
  

Abstract—Real passenger data available to city planners 

are usually incomplete. The goal of our work is to generate 

synthetic passenger data using a novel methodology that 

leverages joint traffic-passenger modeling and simulation on a 

city scale. A demonstration of such an idea in generating 

synthetic bus passenger data was implemented. Specifically, we 

1) learned a bus passenger demand model from indirect people-

mobility data to generate bus passenger demand samples, and 

we 2) developed a bus passenger behavior model, which runs 

jointly with a traffic simulator (SUMO), to generate synthetic 

bus passenger data. We applied the proposed methodology for 

a case study of Porto city, Portugal. The synthetic bus 

passenger data presents significant similarity in terms of 

spatial-temporal distributions to the real-world bus passenger 

data collected by the bus automated fare collection (AFC) 

system in Porto. 

Keywords—public transportation, simulation, synthetic data, 

behavior modeling, Poisson process, KL divergence 

I. INTRODUCTION 

It has long been known that research into estimating 
passenger behavior and corresponding mobility patterns 
requires access to large-scale and multi-source human 
mobility data. The availability of human mobility data is 
increasing. Fortunately, thanks to advances in sensing 
technologies and the widespread use of automated data 
collection (ADC) in public transportation, it is possible to 
collect large quantities of diverse data on urban spaces and 
city populations, for example, vehicle global positioning 
system (GPS) data and automated fare collection (AFC) data. 

Unfortunately, when it comes to passenger-related 
research, the data available to researchers are usually 
insufficient, either because the data are incomplete with 
important features missing or because the data are only 
indirectly related to the topic of focus (see Table I for more 
information). Complete data are usually lacking due to the 
challenges that urban infrastructures face in integrating 
large-scale multi-source data in a timely and low-cost 
fashion. This lack-of-complete-data issue limits passenger-
related research. For example, in bus transportation systems, 
the bus passenger data are usually collected by automated 
passenger count (APC) systems or AFC systems. 
Unfortunately, the data collected by those systems are often 
incomplete (no alighting feature is recorded), limiting the 
estimation of the overall demand profile. More seriously, the 
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origin-destination (O-D) survey is expensive in terms of 
human effort and financial cost. As a result, the development 
of many state-of-the-art methods for bus passenger 
estimation and prediction (e.g., [ 1 ], [ 2 ]) are unable to 
validate themselves because some necessary features in the 
real data are not available. 

To cope with the issue, utilizing indirectly related data 
could be a way out. In general, indirectly related data are 
from a different source, with some features correlating 
positively to those in the unknown complete data. Grounded 
on these correlated features, we attempted to develop a 
method for generating synthetic complete data that are most 
likely to be observed in reality. Inspired by this idea, and as 
a main contribution of this paper, we proposed a joint traffic-
passenger modeling and simulation methodology to generate 
synthetic passenger data based on other indirectly related 
people mobility data. To be specific, we demonstrated and 
verified the proposed method in the setting of bus 
transportation systems: 

 We learned a bus passenger demand model from other 
indirectly related people mobility data to generate bus 
passenger demand samples. This was motivated by the 
insight that the people mobility trend reflected by the 
data of different sources can correlate positively to the 
mobility trend of real bus passengers;  

 We developed a passenger behavior model to jointly 
run with a mature traffic simulator (SUMO) to 
generate city-wide synthetic bus passenger data; 

 We implemented the methodology for a case study of 
Porto city, Portugal. The simulation outcomes were 
validated by measuring the distribution difference 
between the synthetic passenger data and the real bus 
Automated Fare Collection (AFC) data of Porto; 

 Our work is the first successful attempt to transfer 
indirect people mobility data to complete bus 
passenger data by means of joint traffic-passenger 
modeling and simulation. 

