the location of peaks might be perfectlyedh#nd yet the for-
mant frequeng estimates wuld not be reliable because the peak picking stage wéllyligelect

peaks introduced by the disturbance.

Bandlimited speech, particularly telephone speech, will cause the spectral estimation stage to be
affected. Frequernyccomponents in the higher range of the spectrum will be attenuated, so peaks at
the higher end might not be located accuratigreover, the peak picking stage might locate a
peak belwr the first formant or between dwformants, therefore selecting the spurious peak as a
formant and shifting all formants upwds. Consequenthpandlimited speech, while in theory
affecting only the gtremes of the spectrum, can actually cause estimates of all formant frequen-

cies to be wrong.

In the xperiments reported in this section, werdnartificially bandlimited speech by filtering it
through a simulated telephone channernfants were xracted from the filtered bandlimited

speech and normalization performed with statistics collected from these formant estimates.

Models for narravband speech were created from natrand speech. The issue of cross condi-
tions, that is, of dferences in channel andvetonment in the training and testing datasmxam-

ined by Acero [1] and Moreno [49]. Théave shavn that the best performance is agbig when

the ewironments of the training and testing data matclke. Mie run preliminary xperiments
wherein we recognized nawband speech with models created from wideband speech, and rec-
ognition results are so muchovge than when training and test data are similar that comparisons

are meaningless.
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The issue of influence of reduced bandwidth on the performance of the normalization algorithm

has beenxamined, and results are presented ainld 11.

Model Test data | Baseline| Normalized
Wideband Wideband 38.0 29.4
Narrovband Narrovband 46.8 41.9

Table 11.WER in narravband speech. Speeclas\filtered through a simulated telephone channel
Normalization vas applied to both wideband and nafpand speech. In both cases, a linear
function fitting the minimum of F1 and the medians of F1 and & wged as avping function.
Features hae been computed from nawband speech foixperiments with narreband speech

and accordingly with wideband speech.

The performance of the recognition engingrddes when we use nasfoand speech rather than
wideband speech, agpected. Haever, normalization preides impraement in both cases. The
improvement achieed through normalization is not as high as the one with wideband speech
though. This is not a surprise sincdraction of formants is &dcted by bandlimiting. This ffcts

changes in the distuibions of formants thus causingviigions to the features.

4.11. Conclusions

In this chapterwe presented a technique for spakormalization which empjs speakr spe-

cific features to define aasping function. Features determine points on a plane, which we fit to a
curve thus defining the arping function. W studied seeral shapes of functions, concluding that a
linear warping function captures most of the information necessary to accomplisieispeakal-
ization. We examined seeral choices of features and their influence on the performance of the rec-
ognition system. This influenceasw &amined taking each feature separately well as in
combination. V& presented techniques to select a subset of optimal features fragerasky as

well as a technique to find optimal weightsegi a set of features. These techniques use a similar
approach based on comparisons between estimatgdqaidy linear rgression and slopes found

through &haustve search. W have found that both an optimal set of features and an optimal set of
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weights for arbitrarily selected features bring inyament in recognition performance. A combi-
nation of these approaches, that is, optimal set of weights for an optimally selected set of features,
however, does not bring impsement as compared to either method applied separsitedg thg

both use the same criterion of optimali®Bender normalizationag also xamined as a simplifica-

tion of speakr normalization. Gendeyeneric HMMs created from gender normalized speech out-
performs gender specific models, thusveihg the efectiveness of the presented technique for
gender normalization. Thefettiveness of the algorithmas also kamined with bandlimited

speech. Normalizationas shwn to perform well een under this constrained condition.
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Chapter 5
Normalization Applied to Large \bcalulary Tasks

5.1. Introduction

In this chapterwe eplore issues related to fiifences in performance when the speailormal-
ization is applied to diérent tasks. These issuesddo do with implementation details or with

peculiarities of the task.

So far, we hae been using the Resource Management (RM1) database, which has been recorded
under controlled conditions. Enough data from each gpesie ®gailable, and these datavea
been recorded undexaellent audio conditions. Beside theset§, the gcalulary size is small,

thus rendering the search during recognition much smaller

The tasks we use for comparison are tredl \Btreet Journal (WSJ) and BroadcastisléHub 4)
databases, described in Sections 3.3.2 and 3.3.3 reshedt this chapterwe eplore difer-
ences by imposing artificial constraints in the databasgsedmple, we ma& use of a small
amount of speech from each spsrakn RM1 so as to simulate this limitation from Hub 4thw
these simulations, we attempt to assess tieetefon performance of these less than ideal condi-

tions on diferent databases.

WSJ has also been recorded under good audio conditions, although the numbereo$ spekthe
vocahulary size as well as the total amount of data are mugérldiese diierences makWSJ a
more realistic database than RM1, although a mofieulifone under the point of wieof the rec-

ognition system.

Hub 4 has been recorded from broadcast radio and fi&fefore, there is no controley who the
spealkers are or h@ much data come from each spealklso, recording conditionsavy both in

channel and noiseuel or quality All this variability males Hub 4 a much more fidult task.



Chapter 5. Normalization Applied to Large Vocabulary Tasks 70

The first issue wexamine rgards the joint use of spestknormalization and adaptation. Normal-
ization attempts to reducanability between speaks by modifying spea&ks tavards a common
standard one. Adaptation attempts to reduce thiereifces by modifying models to neakhem
more closely resemble the inatiual speakr. We study the possible benefits of joining these tw

complementary approaches.

WSJ and Hub 4 are muchdgr tasks than RM1. $\studied he this diference dects the perfor-
mance of the normalization algorithmeWave concentrated these studies on WSJ, since we ha

control over hav much data is\ailable from each speakon this database.

Regarding the amount of data, WSJ has a muaielanumber of speaks than RM1 and a much
larger amount of data per speaklhese dierences influence the relaiimprorement in perfor-
mance achieed by applying speak normalization as well as whether normalization of the train-
ing data is essential or only beneficial. Agiar number of speaks produces broader output
distributions in the HMMs, thus increasing the probability of match betweenvapeakr and

the ensemble of speats in the training set. Reduction afriability achieed by speadr normal-
ization has a less dramatideadt in this situation. On the other hand, more data per epbak the
opposite dect of producing narseer output distribtions. Normalization of the training data

reduces ariability between speaks, thus resulting in less well tuned models.

On WSJ tasks, we empl@ dictionary much lger than that used on RM1 tasks. The use of a
smaller dictionary implies a smaller search space for the dedadbis nev search space, fef
cient normalization transforms the original data so that the correct path has higlitevditk than

wrong paths for a lger number of sentences.

However, our objectie is to reduce wrd error rate in general and not simply to magcognition
results with normalization better than without normalization. Limiting iheakulary, we might
make the relatie improrement lager. Yet, the absolute performance will probably be smaller if

we use a lager dictionary On a related matteSchvartz et al [68] report that for databases
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recorded wver more general conditions, the use of as much speech as posginidless of the
quality, results in better models.aMeed to assesswoormalization can benefit our system if we

malke use of an otherwise optimal system.

On Hub 4, there is no controver haw much data we can use from each spedkwe consider it
on a sentence-by-sentence basis, some of these sentencesyaskovt. V¢ hare attempted to
assess the relance of haing less speech from a spealby running a controlledxperiment on
RM1 where we aried the gerage amount of speech from each spedie also studied possible

relations between sentence duration and performancevement for RM1 and Hub 4.

A related matter gards clustering of speech data thatehaguably been uttered by a single
spealer. On Hub 4, we do not kra information about where utterancegibeor end, neither do we

have knawledge of who the speaks are. W attempt to assess théeets of this lack of knwledge

by restricting normalization, on RM1, to be performed on a sentence by sentence basis rather than
on all utterances by a speakWe further compare results obtained when we clustgnests on

Hub 4 in an attempt to use as much data with similar acoustic characteristics as possible.
5.2. Experimental conditions br differ ent tasks

5.2.1 Warping function

The normalization algorithm mak use of speak specific features to define points on a plane.
These points define aanping function, which is used to accomplish sgeatormalization. In
experiments reported in this chaptere use an &ife warping functiony = ax+ b to fit the

points defined by the minima and the medians of the three first formants F1, F2 and F3. As con-
cluded in Section 4.3, the specifics of therping function are not relant. W hare chosen this
function for compatibility with gperiments performed in other databases. The combination of
minimal points and mediansas among the top combinations optimized according to Section
4.7.1. One of the conclusions of Section 4.7a3 what optimization of weightsas not necessary

if the combination of featuresas optimal. Therefore, we use equal weights for all features. In
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some &periments on Resource Management (RM1), we used slightyratif combinations of

features and arping functions. This is noted where applicable.

5.2.2 Training conditions for the broadcasivse(Hub 4) task

The Hub 4 broadcast we task presents a number of conditions that cause state of the art speech
recognition systems to deteriorate in performance. Among these conditions, music and competing
speech are sometimes present in the backgroundwiamd channels are sometimes used, and
speech is often spontaneous or uttered by nomengtieakrs. Also, there is no controver the
amount of speech recorded from each spedls a matter ofdct, in the test set there is no wito

edge of where speech from one sggadnds and another speaktarts.

In Section 3.3.3 we present thdighl classification of conditions. Roughlgondition FO applies
to clean planned speech, F1 to clean spontaneous speech, F2 to telephone speech, F3 to speech
with music in background, F4 to speech with competing speech, F5 to clean speech from non

native speakrs, and FX to all other speech.

In an attempt to control the audio quality and speech mode, we limited the training set to a subset
containing speech under FO condition alone. Megeave used only 8 hours of theadlable 21
hours on this condition so as to reduce the trainyadec The performance we actewith this
limitation is olviously worse than if we used all data. Mever, we are concerned with the feif-

ence in performance between performing normalization or not.