II. BACKGROUND AND RELATED WORK 

Passenger behavior modeling and simulation have often 
been used in transportation system research. To evaluate the 
performance of vehicle scheduling and platform deploying, 
such as selecting bus stop sites, the behavior of passengers 
must be simulated and analyzed in detail. Although they are 
sophisticated enough to take into consideration individual 
preferences [3], the seat allocation process [4, 5], and even 
pressure from passengers behind a person [6], most studies 
are highly microscopic, confining their domains to limited 

Generating Synthetic Passenger Data through Joint 

Traffic-Passenger Modeling and Simulation 
Rongye Shi†, Peter Steenkiste‡†, Manuela Veloso‡† 

†Department of Electrical and Computer Engineering, Carnegie Mellon University, Pittsburgh, PA, USA 

‡School of Computer Science, Carnegie Mellon University, Pittsburgh, PA, USA 

rongyeshi@cmu.edu, prs@cs.cmu.edu, mmv@cs.cmu.edu 

2018 21st International Conference on Intelligent Transportation Systems (ITSC)
Maui, Hawaii, USA, November 4-7, 2018

978-1-7281-0322-8/18/$31.00 ©2018 IEEE 3397



  

numbers of buses and not scaling well to provide insights 
into the macroscopic flow of passengers in the entire city.  

Compared with passenger modeling, traffic simulation, 
such as bus transportation simulation, has experienced rapid 
and significant developments. Many road traffic simulators, 
for example, VISSIM, AIMSUN, Matsim, SUMO, etc., are 
developed with good performance. One commonly used 
open-source traffic simulator is SUMO (Simulation of 
Urban MObility), which provides a platform for explicitly 
simulating vehicles, including cars, buses, and urban trains 
on a city scale. However, most traffic simulators are 
currently unable to provide information about passenger-
vehicle interactions, which is of great interest in bus 
passenger behavior and prediction studies. 

To fill the gap between passenger and traffic simulation, 
we propose a methodology for simulating bus passenger 
behavior in conjunction with the mature traffic simulator 
(SUMO) on a city scale. To the best of our knowledge, this 
is the first attempt to generate synthetic passenger data 
through city-wide traffic-passenger joint simulation.  

III. METHODOLOGY 

The problem of focus in this paper is as follows: How 
can we make use of the knowledge learned from the 
indirectly related people mobility data to generate complete 
passenger data that are most likely to be observed in reality? 

A. Importance of Combining Passenger Modeling and 

Traffic Simulation 

Neither modeling passenger behavior nor simulating 
traffic can solve the aforementioned problem independently, 
leading to the idea of combining passenger modeling and 
traffic simulation. First of all, modeling passenger behavior 
specifies how people’s travels are demanded and planned 
(e.g., the 𝑂𝑖 and 𝐷𝑖 in TABLE I), but it does not detail what 
passengers actually experience during travel in an urban 
traffic environment (e.g., the 𝑡𝑖 in TABLE I). This missing 

experience can be supplemented with traffic simulation. 
Second, most traffic simulation provides representations of 
transportation systems and vehicle behaviors, especially how 
public transits operate in urban road networks. However, 
passenger-level travel demands/behaviors and the 
corresponding impact on the public transportation systems 
(e.g., bus dwell time affected by passengers) are unavailable. 
This can be supplemented with passenger modeling. 
Combining passenger modeling and traffic simulation is an 
effective way in which to employ the strong points of both 
approaches and overcome the shortcomings of either. 

B. Overview of the Method 

We provide a high-level overview of the proposed 
methodology in the setting of bus transportations system 
settings. Note that technical details may vary according to 
different cities and available data sources. The joint traffic-
passenger modeling and simulation methodology is designed 
to thoroughly capture the interactions among passengers, 
buses, and traffic. Specifically, it simulates the behavior of 
bus passengers moving through the urban bus network while 
having the buses interact with the urban traffic environment. 
To avoid any misunderstandings, we define a passenger “trip 
demand” as consisting of the trip starting time and an 
origin-destination (O-D) pair; meanwhile, a passenger 
“travel demand” consists of the trip starting time, an O-D 
pair, and a specific travel plan. See TABLE I for details.  