5.3. Adaptation and normalization

In this section, we study the benefit of jointly applying speaklaptation and normalization to the
recognition system. At aevy superficial leel, adaptation attempts to modify HMMSs so as to enak

it a more accurate statistical representation ofvangspea&r. Normalization, on the other hand,
attempts to modify incoming speech so as to reduderelifces between avgin speakr and a
canonical one. Therefore, ideally both adaptation and normalization attempt at approaching a

spealer dependent system from a spmaikdependent one, in one case by modifying the models



Chapter 5. Normalization Applied to Large Vocabulary Tasks 73

and leeping data from speais untouched, in the other case by modifying data from theesgeak

so as to wrk with HMMs statistically representing only one prototypical speak

Both technologies tackle the same problentviith a diferent approach. An issue that naturally
arises in this congt is whether the joint use of adaptation and normalization can be beneficial in

terms of performance imprement.

In Section 2.6, we referred to MLLR, a popular technique of syeattaptation. In thexperi-
ments reported in this section, we useceesn implemented at CMU byaRkh and Raj [55].
Adaptation vas performed in unsupervised mode, that is, we aed fpothesis generated by a

first pass of recognition in the adaptation.

On RM1, havever, we hae been using a language weight unusually [Bhe reason for that, as
mentioned in Section 3.3.1aw to disable the language modeltiWord error rates in the order

of 40%, the use of transcriptions produced by the decoder might be misleadinkisFeason,

the estimation of the parameters for the MLLR adaptatias performed using transcriptions pro-
duced by a decoder usingarflanguage weight of 9.5. A language weight in this range is what a
real system wuld require, therefore this implementation detail is more realistic than using the

same language weight wevieabeen using throughout this.

We hare combined MLLR with the normalization technique presented in this Thesis.arpmg
function used in this section is a linear function fitting the points defined by the minimum of the
distribution of the first formant F1 as well as the medians of the fisfawnants F1 and F2. All
points were equally weighed. Results gperiments on Resource Management (RM&dlwving

combinations of MLLR and normalization are presentedaiieri12.

It is easy to understand that normalization karping function simplygpands or compresses the
spectrum. The FFT cdéfients after normalization are iadt a weightedwerage of the FFT coef-

ficients before normalization, which can be thought of in matrix terms as the multiplication of the
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Adaptation/Normalization | WER(%0)

Baseline 38.0
Adaptation only 28.2
Normalization only 29.4

Adaptation and Normalization 23.8

Table 12.Word Error Rate (WER) on Resource Management (RM1)xperments imolving
combinations of speak adaptation and normalization. Adaptaticesvimplemented using MLLR
in unsupervised mode whereas normalizatias Wwnplemented with a linear function fitting points
defined by the minimal point of F1 and medians of F1 and F2 with equal weights.

vector containing the FFT cdigients before normalization by a matrix that is zetwept at some
“diagonal” lines. These “diagonal” lines of course are not necessarily parallel to the main diago-
nal, ut rather will depend on the slope of thaming function being used. The important issue is
that normalization can be thought of as the multiplication cfcioy the FFT codicients before

normalization, by a sparse matrix.

MLLR on the other hand mak use of all elements of a matrix. The use of all elements of a matrix
allows for more flgibility than the use of only some lines in the matrix in that each element of the
adapted gctor depends on a tgar number of elements of the unadapted one. This greaibilfle

ity explains wly MLLR alone outperforms normalization when the latest is applied by itself, as we

can obserg on Bble 12.

When MLLR and normalization are jointly applied wever, we achige a much greateragn than
with ary of the methods alone. En if no normalization is empjed in the training set, normal-
ization still provides a @in jointly with MLLR. If normalization is applied to both the training and

testing data and MLLR is empled, the word error rate goes dm by a sizable amount.

Although the tvo methods tackle the same problem, the approaches farewulif Neither of the

methods is perfect. [Bn though spe&k normalization and adaptation are successful in reducing
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spealer variability, differences still persist. MLLR attempts to reducéedénces by maximization
of likelihood. The method presented on this Thesis utilizedexetit criterion based on acoustic
characteristics of speaks alone. The dérence in optimization criteria primes a @in when the

methods are jointly applied.

We also emplged the combination of speaikadaptation and normalization on WSJ. In this case,
the warping function for the normalizationas implemented through arfiné function fitting the

set of 7 points defined by the origin and the minimal and median points of the first three formants.
All points were equally weighted. Adaptatiomsvunsupervised, i.e., a first run of recogniti@s w
deployed and the ypothesis transcriptions were used in the adaptation step. Results are presented

on Table 13.

Adaptation/Normalization | WER(%)

Baseline 11.7
Adaptation only 11.4
Normalization only 10.9

Adaptation and Normalization 10.5

Table 13.Word Error Rate (WER) on ¥ Street Journal (WSJ) fokgeriments imolving combi-
nations of speak adaptation and normalization. Adaptaticesvimplemented using MLLR
whereas normalizationag implemented with anfafe function fitting points defined by the mini-
mal and median points of F1, F2, and F3 with equal weights.

The results presented oablle 13 sha that the combination of adaptation and normalization is
also successful on WSJ. Theeoall combination did not result in as much imgnment as as the
case with RM1.Hwever, most of this diierence is due to thedét MLLR did not perform as well.
We did not attempt to optimize MLLR since our interesiswestricted to finding whether a the
combination of techniquesawuld be helpful. Indct, the combination of techniques does bring

improvements wer applying only either one of them.
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5.4. Normalization applied to the training data

In this section wexamine whether there is a need to apply normalization twvailbhle speech,
including training and test data, or whether normalization to the test data alone is enough to

achieze improsements using this technique.

We hare run &periments on the three databases RM1, WSJ, and Hub 4 comparing the scenarios of
normalization on the test set only and on all data. Results of this comparison are presented on

Table 14.

In all experiments in this section, theawping function vas an dfne function fitting the set of 7
points defined by the minimal points in the digitibn of the three first formants, the medians of
the three distribtions, and the origin of the coordinate system. All points were weighed equally
This combination of features\gis slightly better results than a mere combination of the medians

of the three first formants as pointed out in Section 4.7.1.

On RM1 and WSJ, normalizatioraw performed on a spealbasis, i.e., all speectiadlable from

a speakr was utilized to estimate the disuwiiions of formants of the speak

On Hub 4, we h& no information about who the speeakare. W hare performed normalization
on a sgment basis. A Ige file with 30 minutes arth of speech as sgmented into small parts,
and these ggnents were used for recognition, as well as for the estimation of alistnitof for-

mants. Sgments were assumed to be independent, that is, not uttered by the samie speak

In addition to this, we ha created models for Hub 4 not from ath#able speech,ut from a sub-
set of the aailable speech labeled as clean and planned, for reasons mentioned in Section 5.2.2.
On Table 14 we present results for this condition, clean planned speech, which is referred to as

condition FO, alone.

On RM1, we obserrthat the normalization, when performed only on the test set data, is beneficial



Chapter 5. Normalization Applied to Large Vocabulary Tasks

Normalization of cepstra WER (%)
Train Test RM1 | WSJ| Hub 4 (FO)
No No 38.0 | 11.7 314
No Yes 325 | 11.6 28.6
Yes Yes 30.4 | 10.9 28.7
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Table 14.Comparison of performance when normalization is applied to speakthe training set
and testing set or in the testing set alone. Tamping function is an &he function fitting points
defined by the minima and medians of the three first formants plus the origin, with equal weigt
On RM1 and WSJ normalizatioraw performed on a spealbasis. On Hub 4, itas on a sentence
basis. Morewer, on Hub 4 the results concern the focus condition FO (clean planned speech) al

as compared to no normalization at all.wéeer, normalization of the training set data yides
further measurable impvement, thus implying that for this task normalization of all data is bene-

ficial.

Ideally, normalization wuld eliminate all spea&k specific diferences. Therefore, if speaknor-
malization were perfect, weoumld epect all speadrs to be mappedxactly to one standard
spealer. Essentiallythis would transform a speak independent system into a spmattependent

one, where the standard spesals the only spe&k for whom the systemas trained. Therefore,
ideally, the scenarios of normalization on training and testing data as opposed to normalization of
the testing data alone can be thought of as a comparison of performance of the standard speak
with a spea&r independent and a speaklependent systems. In this comité does not surprise

that normalization of the training set outperforms the other alteesati

On WSJ, we obseevthat if models created from speech with no normalization are used, the per-
formance achieed with normalization of the test data as compared to no normalization is not sta-
tistically significant. Havever, normalization of cepstra used for training afous to create
models which are statistically significantly better if used in conjunction with normalization on the
test data. Statistical significancesvmeasured with the standard matched pairs tedgdpdbby

NIST.
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On Hub 4, we note that normalization acf brings impreement as compared to no normaliza-
tion. Havever, normalization of spe&ks in the training set does not seem to besaale If nor-
malization is applied to speais in the test set, there is no statistically significarferdifice
between the results obtained when normalization is applied or not applied to therspedke

training set.

These gperiments shw that normalization is inaict efective in all tasks considered, wever, to
different dgrees. On RM1, normalization of the training data is not esseutidlh®elps. On WSJ,
it is essential. On Hub 4, it is irretent. This diference in hav normalization benefits performance
in different tasks wites further inestication that taks into account the dérences in design of
the databases. RM1 contains only speech recorded uwidlieat audio conditions, and the num-
ber of speadirs as well as theoealulary size aredirly small. WSJ diers from RM1 essentially
on the number of speaks and on the dictionary size. Hailliffers from the préous tasks on se
eral issues, @rth mentioning the amount of speech from each sgeaid the lack of kneledge
about speadr identification or ¥en speaér change. In the folleing sections we@lore these

issues to reach an understanding of thierdifices in performance raised in this section.

5.5. Tasks with similar recording conditions

We investicate in this section the possible reasons for therdifice in performance of the normal-
ization algorithm when applied to RM1 and WSJ. Thederdifices are the reled¢i improsement
brought about by the normalization and thettthat normalization of the training data seems to be
essential to WSJ, as opposed to being nothindnélpful for RM1. V¢ attrilute these diérences

mainly to the wcahulary size, the number of spesk, and the amount of data per speak

As we can see fromable 14, the impneement obtained on RM1 is muchdar than that on WSJ
or Hub4. A direct comparison between RM1 and Hutyould not shed much light onto the rea-
sons for this discrepapcsince the tasks dér so much. Havever, we can try to understand some

of these reasons by comparing RM1 and WSJ.
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RM1 and WSJ ha been recorded undeery similar conditions, with speaks reading from a
prepared tet, and speech is recorded using close talking microphones in a digetesiron-

ment. Speadrs were neither professionals noveaspeakrs

The main diferences between RM1 and WSdaml the number of speats, the amount of data
per speakr, and the gcalulary size. Of course there are othefali#nces, lik the compbeity of
the tts, and therefore of language models, which cautgito diferences in the baseline perfor-
mance. Hwever, we intend to imesticate reasons withe relatve improsement resulting from the
spealer normalization dfers, thus our choice to restrict the issuegesticated to spead and

vocahlulary issues.

RM1 has 120 speaks in the training set, whereas WSJ has 284. The RM1 system uses a dictio-
nary with around 1000 evds, whereas the WSJ system empla dictionary with more than

20000 vords. The décts of these difrences are iresticated nat.

5.5.1 Influence of the number of speek

In this section, we study tothe number of speaks and the amount of data per spealan aect
the need for normalization in the training set. In order to study it, we tr@ated te sets of
HMMs. One of these setsas created from a subset of WSJ containing only 124 speand the
other set with all 284 speaiks. W\ limited the amount of data for these 284 spemako that the
total amount of speech for both set@swoughly the same. &\hare also emplged another set of

models created from all/ailable data from all 284 spests. Results are presented @il€ 15.

Although diferences are not Ige, this &periment suggests that normalization yides more
improvement for a system trained with a set of speakvith less speaks. The relatie improve-
ment is around 8% in the system trained with a set containing 124espeakl around 5% in the
system trained with a set of 284 spexakusing half thevailable data. When the amount of data is

the same, normalization seems to be madiecafe. Both diferences are statistically significant,
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Normalization of cepstr:

i1

Number of speaks in the training set /

(Amount of data per speek- total &ailable = 1)

Training Test 124 (1) 284 (1/2) 284 (1)
No No 12.5 12.1 11.7
No Yes 12.2 11.6 11.6
Yes Yes 11.5 115 10.9
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Table 15.Word error rate for \WI Street Journal with diérent number of speaks in the training
set. The data used for trainingsvconstrained so that the sets of spesak the first tw columns
had roughly the same amount of speech, roughly half as much as in the last colunverdlihesb
ative improrement between no normalization and normalization of both training and testing dat:
8% for models created with 124 speek 5% for models created with 284 spgralusing half the
data, and 7% with 284 spesak using all the data. B&fence is significant in all cases. Normaliza-
tion of the training data becomes irnedat when less data isalable per speadt

although with diferent levels of confidence, namely less than 1% for the former and 2.6% for the

latter

A possible reason for this tifence in performance for systems trained witfediéiht number of
spealers is that the output probability density functions (pdfs) of the HMMs are going to be more
spread out if the models are created from gelanumber of speaks. This smearing occurs as a
consequence of the spreading of acoustic characteristics we encountegén sdbof speaks. A

new spealkr presented to the system will cause the systemveodhaorse performance if this ne
spealer has characteristicemy dissimilar to thevaerage spead in the training set, since there is a
tendeny for speech from this speakto be located in the tails of the output pdfs. Thggakgation

will be worse if the output pdfs are sharpand this will be the case if the models were trained

from fewer speaérs.

On the other hand, we can see that if weehalage amount of data for each speakormaliza-
tion of the training data is essential. Normalization seemsotk well if the HMMs are trained
with a smaller amount of data per speakegardless of normalization of the training data. A

larger number of speaks results in HMMs less well tuned toygrarticular speadt. The system is
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farther from a speak dependent one in that the performance will not be the best possiblg for an
particular speadt. However, a nev speakr presented to the system will acleiea reasonable per-
formance. On the other hand, more data per speall cause the oppositefeét, resulting in

HMMs more well tuned to the spesk in the training set.

Normalization reducesaviability between spe&ks. If the models are not well tuned to a set of
spealers, normalization will hae little efect in performance. If the models are sonveheell
tuned, normalization will help, in that normalization of the training data will approximateespeak
on the training set arvarage speak, the same to which normalization will approximate & ne

spealer.

Spealer normalization is an attempt to reduegiability between speaks. If this attempt is suc-
cessful, its déct will be felt less dramatically on a system trained from more spedkan on a
system trained from feer speakrs because the latter has a tengeasfgperforming verse for a
generic ne speakr. This efect, although less dramatic, will only be acieid when normaliza-
tion is also performed to spesk in the training set if the amount of data per sgreiskery lage.
If the amount of speech per sperks small, normalization is beneficialem when applied to the

test set alone.

5.5.2 Efects of wcalulary size

In this section we study the influence of dictionary size on the performance of a system. Instead of
using a typical dictionary for this task, containing around 2000@sy we hee created a dictio-

nary containing only wrds present in the test set. Morep this dictionary contained all avds

from the test set, that is, the system had no oubcdulary (OO/) words. In general, the pres-

ence of O®'s in the test set causeggdadation in performance because the system is restricted to
finding a match for the acoustic signal frorards in the dictionary and, since the correotavis

not there, ayoutcome will be adilure. Experiments using this dictionary wilhadbusly measure

the influence of theacalulary size as well as of OOHowever, we reason that thefe€t on the

search of a dictionary with no O is the same as of a smaller number ofds, since we just
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reduce the search space. A well designed dictionary wid hesmall percentage of @®in ary

case. Therefore, our conclusions will hold true ip ease.

Additionally, the language model weight plays a role in tihedrerror rate achved with a system.

To assess it, we til@a compared tw different scenarios. In one of them, wevdnget the language

model weights so that theond error rate with no normalizationowld be the same for all tasks

and all dictionary sizes. Since the baseline numbers are the same, a comparison between impro
ments is more easily accomplished. In the second scenario, the language model weights are set to
realistic numbers, i.e., language weights thatily actually be used in a real system, Results for

the first scenario, with the same baselirdrverror rates, are presented @bl€ 16. Results for

the second scenario, realistic settings, are presenteabds 7.

WER(%)
Normalization of cepstra

WSJ - 2k dict] WSJ - 20k dictf RM1

No 11.7 11.7 11.7
Yes 9.5 10.9 9.6
Improvement (%) 18.8 6.8 17.9

Table 16.Word error rate comparing systems witheliént \ocalulary sizes. \éll Street Journal
was decoded with a small dictionary of 2008rels and a lge \ocahlulary of 20000 wrds. The
small dictionary vas dened from the test set, thus the system has no outoaftwiary (OQV)

words. The language model weighiswset so the baseline WERWA be the same for all tasks.
The language weight is 0.31 for WSJ with a 2k diction@sy for WSJ with a 20k dictiongrgnd
4.85 for RM1. Normalization results in statistically significantly better performance in all cases.
Normalization vas performed with anfafe function fitting the minimal points and the medians of
the three first formants.

In both scenarios we can clearly see that normalization performs comparably well on RM1 and
WSJ2k dict,, which are both smalloealulary systems, and in both cases normalization performs
better than on WSJ 20k dict, which is aglaocatulary system. The smaller dictionaryeaits the

performance because it decreases the search space. An HMM based system concatenates models
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WER(%)

Normalization of cepstra
WSJ - 2k dict] WSJ - 20k dictf RM1

No 2.9 11.7 6.6
Yes 2.5 10.9 5.5
Improvement (%) 13.8 6.8 16.7

Table 17.Word error rate comparing realistic systems witlfiedént wocahlulary sizes. \&ll Street
Journal vas decoded with a small dictionary of 2000rds and a lgye vocahulary of 20000 wrds.
The small dictionary as denved from the test set, thus the system has no owtoataiary (OQV)
words. The language model weighaswset to 9,5 for al tasks. Normalizatioasyperformed with
an afine function fitting the minimal points and the medians of the three first formants.

of phonetic or subphonetic units so as to assembledhdsweontained in the dictionany the dic-
tionary is lager, the system will hae to look for a lager number of alternaes. In other wrds,

with a lager dictionary the decoder will & to follov a lager number of paths defined by the
concatenation of a Iger variety of models, and this superset of paths might include paths contain-
ing wrong words with higher liklihood than the path with the correct sequenceooélsy The rec-
ognition engine will commit an error if it assigns a higher probability to a sequencerd$é w
containing an incorrectevd. We might happen to eliminate this incorrecrdswhen we decrease

the dictionary size, thus rendering this wrong sequenceafsnneistent.

Moreover, the acoustic obseations of the normalized and unnormalized speech will be slightly
different, so the probabilities assigned to the same sequenaardasd will be slightly diferent.
Better acoustics will cause the correct sequenceve higher probabilityWhen we reduce the
dictionary we thrav avay incorrect wrds, lut the obseration with worse acoustics might still
lead to another sequence afnds containing incorrectavds, whereas the obsation with better
acoustics will cause the correct sequence @id® to be assigned highest probabhilitiie results

reported abee suggest that normalization indeed results in better acoustical models.