The methodology is presented in Figure 1, which is 
composed of two layers: a pre-processing layer and a joint 
simulation layer. The pre-processing layer is a collection of 
three components (denoted as a, b, and c), and they conduct 
city information importing, data learning, and passenger 
demand generating, respectively, to prepare for the joint 
traffic-passenger simulation in the second layer. Specifically, 
Component a serves to extract and convert city road 
infrastructure information from public resources into SUMO 
formats to establish a virtual city traffic network and define 
traffic demands. Component b serves to learn a passenger 

TABLE I 

TERMINOLOGIES 

Term Definition Explanation and example 

Data Domain The features each data point presents (i.e., the feature 

space of the data) and the distribution of the data on these 

features (i.e., the distribution on the feature space) 

The cat image data set has 100 pixels for each image, and the 

feature space is a 100-dimensional space. The feature space and the 

distribution of the cat images in this feature space determine the 

domain of the cat image data. 

Complete Data The data that are in a domain that is sufficient for solving 

a task 

The set of cat images can solve the task to train a classifier to 

distinguish cat images from non-cat images. 

Indirect Data The data that are in a domain that is too different from the 

domain of complete data to solve the task 

The dog image set is indirect data: it has 100 pixels for each image, 

but the distribution in the space is different, and it is insufficient for 

fully training a cat/non-cat classifier. 

Indirectly 

Related Data 

The data that are indirect data, and whose domain 

overlaps with or is similar to the domain of complete data 

(i.e., compared to complete data, some of the features are 

the same and the distributions on these features are 

similar) 

The dog image set is indirectly related to the cat: its distribution on 

the feature space is more similar to the cat distribution than to that 

of other images, such as a vehicle, house, etc. Thus, the dog image 

data can help with partially solving the cat classification task by 

distinguishing a cat image from a vehicle image. 

Trip Demand A tuple (origin, destination, trip starting time) A trip demand is (O, D, t). 

Travel Plan A set of midway O-D pairs without time information A travel plan is {(O, D1), (O2, D2),…,(On, D)}. 

Travel Demand A tuple (origin, destination, trip starting time, travel plan) A travel demand is (O, D, t, {(O, D1), (O2, D2),…,(On, D)}). 

Passenger Trip 

Demand Model 

The description of the distribution from which a passenger 

trip demand is generated 

The distribution model specifies the probability of the occurrence 

of each trip demand in the demand space. 

Experience The sequence of circumstances and events that the 

passenger encounters during a trip, and their occurrence in 

time 

During the trip from stop O to stop D starting at time t, the 

passenger may take several transits to get to stop D. Then, 

experience can be a set of tuples {(O, D1, t), (O2, D2, t2),…,(On, D, 

tn)}. Here, tn is the time of arriving at On. 
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trip generative model from people mobility data and 
generate passenger trip demand samples. Component c 
models the way in which a bus passenger plans to travel 
from the origin to the final destination, through the bus 
network. Finally, this component generates passenger travel 
demand that includes the trip starting time, an O-D pair, and 
a travel plan.  

The traffic settings and bus passenger travel demands are 
fed forward to the joint simulation layer. In this layer, we 
have SUMO simulate the road traffic, including buses and 
other vehicles moving through the established urban road 
network. To be specific, a monitor-control algorithm (the 
passenger behavior simulation block in the dashed box in 
Figure 1) runs jointly with SUMO to monitor the states of 
the buses in real time and to simulate passenger behaviors 
accordingly. At the end of the simulation, this layer outputs 
detailed passenger traveling information and bus state 
information.  

IV. IMPLEMENTATION 

We applied the methodology for a case study of the bus 
transportation system in Porto, Portugal. This section details 
the implementation of the bus passenger modeling and 
simulation. 