5.6. Issues elated to availability of speaker specific data

In this section, wexamine hav the impraveement brought about by normalizaticaries with the
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amount of data\ailable for each speak Although this issue is not ref@nt in the contd of
RM1 or WSJ tasks, thadt that we hae enough data for each spealn these databases albus

to control the amount of speech we utilize in the normalization process.

The normalization processvimlves estimation of formants, of histograms representing the distri-
bution of these estimates, and of statistics from these histograms. Ag statistical approach,

having too little data might lead to eked estimates of the medians, means, minimal points, etc.

Moreover, we do not attempt to restrict the collection of formant estimatesytpaticular pho-
neme. Doing so wuld require a run of decoder so as tgnsent the incoming data, i.e., so as to
locate the dierent phonemes in the incoming utterances thds rely on a distrition which will
contain data from as lge a wariety of phonemes as possible. Shorter utterances wil teaer
phonemes. The distrition of formants taking into account only the phonemes present in short

utterances are thereforedily to be biased.

We irnvesticate hav limiting the amount of datavailable afects normalization. @ approach this
issue, we perform normalization on a spEdkRy/-spealker basis using increasing amounts of data
for each spealt Statistics were computed on increasinglgédarsubsets of the total amount of
speech aailable per spead, and at each step all speech from each spemds normalized based
on statistics computed from these subsets subsequdindyefore, we assess the minimum

amount of data needed for normalization to hectfe.

We hare performed thesexperiments on RM1, where weveacomplete knwledge about who
the spea&rs are and controver hav much speech we empgidrom each one. Wcompare these
results with those obtained with Hub 4, where weeh# knavliedge of speadr identification, and

are thus restricted to performing normalization witkvécer little speech we arevgin. The com-

parison is accomplished by measuring the durationgrheats and computing theeaage vord

error rate for subsets ofggaents with similar duration.



Chapter 5. Normalization Applied to Large Vocabulary Tasks 85

In an attempt to cope withgments of short duration on Hub 4, we studied the possible benefits of
clustering sgments togetherddeally, clustering would group diferent sgments uttered by the
same spead in the same clustddowever, clustering is automatically performed.gBgents from
different speadrs can be grouped in the same clustkareorer, it is not guaranteed to produce

cluster with enough data per clustke examine the results obtained in oxperiments.

A comparison between RM1 and Hub 4 only emkense if we restrict it to the focus conditions
on Hub 4 which ha similar acoustic characteristics to RM1. Therefore, our comparisons are

between RM1 and the focus conditions FO and F1 on Hub 4.

5.6.1 Amount of data needed for normalization

In this section, we iesticate the issue of holittle data would be enough orvarage for the nor-
malization to be ééctive. So &r, we hae been using as much data from each speakwe can.
We do not hee a clear sense, Wwever, of whether the amount of data wesédeen using is more
than necessary or whether we could stillhfurther imprgements if we had more data $tudy
this issue, we computed features from disiidns of formantsxracted from increasingly lger

amounts of data. W these features, we performed normalization and analyzed the results.

Figure 16 displays the results of thezperiments. Normalization & implemented with a linear
warping function fitting points defined by the medians of the digtdbs of the first three for-
mants F1, F2, and F3.alghts were chosen with MDLR. &\Wused an increasing number of sen-
tences per speek Features, that is, the medians of the distidims of formants, were computed
from these subsets of sentences subsequdititéy aerage total duration of speech used in each
case, i.e., thevarage wer speakrs of the amount of speech enyad for each speak is dis-

played on the panel, together with the resultimgdierror rate.

These results shothat impravement in performance achied with speasr normalization reaches
a stable leel when the @erage amount of data from each sggalkaches around 12 seconds of

speech. This obseation suggests that this amount of speechverage would be enough to reach
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Figure 16.Word error rate on Resource Management (RM1) when normalization is per-
formed based on features computed fr@arying amounts of speech. The features are the
medians of the three first formants with weights set using MDLR. Normalizaéien w
implemented with a linearavping function.

saturation in the benefit ackel with normalization. The best case, that is, the gpdakwhom

the least speechas necessary to aché saturation in performance impament, required 1.2
seconds of speech, whereas tlwestvcase required 114 seconds. Saturation in performance in this
context means that the avd error rate reaches a range within 10% of tbedverror rate obtained

when all speech is used.

5.6.2 Normalization on short duration sentences

In this section, we present results concerning relation between sentengenentsduration and
relatve impravement in performance. Section 5.6.1 suggests thatesprakmalization will per-
form poorly with short sgments. Br most sgments gtracted from Hub 4, we cannot select
increasingly lager amounts of speech to perform a simibggegiment since most gments are
already ‘ery short. Hwever, we can measure durations ofjsents and the ovd error rate with

and without normalization. df comparison purpose, we performed a similar measurement on

RM1.
Figure 17 shas the relatie improvrement in performance for g@ments of difierent duration. The
improvement considered on this panel refers to redat@riation of the eerage wrd error rate

(WER) of sentences whose duration lies within a certain iaterv

We have performed similangeriments on Hub 4. @have limited the study to focus conditions
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Figure 17.Relative improrement in WER on RM1 sentences. WERsvweomputed as the
average WER for sentences whose duration lies within a certaindhterv

containing only clean speech. Figure 18 presents results for focus condition FO, clean planned
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Figure 18.Relative impravement in WER on Hub 4 - FO sentences. WER womputed
as the werage WER for sentences whose duration lies within a certainahterv

speech, whereas Figure 19 presents results for F1, clean spontaneous speech.
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Figure 19.Relatve impravement in WER on Hub 4 - F1 sentences. WER womputed
as the werage WER for sentences whose duration lies within a certainahterv

Sentences of less than one second of duration are usuallyoodeentences, for which the WER
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does not bear a meaningfidlve. The initial point in each of these panels is eoy ymeaningful
for this reason. Heever, we can see the tendgnio all three tasks for the normalization to not
work well for short utterances which last for less thaa fgconds. On the other hand, the algo-

rithm works on longer utterances, piding improzements ongerage.

We hypothesize that the reasonyhe normalizationdils for very short sgments is related to the
contents of the utterance rather than to acoustic characteristics. Theah@sgvunction for a
given spea&r would aguably be the same no mattemhshort the utterance is. If we can not
achieve the sameajn in performance when less data ar@lable, it is because the features which
define the warping function hee been décted. The features defining theanping function are
based on statistics computed from disttibns of formant estimatesek short utterances do not
have a lage \ariety of diferent phonemes. Consequenthe distrilution produced by estimating

formants from these utterances will be biasedatds some frequepdands.

The standard speakhas been defined as aerage wer a lage number of speaks, each prod-

ing a firly large amount of data. Theverage distribtion will therefore statistically represent a
large \ariety of phonemes. The normalization attempts to map distiis of formants from a
new speakr to the standard speakoy mapping statistics of these diattibns. If a small amount

of speech is\ailable, these utterances will contain only a small subset of the possible phonemes.
The distritution of formants etracted from these data will be biased around the formants of that
particular set of phonemes. When we compute statistics from these biasedtidisgjlwe pro-
duce features which do noxaetly correspond to the features of the standard spe@k we
increase the amount of data, we increase #niety of phonemes in the utterance and therefore
increase the match between the set of phonemes uttered bywthepemier and the standard
spealer. We therefore xpect the relatie improszement in vord error rate to increase as we increase

the \ariety of phonemes in the utterance.

Figure 20 illustrates this point. &\éstimated the rela@ improsement in vord error rate, as com-
pared to the wrd error rate achied with no normalization, for a collection of utterances. Normal-
ization was performed on a gment-by-sgment basis. & each sgment, we counted the number

of different vowels. Th ensemble of utterances from gnapealkrs will contain a lage \ariety of
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phonemes. Small amounts of speech will contain a smaller collection of phonemes. Therefore,
their distrilution will tend to be slightly diérent from the @erage distribtion. By counting the
number of diferent vowels, we measure this tifence in the ariety of phonemes. /consider
vowels only becauseoiced rg@ions of speech, as well agiiens where formants are more stable,

are more likely to be wwels. We can indeed obseran imprgement in vord error rate as the

number of phonemes increases.
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Figure 20.Relative improszement in vord error rate for Resource Management (RM1)
utterances with diérent number of ®wels. Normalization performed on sentence-by-sen-

tence basis using arfiak warping function fitting the minimal points and the medians of
F1, F2, and F3 with equal weights.

Figures 21 and 22 stwosimilar plots for the focus conditions FO and F1 of Hub 4.dah see the
same tendencas obsergd on RM1. Interestinglyneither RM1 nor Hub 4-FO i@ sgments with
less than 4 uniqueowels. Hub 4-F1, hoever, presents a number of utterances with less than 4
vowels, some of them with only onewel in fact. As mentioned before, there is not much mean-
ing in word error rate in these situations. Discarding theemeks, we can see that thend error
rates also increase with the number of phonemes, thus confirming our itdhésis that the

contents of the utterancededdt the performance of the normalization algorithm.

5.6.3 Normalization on a cluster basis

A possible alternate to the normalization on a sentence basis in thexdanitélub4 is the auto-
matic clustering of ggments. Ideallyclusters wuld group together di#rent sgments containing

speech from a single speakin this section, wexamine the déctiveness of such a technique.
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Figure 21.Relative improsement in verd error rate for ggments from Broadcast Ms

Hub 4, focus condition FO, with d&rent number of wels. Normalization performed

using an dfne warping function fitting the minimal points and the medians of F1, F2, and
F3 with equal weights.
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Figure 22.Relative improvement in vord error rate for ggnents from Broadcast s
Hub 4, focus condition F1, with d#rent number of awels. Normalization performed
using an dfne warping function fitting the minimal points and the medians of F1, F2, and
F3 with equal weights.
With RM1, we hae perfect knaledge of utterance boundaries and speaentification, making
it a good choice for a controllecmeriment. V& can emplp each utterance separately or group

them together so that all speech from one single spéakmplged.