A. Bus Transportation System Establishment 

The first step is to establish the urban bus transportation 
system in SUMO, which reflects the exact real world. Main 
bus service operator STCP provides a company website 
where detailed routes, geographical locations of bus stops, 
and timetable information are provided. As shown in Figure 
2, using the STCP bus service information and other public 
resources (e.g., OpenStreetMap, etc.), we established the bus 
transportation system as well as the urban road network 
within the selected central city area of Porto. The imported 
bus network contains 136 routes, 855 bus stops, and 5,723 
bus trips on a normal workday. It is confirmed by the 
simulation tests that the bus performance matches well with 
the actual Porto bus transportation system: each bus departs 
at the scheduled time, runs along its designated route, and 
pulls at designated stops correctly. 

B. Bus Passenger Trip Demand Generative Model 

The second component is to learn the passenger trip 
demand generative model for generating passenger trip 
samples. The goal of this model is to generate the trip 
demand tuple (𝑂, 𝐷, 𝑡) of a passenger. The approaches used 
to establish the model highly depend on the source of data 
available. In many cases, direct and complete data in the 
target domain is not available, and a workaround is to 
proceed with indirectly related data. In this implementation, 
we used Porto taxi trajectory data to learn Porto passenger 
mobility distribution, and then to generate passenger trip 
samples from the distribution. 

The taxi dataset [7] describes a complete year of the 
trajectories for all 422 taxis running in Porto city. Each data 
point contains several features in which we are interested: 
the 1) trip starting time; 2) date type (identifying whether the 
trip occurred on a holiday day); 3) call type (telling whether 
the trip started from the taxi operation central or on a 
random street); and 4) poly line (storing the GPS coordinate 
sequence of the trip trajectory). We selected the data with 
random street call types and removed holiday samples. The 
dataset contained detailed trip starting times and O-D pairs 
of random street passengers, making it a nice resource of 
city dwellers’ travel trend. On the other hand, the selected 
area is the central city area of Porto, which has quite a dense 
bus network, and this setting mitigates the negative 
correlation between taxi and bus demand models by 
excluding areas that are poorly served by buses.  

The proposed passenger trip demand model consists of 
two components, a temporal model and a spatial model. The 
temporal model is an inhomogeneous Poisson process model, 
which is widely used to model the occurrence of events in 
time. We consider the Poisson process to be inhomogeneous, 
and rate parameter 𝜆  varies in time. We fit the rate 
parameter on an hourly basis for a certain weekday. We 
divided a day equally into 24 periods and focused on 
studying all Wednesdays of the year. The average taxi 
demand in each period on Wednesday is shown in Figure 3, 
according to which we fit estimated Wednesday rate vector 

𝜆̂ = (𝜆̂1, … , 𝜆̂24). The temporal model is then described as: 
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Fig. 1.  Joint traffic-passenger modeling and simulation block diagram for bus transportation systems. 

 

 

Fig. 2. Virtual Porto traffic 

network in SUMO. 

 

Fig. 3.  Expected taxi demand on 

Wednesday. 
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in period 𝑖 , interval 𝜏  between two consecutive passenger 
demands follows the following exponential distribution: 

𝜏~𝑓(𝑡; 𝑎(𝜆̂𝑖 + 𝜎)) = 𝑎(𝜆̂𝑖 + 𝜎)𝑒−𝑎(𝜆̂𝑖+𝜎)𝑡. (1) 

Here, 𝑎  is a coefficient to scale 𝜆̂ , as the number of bus 
demands is usually greater than taxi demands (𝑎 is used to 
scale daily passenger demands up to around 150 thousands, 
which is suggested by the STCP 2016 annual service report 
[8]). In practice, we also introduced uncertainty into the 

model by adding small noise 𝜎~𝑁(0,1) to 𝜆̂. 

The spatial model is also learned on an hourly basis. The 
spatial model is a four-dimensional (4-D) distribution model 
from which we can generate 4-D samples with the first two 
components as origin ( 𝑂𝑥, 𝑂𝑦 ) and the last two as 
destination (𝐷𝑥, 𝐷𝑦). We applied kernel density estimation 
to fit the spatial model, using multivariate 4-D normal 
distribution as a kernel. This method is non-parametric and 
is effective when prior knowledge about the distribution is 
unavailable; thus, parametric methods don’t apply well. The 
bandwidth is determined based on the normal distribution 
approximation [9]. Finally, we have the spatial model: 

𝑝̂H(X) =
1

𝑛
∑

1

(2𝜋)4/2|H|1/2
exp (−

1

2
(X − D𝑘)𝑇H−1(X − D𝑘)),𝑛

𝑘=1 (2) 

where H = diag(ℎ1, ℎ2, ℎ3, ℎ4)  defines the bandwidth of 

each dimension, and D𝑘 = (𝑂𝑘
𝑥, 𝑂𝑘

𝑦
, 𝐷𝑘

𝑥, 𝐷𝑘
𝑦

)  is the O-D 

demand of taxi demand data point 𝑘. The model generates 
two geographical points, and we searched for the closest bus 
stop near each point and used it as the origin/destination stop. 
We set a cut-off distance of 640 meters, with the stop 
matching outside of this region nulled. This distance is from 
the public transport accessibility levels (PTAL) 
methodology, which proposes insight that the longest 
distance a passenger would normally walk to access a bus 
service is within the range of an 8-minute walk at the speed 
of 4.8 km/h [10]. A temporal sample and a spatial sample 
constitute a passenger trip demand sample.  

C. Passenger Travel Planning Model 

The passenger travel planning model is to provide the set 
{(𝑂, 𝐷1), (𝑂2, 𝐷2),…,(𝑂𝑛, 𝐷)} of midway trips which lead 
the passenger from origin 𝑂 to destination 𝐷. It is assumed 
that passengers always choose a plan that minimizes cost, 
distance, and unnecessary route switching, upon which, we 
designed a built-in bus passenger travel planning model.  

As illustrated in Figure 4, we considered the bus 
transportation network as a directed graph 𝐺 with vertices 
𝑉 = {𝑣𝑖}  denoting bus stops and edges 𝐸 = {𝑒𝑖}  denoting 
the reachability between bus stops. For example, the blue 
edge from 𝑣1 to 𝑣2 indicates that stop 𝑣2 is reachable from 
stop 𝑣1 by taking route A. In the graph, route A (with blue 
edges) and route B (with red edges) share the transition stop 
𝑣3 and passengers can choose to switch routes there. Besides 
bus route edges, walking edges are introduced into the graph 
(see the yellow dashed edges in Figure 4). Stops within a 
certain geographical distance (e.g., 640 meters) are 
considered to be walking reachable stops, and passengers 
would be willing to walk a few more meters to transfer at 
those stops. In each bus route, vertices are designed to be 
fully connected. After establishing the bus transportation 
network in SUMO, we can measure the exact length of each 

edge, i.e., the weight of each edge denoted as 𝑑. 

Given the graph structure, a travel plan for an O-D pair 
consists of a set of edges, and we call each edge a sub-trip. 
We wanted to find an optimal plan that minimizes a certain 
cost object. In addition to the cost object in traditional 
shortest-path searching problems, which are based on 
accumulative distance only, we introduced 1) route-
switching penalty Δ  to penalize the route switching of a 
travel plan, and 2) penalty 𝜀 to penalize the object when a 
sub-trip (edge) is added into the travel plan. Introducing 𝜀 is 
beneficial: when considering the travel demand from 𝑣5 to 
𝑣6  through route B in the graph (with 𝑑3 =𝑑1 + 𝑑2 ), we 
preferred the optimal travel plan to be represented as 
{edge(𝑣5, 𝑣6)} rather than {edge(𝑣5, 𝑣3),edge(𝑣3, 𝑣6)}. By 
introducing 𝜀, the plan {edge(𝑣5, 𝑣6)} with cost (𝑑3 + 𝜀) will 
win over the plan{edge( 𝑣5, 𝑣3 ), edge( 𝑣3, 𝑣6 )} with cost 
(𝑑1 + 𝑑2 + 2𝜀). Based on the structure of the graph and the 
definition of the cost object, we designed the optimal travel 
plan searching algorithm in Algorithm 1, which is an 
advanced version of the Dijkstra algorithm [11] with a more 
sophisticated cost object. The output of the algorithm is the 
passenger’s plan to move from the origin stop to the 
destination stop through the bus transportation network.   