Of course, there are thfences between the awasks. Wth RM1, we knaev that each sentence
contains utterance from one single spaa&knd we knav which sentences can be pooled together
when we compute distriltions of formants on a spesby-speakr basis. Wh Hub4, s@gments
are automatically selected. This process is not perfect, and it might regishensg which contain

speech from tw different speadrs.
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Moreover, we can easily group sentences from RM1 on a spdsisis. Wh Hub 4, we can clus-
ter sgments togetherbut we are restricted to automatic clustering. This automatic clustering
might join together sgments containing speech fromawr more diferent speadrs, thus causing
the distrilution of formant estimatexeacted from these clusters to be inaccurate statistical repre-

sentations of anof those speaks.

We compare the results obtained with RM1 for recognition eyimanormalization on a sentence
basis to normalization on a spealbasis. These results are compared to those obtained ah Hub
with normalization on a ggnent basis and on a cluster basis, althowgpikg in mind the diér-
ences between the perfect Wwledge we hae on RM1 and the lack of kmdéedge we hee on

Hub 4.

With RM1, we hae run &periments comparing normalization performed with featuxéaeed

on a sentence-paentence basis and normalization performed with featutescted on a speak
basis, utilizing all speechvailable from each speak The warping function is a linear function
fitting points defined by the medians of the three first formants with weights optimized by MDLR.

Results are reported omafle 18.

Normalization of cepstra WER(%)

No 38.0
Sentence basis 36.4
Spealer basis 29.7

Table 18.Word error rate (WER) on Resource Management (RM1) for normalization on &spea
basis and on a sentence basiarpihg function is the linear function fitting points defined by medi
ans of the first three formants eiyhts are optimized by MDLR.

A comparison between normalization on a spediasis and on a sentence basisvshihat we
achieve a significant gin by using a lajer amount of speech from each sgzdkwe emply only

one utterance to estimate formants and compute statistics, weeaalimall benefit compared to



Chapter 5. Normalization Applied to Large Vocabulary Tasks 92

no normalization at all, i not as much as if we emplall available speech from each speak
This result suggests that if we do novéaontrol @er hav much speech we can use from each
spealer and we are forced to perform normalization on a senteneseptance basis the impe

ment in performance aclied by emplging normalization will be limited.

A possible reason for this tifence in performance is that thanping function we find with lim-
ited data might beaf from optimal. The bestawping function for each speakis aguably the
same no matter what the utterance might beveder, if there are not enough data in the utterance
to provide reliable estimates of formants or estimasedrom the spead’s aserage, the arping
function for that particular utterance will bar ffrom the ideal, thus causing the normalization not

to perform equally well onverage.

We hare run eperiments with Hub 4 comparing the results with those obtained with Riép; k
ing in mind the diferences in design between thetiasks. W have examined the benefits of per-
forming normalization with statistics collected from eaclgnsent indvidually or from
automatically generated clusters ofjiseents as well as from clusters manually created based on
spealer identification. The ggnents were automaticallxteacted from the test data, and might be
too short to preide reliable statistics. Automatic clustering attempts to clustgneets based on
acoustic similarity Clusters are created without using information about spddkntification.
However, automatic clustering might join togethergseents with speech uttered by feitnt
spealers. Normalization per speatkeliminates this problem. Maver, information about speak
identifications is notailable in normal conditions in the Broadcastsevaluation. In ag case,
we have no control ger hav much data arevailable from each speak Normalization on speak
basis can only help is there is agarenough amount of speech from each sgreak aplained in
Sections 5.6.1 and 5.6.2. The conditions are ratty the same as the ones for RMait tve

expected to come to an understanding of the isswes/ed by the comparison.

Normalization for the xperiments with Hub 4 as performed with an fafe function fitting the

points on a plane defined by the medians and minimal points of the first three formants F1, F2, and
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F3, plus the origin used as a data point to a total of 7 data points. HMMs were trained using only a
subset of the speech on the FO focus condition for reagptered in Section 5.2.2. Results are
presented onable 19. Statistical significanceaw kamined within each condition. Results sur-

rounded by thick lines a no statitsically significant dérence.

Normalization Condition
ofcepstra | queral | Fo | F1 | F2 | F3 | Fa | F5 | FX
No 473 | 31.4)39.7[ 7360 54.0) 42.9] 6250 67.3

Per sentence] 45.5 |28.7]39.4] 77.1] 50.3] 39.3] 54.01 64.0
Per cluster 45.8 28.8] 38.6] 76.8] 52.2] 39.5] 55.5] 66.5

Table 19.Word error rate on Hub 4 with models created from speech under FO condition alone
Thick borders identify results with no statistically significantedl#nce @er each condition. Nor-
malization per cluster empled clustering performed automatically

Regarding the results of normalization on a sentence basis and on a cluster badikedi® Twe

see that all sets of results alry similar contrasting greatly with the comparison between nor-
malization on a sentence basis and on a gpdadsis on RM1. This dérence suggests that the
automatic clustering is inkefctive for normalization purposes. ggaents are not guaranteed to
contain speech from one single spealkutomatic clustering joins together these less than ideal
seggments into groups that might contain speech from more than oneespedkecessarily with
similar acoustic characteristics. Automatic clustering might as well result in clusters containing
too little speech to ali@ for a reliable estimation of formant distiiion. These xperiments indi-

cate the problems we point out render automatic clustering useless in thig.conte

On the other hand, normalization per spakoes help normalizationalile 20 presents a com-
parison between the best result under each conditioaceed from &ble 19 and speaknormal-
ization performed with speak specific features. §ments of speech were hand selected to assure
proper clustering. The result with speakormalization is systematically better than the best rsult

from the preious table for each condition. Theevall result, not surprisinglyeflects this ten-
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Condition
Spealer normalization

Owerall | FO | F1 | F2 | F3 | F4 | F5 | FX

Best from BRble 19 455 | 28.7|38.6| 73.6| 50.3| 39.3| 54.0| 64.0
Hand clustered per spesak| 44.4 | 27.7| 38.3| 77.4| 45.7| 37.9| 53.7| 63.5

Table 20.Word error rate on Hub 4 with models created from speech under FO condition alone
First line identifies the best resuktected from &ble 19. Second line represents normalization
performed with speadt specific speech. Identification of spei@kand selection of speeclysents
was manually accomplished.

deng, shaving that normalization on a speakbasis is better than normalization on gnsent

basis. Imprgement in performance therefore can bangd by better methods ofgseent cluster-

ing.

Particularly, it is interesting to notice that manual clustering, or normalization on aespasds,

did help one of the conditions much more than the others. This focus condition is defined as speech
with music in background and referred to as F8.attempted to assess the reasonsaltistering
particularly benefited this conditionaBle 21 presents the number ofrsents on each condition

for each spead for whom there is some speech under the F3 focus conditeoab¥ére that for

most speadrs, there is a lger number of ggnents under other cleaner conditions. Some gpeak

have speech only under F3 conditionf these spea&ks hae \ery little speecherall aryway.

We typothesize that normalization on the focus condition F3fésiafd mostly by the systematic
introduction of harmonics of music into the collection of formant estimates for theesp&ha&
availability of formants estimated on cleaner conditions esathe influence of these erroneous

formant estimates less rednt. \e ellaborate on this issue in Section 5.6.5.

As a comparison, we found the number ajrsents for all speaks for whom there is speech
under the F2 focus condition. These numbers are presentedbts Z1. In this case, we can
obsene that most speaks hae speech only on condition F2. Contrary to thevipres case, the

collection of formant estimates cannot be inwaid since there are no estimates of formants
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Spealer FO|F1| F2| F3|F4| F5| EX
ABC_PRT_ ANNOUNCER| 0 |0 | 0|2 0|0/ O
BERNARD_SHAWN 2/1|0|1|0]0]|O
BYRON_MIRANDA 3|o|o|2|0|0]|oO
DAVID BRANCACCIO | 3|7 |0|5|3|0] 1
DIANE_SAWYER olo|lo|2|0|0]|O
DONNA_KELLY 7/0/o0|1|6]0]1
FILE4A ANEDOEOOL | 0|0 |0 |2|0|0]| O
1960711P_ANNOUNCER1 0 | 0|0 |2 |0 | 0| O
JUDY_WOODRUFF 2/0|0|1|0]0]|O
LISA_MULLINS 3|6/0|1|/0|0]|O
MARY_AMBROSE 6|/2|0[3|0|0]| 4
N960715P_J DOEOOL [ 0 | 0[O | 1|0 | 0] O
NPR_MKP_ANNOUNCER| 0 | 0|0 [ 1|0 |0 O
0960710P ANEDOEOO1 | 1 |0 | 0| 2| 0| 0| 2
0960710P ANEDOE002 | 0 | 2 | 0|2 | 0|0 | O

Table 21.Number of sgments by each speskunder diferent conditions. The speatis on this

table are those for whom therasvay amount of speech under focus condition F3, defined as
speech with music in background. Most of the speaka&e a lage amount of speech, measured as
number of sgments, under clean speech conditions in addition to speech under F3 condition.