D. Bus Passenger Behavior Modeling + SUMO Simulation 

Given a bus passenger travel demand (containing the trip 
starting time, an O-D pair, and a travel plan), we needed to 
simulate how the passenger moves through the bus 
transportation network and interacts with buses and traffic to 
ultimately reach the destination. For example, one of the 
core functions of the joint simulation layer is to fill the 
boarding time 𝑡𝑖 for each subtrip tuple (𝑂𝑖, 𝐷𝑖). In this layer, 
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Fig. 4. Graph of bus transportation network. 
 

Algorithm 1    Optimal travel plan searching algorithm 
Input:     s: source vertex; d: destination vertex;  
              {V, E}: graph; iniRoute: initial route of s;  
              ∆: route-switching penalty; ε :adding sub-trip penalty 
Output:  cost, trace 
1. cost[s] 0 %zero the cost of source vertex 
2. s.preRoute iniRoute  %preRoute used to judge route switching 
3. for all v in V – {s} do 
4.     cost[v] ∞  %the cost of non-source vertex is set to infinity 
5.     trace.update({v:(s, infEdge)})  %initialize trace-back record 
6. S ∅  %S: visited vertex set 
7. Q V  %Q: queue set (vertex set to be visited) 
8. while Q ≠ ∅ and d not in S do 
9.     u minCost(Q,cost)  %select vertex u in Q with minimal cost 
10.     S S + {u} 
11.     Q Q - {u}  %move vertex u from Q to visited set S 
12.     for vtemp in u.outNeighbors do   
13.         Eout getEdges(u, vtemp)  %examine outward edges 
14.         for e in Eout do 
15.             update_cost cost[u]+e.weight+ ε  % basic cost 
16.             if u.preRoute ≠ e.route then  %judge route switched or not 
17.                 update_cost update_cost+∆ 
18.             if cost[vtemp]>update_cost then  %when basic cost improves 
19.                 cost[vtemp] update_cost  %store new cost value 
20.                 vtemp.preRoute e.route  %update route information  
21.                 trace.update({vtemp:(u,e)})  %store the trace-back record 
22. return cost, trace to d 
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a bus passenger behavior model was designed and 
implemented to run jointly with SUMO via a monitor-
control algorithm based on TraCI, a traffic control interface 
of SUMO. Specifically, the algorithm was to 1) modify the 
conditions and states of buses, 2) simulate passenger 
behaviors, and 3) record important moments (bus arrival 
time, etc.) in real time. 

In our work, a bus passenger behavior model was 
developed, which is illustrated in Figure 5: according to the 
travel plan, the passenger starts at origin stop 𝑂1 and takes a 
bus on the blue route to 𝐷1 to complete sub-trip 1. Then, the 
passenger gets to 𝑂2 via walking (if 𝐷1 ≠ 𝑂2 ) or route 
switching (if 𝐷1 = 𝑂2 ) to start sub-trip 2. Finally, the 
passenger gets to the final destination 𝐷2  through the red 
route, and the travel demand is fulfilled. Interactions 
between buses and passengers take place at each stop, where 
the bus dwell time is affected by the number of boarding and 
alighting passengers. According to STCP vehicle 
descriptions, most buses in Porto city have independent 
boarding and alighting channels for passengers, and thus, 
dwell time is the maximum of boarding time 𝑡_𝑜𝑛  and 
alighting time  𝑡_𝑜𝑓𝑓 . The interactions between buses and 
traffic are simulated by SUMO, where the travel time 𝑡_𝑏𝑢𝑠 
varies according to traffic conditions on the roads. The time 
the passenger spends from stop 𝑖 to stop (𝑖 + 1) is  