extracted from clean speech. Systematic errors in the estimation of formants persist when we clus-

ter sgments, since these errors are present in the formant estimates gfnahtse

5.6.4 Normalization on d#rent Hub 4 focus conditions

Table 19 in Section 5.6.3 presents resultgnding diferent focus conditions that grant further
comments. W obsere the algorithm brings about an impeonent comparable to WSJ on clean
planned speech, namely focus conditions FO and F5. The normalizatomviiere we wuld

expect it to fil, namely conditions F2 and F3, which are respelgtibandlimited speech and



Chapter 5. Normalization Applied to Large Vocabulary Tasks 96

Spealer FO|F1|F2| F3|F4|F5| FX
BETSY_KEEFER o010, 0|0] O
DAVID_SMITH Oo;]o0l1|]0]0|0|O0
FILE2_JOHNDOEOOZ2 | O | 2 | 4| 0| 0] 0] O
FILE2_JOHNDOEOO3 | O | O | 5| 0| 0| 0| O
1960711P_JOHNDOEOOZ2 O | O | 4 | O | O | O | O
1960711P_JOHNDOEOO3 O | O | 7 | O | O | O | O
JOANNE_MILES Oo(0}2|]0,0|0] O
0960710P_JOHNDOEOORO | O |2 | O | O[O | O
P960712 ANEDOEOO1 | O | O | 2 | O] O | O | O
SUSAN_SVAIN Oo(3}]1|]0,0|0] O
THOMAS_BUCKLY Oo;]o0l1|]0]0|0|O0

Table 22.Number of sgments by each speakunder diferent conditions. The speatis on this

table are those for whom therasvay amount of speech under focus condition F2, defined as ne
rowband speech. Afespealers hae ary speech at all under clean speech conditions in addition t
speech under F2 condition.

speech with music in the background. The other conditions are festedfby the normalization,

i.e., the normalization neither brings about a measurable benefiilsor f

Under conditions F2 and F3, the formant texakight easily be led intalkse estimates. Music in
background will introduce harmonics to the signal, and the formantetradk easily mistak
these harmonics for formants. The formant estimates in this case rairigindnstant for sesral
frames of speech, thus introducing aylaamount of points that do not belong in the distidn.
Bandlimited speech will also cause the formant ®ad& fail. Specially for female speaks, who
tend to hae higher formants, it is possible that the third formant will be located igi@nréhat is
attenuated by the channel. In this case, a systeradticef of the formant traek will lead to poor

estimates of distritions, which will in turn result in meaningless features for normalization.

Focus condition F4 represents competing speech. Speech undeviédshybrepresents a chal-
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lenge to the formant traek However, differently than speech under F3, the outliers introduced by
competing speech are not systematically around the salone Whe distribtion of formants will
be afected, and theatct that normalizatiorefls to perform well confirms it, keever, the influence

of outliers is not as dramatic as under F3.

Focus condition FX represents speech that cannot be classifiedymibthe other conditions. It
includes narrwband speech, noise in background, planned or spontaneous speedtt That f

normalization does notavk is as much withinxplanation as if it had arked.

We note that normalization does not seem toigethe same impr@ment on the focus condition

F1, spontaneous speech, as it does on FO, planned speech, although both focus conditions are con-

sidered clean speech.

As pointed out in SectioB.6.2, normalization will tend to be lesdegtive on shorter sentences.
Figure 23 displays the digrent distritutions of sgment duration for both focus conditions. The

panel includes only gienents shorter than 20 seconds.
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Figure 23.Distribution of sgment duration for focus conditions FO and F1 on Hub 4.
Only s@ments shorter than 20 seconds are included.

We can clearly see that F1 contain a muchdanumber of sentences with less than 5 seconds of
duration. Indeed, the distriion of sgment duration seems completelyfelient for both focus
conditions. FO contains a {gr percentage of longergseents than F1. Normalization tends to be

more efective on longer ggments. Moreger, longer sgments olsiously contain more wards,



Chapter 5. Normalization Applied to Large Vocabulary Tasks 98

thus being more relant for the gerall word error rate.

5.6.5 Reliability of formant traek

The normalization algorithm presented in this thesis depends inherently on the reliability of the
formant tracler. In this section, we study the influence of some of the possible kinds of esistak
committed by the formant traek We claim that systematic, repetiierrors cause deadation to

the system more than sporadic errors. Meeeave claim that the presence of errors in a collec-
tion of formant estimates containing more information about the signal is preferable to an error

free collection containing little information about the signal.

The formant trackr can introduce outliers spread ateothe possible range of frequgn@lues,
or it can introduce a repetition of avgh estimatedalue, or it can discard correct formant esti-

mates or a frequeggange altogethehese errors e different causes and can appear together

Formant tracking is an errorful process. Automatic estimation of formants produces outliers unless
very sophisticated methods are enyeld. The presence of outliers can be counteracted by care-
fully hand-selecting frames for which the formant estimates are definitely correct. Hand-selection
ensures that no outliers are present in the ensemble of collected data, although it can also cause

some walid points to be discarded.

The presence of strong noarying tones (which can occdor example, with music in the back-
ground) can mislead the formant tracknto selecting the tone as a formant. Since the tone lasts
for a long duration compared to the duration of phonemes, this almost-coradtenappears in

the ensemble of collected data mdimes, thus stwing the distrilution. Morewer, as the alue

produced by the formant traekis almost constant, theanance of the data decreases.

The third kind of mistad, discarding formant estimates, appears m different contgts. It can
be a consequence of ary strict outlier detection method, in which case correct estimates are also

discarded with most of the outliers. It can also be a consequence of signal characteristics more
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than a defect of the formant trakin narravband of telephone speech, faaenple, some of the
“actual” formant tracks go lyend the signal frequepcange. Under these circumstances, the for-
mant tracker can label, forxample, the second frequgnpeak (which should be labelled as the
second formant) as “third formant”, and so oneithough only one of the formants goegdel

the signal bandwidth, all formant assignments can be wrong.

We ran e&periments that tried to assess the influence in recognition performance of each of these
types of errors. The firskperiment @mined the consequence @fry strict criteria for detection

of outliers. Decisions of whether asrgh formant estimateas correct or not were based on visual
inspection. An automatically-generated estimases @wccepted only if it perfectly fit a formant in

the spectrogram. /are confident that the final collection of formant estimates contains no outli-
ers, @en though manamuably-correct estimates\vebeen discarded. Th&periment vas per-

formed on the non-English portion of the Broadcaswd&ask. The non-English part is simpler

than the English one in that speech is not classified into focus conditions. The results are presented

on Table 23.

Normalization| Formant estimate selectignWER (%)
None N/A 23.2
Per sentence Automatic 22.9
Per cluster Automatic 23.0
Per speadr Manual 28.5

Table 23.Word error rate (WER) on BroadcastWe(Hub 4) non-English using automatic or man-
ual selection of frames where formant estimates were considered correct. Automatic selection
siders formant estimate to be correct if the probability of the frame beiogdvis greater than a
threshold. Manual selection is based on visual inspection.

We belieze that manual selection of formant estimates performs macdevthan automatic classi-
fication for reasons similar to those presented in Section 5.6.2. There, wedghat the perfor-
mance of the normalization algorithm is related to the contents of the utterance. Mismatches

between the ariety of phonemes uttered by axngpeakr and by the ensemble of speekwill
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result in distrilntions of formant estimates that cannot be mapped.

A human selecting “correct” formant estimates based on visual inspection of formant treicks o
spectrograms tends to select frames corresponding to some phonemes much more than others,
since it is clearer for some phonemes that formant tracks are correct ingibat f&s a conse-

guence, the collection of phonemes from which formant estimatesteen selected is small,

resulting in skwed distrilutions.

Ideally, we should be able to obtain formant estimates that represent all phonemes uniahmly
no outliers whatsaer. However, the interpretation of what an outlier ideats the rigorousness
with which we discard estimates. If weviaaa \ery strict definition of outliers, the implementation

of criteria for detection of outliers will also discard some correct estimates. IfwgeaHaose def-
inition of outliers, we are less Bky to discard correct estimatesitlive hae to cope with theafct

that some of the points are wrong estimates. Kperénents on dble 23 she that laver stan-
dards verk better than strict ones.aestrict these conclusions to outliers that appear sporadically

over the whole frequegaange.

We hypothesize that occasional outliers do né¢@fthe features, that is, the statistics computed
from distritutions of formants. Systematic errorsweger, cause the distrillions to represent
something other than the real contents of the utterance. Anxamgpées of situations that can
cause systematic errors, we point out nab@nd speech and speecaleomusic. As pointed out
before, narraband speech can cause the formant tatk male completely mistadn assign-
ments of labels, such as assigning the label “second formant” to the “actual” first formant, etc, if
one of the “actual” formant goesymnd the frequencrange of the signal. Speecheo music, on

the other hand, can confound the formant teadk captures tones, thus altering the disifiitn of
formant estimates. In Section 5.6.3 we pointed out tlastering speech with music in the back-

ground with clean speech ameliorates this problem.

In both cases, the distubon of formant estimates isaked. Table 24 presents theerage wari-
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ance of the formant estimates of the first three formants for each focus condition on Hub 4 as well
as the relatie improvement achiged on each condition using the wholeelepment test data pro-

vided for the 1997w@luation.

We obsere some dgree of dependegdietween the imprement achieed with normalization
and the gerage wariances of formants. A Iger \ariance suggests a d¢gar \ariety of phonemes in
the utterance or ensemble of utterances, since it implies that formant estimatesdraproduced
at a lager frequeng range. As pointed out before, since we do not restrict the training set to an
small subset of phonemes, aglar number of phonemes in the test set implies a better match

between thearieties of phonemes.

Smaller \ariance on the other hand suggests a smaldlegty of phonemes. Additionallit might

be a consequence of systematic errors in the formant estimation. Note thabaadspeech,
usually referred to as condition F2, and spee&h music, referred to as condition F3, are the tw
focus conditions with smalleste@rage ariance of the third formant and among the smallest of the
second formant. Narwband speech has a cap onhar the third formant can go, and it is not
surprising that theariance of the third formant is the smallest for F2. On the other hand, system-
atic insertion of an almost constamtive for a relatiely lalge period of time, as is often the case
with music in the background, also causes Hriances to decrease. These results confirmatite f
that systematic insertion of errors can cauggatiation as compared to the presence of sporadic

outliers.

We have to deal with the limitations of formant trask. An &tremely strict definition of “outlier”
causes important information from the signal to be lost. Therefore, presence of outliers is prefera-
ble to loss of correct formant estimates. Systematic errongvieg cause lager dgradation. Sys-
tematic errors are most often consequence of the signal characteristics ratheatlae of fthe

formant trackr.

5.7. Systems with ealistic settings
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Condition | Segments F1 F2 F3 imprrz\(/aelz?:({:-?]t(%)
FO 230 57,862.57| 290,601.84 268,164.98 5.6604
F1 346 46,835.86| 263,590.26 270,569.70 4.0678
F2 108 45,179.87| 246,148.22 179,956.69 2.1912
F3 103 64,129.58| 238,779.37| 195,188.29 4.3353
F4 133 49,098.91| 247,960.03 211,292.09 4.6729
F5 17 59,912.05| 263,200.51] 380,972.82 8.7533
FX 113 57,700.28| 208,731.82 232,016.71] 2.6101
Overall 1050 | 52,444.92| 257,389.26| 243,458.14 3.8576

Table 24.Mean of \ariances of formants - Hub 4-97 PE

So far, we hae artificially bounded performance of the system so as to study particular issues. W
have been limiting the language weight otperiments on Resource Management (RM1) so as to
concentrate on the influence of the sgeailormalization on the acoustic modek Wave limited

the training set of Hub 4 so as to@akto account speech with high audio quality alone. These
artificial settings might create conditions where the normalization migtk whereas it might be
ineffective in a realistic setting. In this section, we present companasults between normaliza-

tion and baseline systems for a realistic system setting.

On RM1, the limiting setting &s the language weight set toesiyvlov number so as to disable the
language model. In Chapter 4, we learned that we canvadhie best performance with a linear
function fitting a set of points with appropriate weights. The set of points or the set of weights can
be chosen carefully so as to aslei¢he best performance. The best set of weights can be selected
with MDLR. Alternatively, the best combination of features can be chosen and equally weighed.
Normalization vas performed on a speakbasis in all speaks for the training and testing data
sets. Bble 25 presents results with a realistic language weight of 9.5. From the table, we indeed
obsene that speadr normalization prades a measurable imp@ment in verd error rate for a

realistic system.
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Points Weights | WER(%)

None None 6.6
Min F1, Med F1, F2 Equal 5.7
Med F1, F2, F3 | MDLR 5.6

Table 25.Word error rate (WER) on Resource Management (RM1) for normalization using a re
istic language weight. ®ping function is a linear function. Points and weights are indicated.

With Hub 4, the limiting parameters were the amount and quality of the data used for training,
which we restricted to the focus condition FO, clean planned speech. The main findings were that
normalization of the training data does not seem to beamieand normalization on agsaent

basis or on a cluster basis yield similar performancaisleT26 presents results of atperiment

where we utilized HMMs created from alladlable speech on the Hub 4 training set. Speech for
training did not undegyo speakr normalization. Normalizationas applied to ggnents on the test

set on a gEMent by sgment basis.

Condition
Normalization

Overall | FO | F1 | F2 | F3 | F4 | F5 | FX

No 29.2 |18.4|258|43.8|28.1| 25.5| 36.3| 47.6
Yes 28.7 |17.0|125.1|45.3|28.1| 26.7| 28.2| 48.1

Table 26.WER on H4 trained on all data

The results for focus conditions FO and F5 are statistically significantly better with normalization
than without it. Results for the other conditions do not presenge thference. V@ can obsess

though that the obseations set forth in Section 5.6.4 hold true.

5.8. Conclusions

In this chapter we va investicated issues related to the performance of the speakmalization
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algorithm across diérent tasks. W examined the possible causes ofatiénces in performance.
Most eperiments on this Thesis were performed using Resource Management (RM1). In this

chapterwe also emplged Wall Street Journal (WSJ) and Broadcasivisi¢Hub 4).

Initially, we examined spead adaptation as an alternatiapproach to reducing speakariabil-
ity. Both spea&r adaptation and normalization aréeefive. We focused our attention in finding
how well the two approaches guld work togetherIn fact, we found that the combination of

spealer normalization and adaptation is beneficial.

WSJ is similar to RM1 in audio qualityibrather diferent in complgity of language and amount
of data. V¢ hare examined hw these diferences déct normalization. By limiting the amount of
data from which we created HMMs, weviadound that with the same amount of speech, normal-
ization tends to be morefeétive with a smaller number of speak. A lager number of speaks

will produce HMMs with broader output pdfs. Wepealkrs presented to the system will perform
better than if the output pdfs were naves Speakr normalization has a mordesftive contrilu-

tion to performance since it reducesiability between speaks.

On the other hand, we found that with the same number ofexsealormalization of the training
data as well as the test data becomes essential if the amount of data parisgagkr In this
case, reducingariability of speakrs in the training set has the adtage of producing models

which are not so well tuned to the particular set of sprsak the training set.

Our periments also shwo that ocalulary size contribtes to the dierence in performance
between WSJ and RM1. A smaller dictionary reduces the search spacewogghamay seeral
paths leading to wrong transcriptions. Sp@akormalization successfully transforms the original
data so that most of these wrong paths are replaced by correct ones as theittopdiln the

reduced search space.

On Hub 4, hwever, we need to use a dictionary which is agdaas possible, as well as as much
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data as ‘ailable from as manspealkrs as feasible. Nonetheless, we found similar tendencies
between RM1 and Hub 4 garding a better performance for longegreents of speech. &/
attempted to cope with the presence of short duratpmeets by clustering them. This approach
proved to be fruitless, since some of the clusters still contaiesdiittle data and some contained

data from more than one speak

Our periments hae shavn that speadr normalization brings about some imygEment on the
Hub 4 focus conditions containing clean planned spee&Fbkand F5. Normalizationas inef-
fective or in fct brought dgradation in some conditionsvinlving systematic disturbances to the
formant tracking process, Bknarrevband speech and speech with music in the background.
Under condition F1, which is also clean speech, normalization seems tofbetiveebn the sub-

set of the data that we empéal as the test set. F1 containesyvage number of &ry short sg-
ments. Normalization tends not t@mk on short sgments of data, thuxglaining the diference

in performance of the normalization algorithm between FO and F1.
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Chapter 6
Summary and Conclusions

6.1. Summary

This Thesis presents a study on sgeakormalization using arping functions. W present a
method for speak normalization andxamine the déctiveness of this method undewrseal con-
ditions using difierent databases. Although theeriments on diérent tasks were performed with
our method, we behle the conclusions can betended to other speek normalization tech-

niques.

Our method maés use of acoustic features, specifically formants, to defineatpéng function.

We initially compute statistics from disttibons of formants. These statistics are the coordinates
of points which define the avping function. The arping function thus defined maps the fre-
gueng axis of a standard speakio the frequencaxis of a ne/ spealer. No constraint is imposed

on the shape of theasping function or on the statistical measurements we use, thus making it a

flexible frameavork to benchmark diérent choices of shapes and features.

Regarding shapes, ouxperiments indicate that the specifics of the shapeagbing function are
largely irrelezant. We found no statistically significant tifences when using a linear function or
other diferent shapes. This is not surprising, since other autheesgrasented speaknormal-
ization techniques using both linear [14][73] and nonlinear [1afpimg functions without either

function revealing ay clear adantage of onewer the other

For choosing features and which statistical measurements to use, we present a method based on
Multi Dimensional Linear Rgression (MDLR) which alls us to optimize the weights of each
feature. As a special case, this methodvallas to select a set of optimal featuresthWhis

method, we ha obsered the someghat curious result that the best featuregmaik isolation do

not necessarily yield the best combinationof features.
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We have performed xperiments using this technique on the ARResource Management data-
base (RM1) with good results.@/@bsered relatve improvements of up to 22% inavd error rate
(WER), while relatre improsements obtained by our implementation of techniques proposed by

other authors were between 9% and 17%.

For the Wall Street Journal task (WSJ) and BroadcastdNiesk (Hub 4) we achied more mod-
est improements. The iestigation of possible reasons for this diminution in imnyenment in per-

formance for WSJ and Hub 4 brought about some interesting conclusions.

The most obious diference between RM1 and WSJ is the amount of data, both in terms of num-
ber of speattrs and amount of data per sperake have found that spea&k normalization is less
effective with a lager number of speaks. A gven system will perform better with amepealer

if the output probabilities of Hidden Mak Models (HMMs) are less well tuned to the spaak

in the training set. A speakindependent system, foraample, will hae a better performance for

a completely n& speakr than a spe&k dependent system not trained for that particular speak
The HMMs are less well tuned toyagiven speadr if the number of speaks is lager The system

will perform better with a ng spealker with these less well tuned models, thus causing theapeak

normalization to be less helpful.