𝑡𝑖 = 𝐿 + 𝑚𝑎𝑥 (𝑡_𝑜𝑛𝑖 , 𝑡_𝑜𝑓𝑓𝑖) + 𝑡_𝑏𝑢𝑠𝑖, (3)  

where 𝐿  is a constant of lost time, including the pulling, 
door-open-close time, etc. With this model, the simulation 
captures primary interactions among passengers, buses, and 
traffic. All bus passengers in the city are treated as agents 
who follow both the travel planning model and the behavior 
model defined in previous sections.  

Loading the passenger travel demands to the joint 
simulation layer, we simulated the city-wide bus passenger 
behaviors in Porto city for 90 Wednesdays. For each day, the 
simulation log stores detailed passenger behavior 
information and bus state information. For example, the 
passenger log records the time spent of waiting at the stop, 
boarding, and alighting at the destination stop. The bus log 
includes the bus arrival time at each stop, on/off passengers’ 
ID at each stop, stop dwell time, and passenger volume after 
prompting passengers to getting on/off. The passenger log 
and bus log constitute the traffic-passenger joint simulation 
dataset of the bus transportation system in Porto. This 
synthetic bus passenger data have been successfully applied 
to validate a semi-supervised learning based method for 
inferring the passengers’ unknown destination [12]. 

V. EVALUATION 

We evaluated our bus passenger simulation data using 
real bus AFC data collected from Porto city. The basic idea 
is to compare the simulation data with the real data in terms 
of spatial-temporal distribution, of which the difference is 
measured by means of Kullback–Leibler divergence.  

A. Real AFC Bus Passenger Data 

The AFC dataset is the set of bus passenger transaction 
records that occurred in January, April, and May of 2010. 
The data were collected by the AFC system installed in 
buses operated by STCP in Porto city. The AFC system 
called “Andante” is an entry-only system. Each transaction 
record contains several attributes of which we are interested 
in the following: the 1) ID; 2) transaction timestamp; 3) bus 
stop where the transaction occurred; 4) route; and 5) route 
direction. We fused the Andate AFC data with additional 
data sources to obtain the route structure (sequence of stops 
in a route) and the geographical location of each stop. There 
are 2,374 bus stops and 66 bidirectional bus routes within 
the area of interest. The raw data have about 3% fault 
samples that contain illogical or missing attributes. After 
data recovery, we selected transaction records on 
Wednesdays of the three months, totaling 12 Wednesdays 
with 2,422,079 transactions. Those Wednesdays were 
normal weekdays, and local special holidays were avoided.  

B. Evaluation with Respect to Spatiotemporal Distribution 

The goal of the simulation was to capture the underlying 
distributions from which the real observations are generated 
so that the simulation outcomes can be used as a reasonable 
approximation of real passenger data. To this end, we 
quantified the difference between the synthetic passenger 
data and the real AFC data, and we investigated the validity 
of our method by comparing the synthetic-real data 
difference with the data difference of baseline methods (not 
using the simulation) from the real data. The measurement 
applied in this paper to quantify the difference between two 
distributions is called Kullback–Leibler (KL) divergence 
[13 ]. For discrete distributions, the KL divergence from 
distribution 𝑄(𝑖) to 𝑃(𝑖) is defined as: 

𝐷𝐾𝐿(𝑃||𝑄) = ∑ 𝑃(𝑖)𝑙𝑜𝑔
𝑃(𝑖)

𝑄(𝑖)𝑖 . (4)   

The larger the 𝐷𝐾𝐿(𝑃||𝑄) is, the more difference there will 
be between 𝑃 and 𝑄.  