We also found that normalization of the training data becomes more important if the amount of
data per spe&k is lage. Speasr normalization attempts to map speakto a standard speak
Ideally, if this attempt is fully achied, a speak-independent systemaowld in fact be a speak
dependent systenx@usively trained for the standard speakTherefore, it is not surprising that
normalization of the training data mexkspeadr normalization more fefctive. It is counterintui-

tive, havever, that normalization of the training data is not helpful if the amount of data per
spealkr is smalleras we found in ourxperiments with WSJ. More data per speagauses the
HMMs to become better tuned to the sprakin the training set. Speaknormalization reduces
variability between speaks, reducing the tuning of the HMMs to that set of spesaland impre-

ing performance for e spealkrs.
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Somevhat surprisinglywe found that speak normalization is more feictive with smaller ecab-

ularies. Speadr normalization deals with acoustic characteristics of ggeakhe contents of an
utterance should be irref@nt. Havever, the performance of the recognition system imesoin

the reduced search space obtained with the smaller dictigkasfective transformation of the

data will replace the wrong path from the original search space by a correct path more often than
by another wrong path in the reduced search space. A comparison of the mnelptivement in
performance with speak normalization between a ¢gr and a smallocalulary searches sivs

that normalization is inaict an dictive transformation of the original data.

Some issuex.g. the availability of data from each speakare specific to Hub 4. 8\have made
comparatre studies where we limit the amount of data used for normalization with RM1 so as to
have a sense of momuch data we needed for affeefive normalization. Not surprisinglperfor-
mance increased with the amount of dataabt,fperformance achied with speagr normaliza-

tion based onery little data tends to be muclorge than performance without normalization.

We found a strong correlation between the improent in performance and the number of unique
vowels in the utterance. The longer the utterance, tigerdne set of avels present in the utter-
ance, which is consistent with the impement being layer when we ha more data. A possible
reason behind thisa€t is that the match between the setavals in the utterance and the set of
vowels “uttered” by the standard speakncreases. The standard smgakpresents thevarage of

all speakrs collected with a lge amount of data. Therefore, we can interpret thésaging as if
the standard speakhad “uttered” all possibleowels in the sense that albwels are statistically

represented in the standard spak

Better matching of the set obwels uttered by a mespeakr and the set uttered by the standard
spealer can be obtained by requiring all speakto say a particular standard utterance. In this
case, the mapping between standard amdapeakr will be based on statistics of histograms of

formants representing the same sets of phonemes, potentiallingllior shorter utterances.
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Clustering of utterances can impeospeakr normalization performance in the Hub 4, increasing
the amount of usable data from each speadkhile automatic clusteringas not dective for us,
hand labelled that clustering using speraklentification vas helpful. The increase of the amount

of data helps speaknormalization, as should be no surprise.

Spealer adaptation is an alternadi approach to solving the same problem of spewiability.

We have examined whether the joint empgiment of speadr adaptation and normalizatiorowd

be beneficial. Speak normalization attempts to bring all speekclose to the same standard
spealer. Speakr adaptation, on the other hand, attempts to bring the Hditsef from the eer-

age and closer to each particular speakhe combination of both approaches brings a sizable
improvement compared to either approach applied separ@iahously, neither of the techniques
achieves perfect results. Normalization reducesiability between speaks lut this \ariability

still exists, thus le@ing scope for the adaptation t@sk. Similarly, adaptation does a goodtimot

perfect job at transforming spesakndependent HMMs into speakdependent ones.

Gender normalization, which is nothingtta simplified ersion of the speak normalization, has

also been studied and stoto be beneficial. Wfound gender normalization mordeetive than
gendr dependent models imcf. Gender dependent models are restricted to using only part of the
training data. Gender normalization reducasability between speaks and still allws the use of

all data to create a single set of models.

We have also inesticated the performance of the normalization based on acoustic features applied
to narravband speech. While we were concerned that the freguange of the narmband data
might be smaller than the range afiation of the formants, thereby attenuating formants in some

frames, we hee found that normalization does perform wette in these cases.

6.2. Future directions

Every piece of wrk has to deal with a tradefdfetween cost and performance. The best perfor-
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mance we can achie usually also implies a higher cost in terms of time or computational cost. A

sub-optimal solution with respect to performance might be the best solution in somxésconte

In this work, we hae attempted to limit the computational cost. One important constraint we
imposed is that normalization in this coxttehould be attempted without requiringyaan of rec-
ognition. Havever, we beli&#e some impreement can be achied if we can use the information

of location of phonemes or at least contents of an utterance.

We pointed out in Chapter 5 that there is a relation between vempent in performance and
duration as well as number of uniguevels in the utterance. It is at least intgtihat the contents
of the utterance in terms o&rability of phonemes is more rgnt than duration. This suggests
that with a better match of the set of phonemes uttered byvaspeakr and by the standard

spealer we can hae better choices ofavping function.

The warping function is selected based on acoustic features, which are statistical measurements of
spealer specific formant distritiions. A set of sentences uttered by a spealkight contain only a

small number of dierent phonemes. In this case, the distidn of formants will be skved.
However, if all the spear utter the same utterance, or if weetéiko account only one specific set

of phonemes,wen if the distrilntions are distorted, theare distorted due to the same influence.
Statistics computed from these distorted distidns map to each other better than if we do not

consider these ffcts.

The standard speakis an serage of speat Therefore, the phonemes “uttered” by the standard
spealer are of course an ensemble of the phonemes uttered by akbispieatkis aerage. A better

match between the set of phonemes uttered bwapeakr and the set from the standard sgeak

can be achieed by requesting all speats to say the same utterance, faareple, an enrollment
utterance. In conkts where this is not possible, we can make of a first initial pass of recogni-

tion where we locate the phonemes in an utterance and select a subset of the phonemes present in

the utterance.
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Potentially this approach can benefit the normalization tchnique as ivisMoreover, since we
will be attempting to collect only a specific set of phonemes, we might be able teeaahiege

an impravement with ery short sentences, pided the contain the required set of phonemes.

Another deelopment which mads use of an initial pass of recognitiogarls normalization
diversely applied to diérent rgions of speech. Since normalization attempts to modelelifces
due to diferent \ocal tract lengths, it intuitely does not makmuch sense to apply it to phonemes
produced in obstructions of theaal tract &r from the wcal chords, such as fricadis. An initial

phoneme-labelling of the utterance could flagjors where normalization should not be applied.

An additional &tension of this wrk males use of a Bayesian approach to the linegiession
estimates. & found in Chapter 4 that gender normalizatiorvigies substantial impvement as
compared to no normalization. A Bayesian approactlavtale adwantage of these gender spe-
cific warping functions. If no further speatkspecific information isvailable, the linear gression
estimates of the slope of the lineaarping function wuld be simply the gender specific slope. As
more data becomeailable, the linear gression estimates gets modified so as toenuglke of this

new piece of information. The Bayesian approach has importance under a practical powt of vie
Since gender normalizationvgis impreement at almost no cost, it can be used if no other source

of information is &ailable.



111

Appendix A
Derivation of Linear Regression Equations

A.l. Least-squakes solution to waping function

In this section, we present a brief description of the main mathematical toolechpiche prei-
ous chapters, lineargeession. Linear gression gies an estimate of the céiefents of a straight
line that best fits a collection of datapoints. Although this is a wellvkrtechnique, we present

the dervation in this appendix since we use one of the results often.

The warping function is a cuevthat will fit points corresponding to features on a planex|.dte

the k-th feature of a standard speagland lety, be thek-th feature of a speakwe intend to nor-

malize to the standard speakAssuming that each feature is independent of the others, and that

the distrilution of measurements of a feature is Gaussian, we can compute the probability of

observing the featurg, as

2
p(y,) = N(ax, +b, ay) (29)
whereax, + b is the &pected alue ofy,, that is, the estimatedlue ofy, according to the lin-

ear model we intend to fit. Because the features are independent, the joint probability is the prod-

uct of the corresponding probabilities. This product can be written as the product fatctars,

with one of them independent of the parametew b:

3y, - (ax, + b)]ZE

P(Y1 Yo Y -..) = Cl] expl (30)
10 Y22 J3 U 0 ZO'i C

To maximize the praous &pression, it is more copnient if we tak the logrithm on both sides,
thus cowerting the product of terms into a summation of terms, and getting rid ofgbaentia-
tion. Considering that we intend to maximize tkpression with respect @ andb, we can also
eliminate constants an@nables that do not depend on thesgables. Maximization of the prie

ous epression therefore corresponds to the minimization of:
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[y —(ax, + b)]°

2T 2 ey

Alternatively, we could hae chosen to minimize the distance between the estiﬁp(awcording

to the modely = ax+ b and the measurg , weighing the distance between the estin}:.ﬁtand

the point(X,, y,) with a weightW, . In this case, we could find the paramegrandb by mini-
mizing:
~ 2
Z (Y= Yi) Wy (32)
or explicitly in terms of the ariables and data points:
2
Z[yk—(axk+ b)]"W, (33)
The similarity between Equations (31) and (33) leads us to interpret the former as a special case of

the latter when we set the weig, to the iverse of the ariancel/ okz.

We continue the minimization of Expression (33)kifig the deriatives with respect ta andb

and equating the desdtives to zero, we obtain:
az xiWk + bZ X W, = Z X YW (34)

and

aZ X, W, + bZWk

Notice that the weight§V, are not necessarily deed from statistical treatment of the datat b

Z YiWi (35)

may be obtained by other criteria. These criteria depend entirely on the application.

The solutions to the pvmus set of equations can be easilyvahdo be:



113

Z X ijijj - z X W, zij

a= (36)
ZW Zx W, axwg
foWiZijj—ZXiWiZXJijj
b = - (37)

szxw axwﬁ

An important special case is the mogleE ax, obtained by settin@ equal to zero in Equations

(29) and (30). The solution fa turns out to be:

Z XYW
= — (38)

Z XiWk

This special case is used throughout thiskwBased on Equation, we degiweights and optimal

combinations of features as described in Chapter 4.
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