1) KL Divergence in Temporal Distributions: We first 
investigated the difference in temporal passenger demand 
distributions between the simulation data and the real data. 
Here, 𝑃 and 𝑄 are the expected temporal passenger demand 
distributions for simulation data and real data, respectively. 
In this paper, we focus on Wednesday data. Specifically, the 

distribution 𝑃  is defined as 𝑃(𝑖) = 𝔼(𝑛𝑖)/ ∑ 𝔼(𝑛𝑗)24
𝑗=1 , 

where 𝑛𝑖 is the number of passengers who get on a bus in 
period 𝑖  (e.g., 10 am–11am), and  𝔼(𝑛𝑖)  is the average 
number (over all 90 simulated Wednesdays) of passengers 
who get on a bus in period 𝑖. In the same way, we can obtain 
the distribution 𝑄  for the real data. The shapes of both 
distributions are illustrated in Figure 6. a), where we can see 
a clear similarity between them.  

For comparison purposes, we also considered two 
baseline distributions. The first one is simply shuffled from 
𝑃, and we call it shuffled distribution. The shuffle means a 
random permutation of 𝑃(𝑖)  w.r.t. period 𝑖 . The second 
baseline distribution is the temporal distribution estimated 
directly from the taxi passenger data, which is the green 
distribution in Figure 6. a). We call such a distribution the 
pre-simulation distribution because the data have not been 
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processed by the simulation. Note that only the first trip 
demand starting time 𝑡 (see TABLE I) contributes to pre-
simulation distribution. In contrast to the two baselines, 𝑃 is 
called post-simulation distribution (the blue distribution in 
Figure 6.a). Note that not only first trip starting time 𝑡 but 
also synthetic midway trip starting time { 𝑡𝑖 } contributes to 
post-simulation distribution.  

Calculating the KL divergence from the real distribution 
𝑄  to each of the three distributions, we obtained 1.418, 
0.553, and 0.045 for shuffled, pre-, and post-simulation 
distributions, respectively. Compared with the shuffled and 
pre-simulation distributions, the post-simulation distribution 
achieves the best similarity, reducing the distribution 
difference down to 0.045. The information gain comes from 
the fact that the simulation can capitalize on the passenger 
behavior model to effectively fill the midway details 
(especially the timing { 𝑡𝑖 } of each midway trip) between 
the origin and the destination. 

2) KL Divergence in Spatial Distributions: We further 
investigated the difference in spatial distributions. Because 
the real data contains only boarding information, we should 
conceptualize the spatial distribution accordingly: because a 
bus route 𝑅  consists of a sequence of bus stops {𝑠} , and 
because each stop corresponds to a spatial location, the 
spatial probability distribution of passenger boarding 
demands associated with route 𝑅 is essentially the boarding 
probability distribution over bus stops {𝑠}. Considering that 
the spatial distribution can vary in difference periods, we 
focused on the periods of {𝑇} ={4-8, 8-12, 12-16, 16-20, 20-
24} and omitted the period of 0-4 because buses are mostly 
off-service during that time. Then, for simulation data, given 
period 𝑇  and route 𝑅 , the spatial distribution over {𝑠}  is 
defined as 𝑃𝑅,𝑇(𝑠) = 𝔼(𝑛𝑅,𝑇,𝑠)/ ∑ 𝔼(𝑛𝑅,𝑇,𝑘)𝑘 , where 𝑛𝑅,𝑇,𝑠  is 

the number of passengers (on a Wednesday) who get on a 
bus in period 𝑇  at stop 𝑠  of route 𝑅 , and 𝔼(𝑛𝑅,𝑇,𝑠)  is the 

average number (over all 90 simulated Wednesdays) of 
passengers who get on a bus in period 𝑇 at stop 𝑠 of route 𝑅. 
In the same way, we can obtain 𝑄𝑅,𝑇(𝑠) for the real data. 

The spatial KL divergence for the period 𝑇 is defined as: 

𝐷𝐾𝐿_𝑠𝑝𝑎𝑡𝑖𝑎𝑙(𝑇) = 𝔼𝑅[𝐷𝐾𝐿(𝑃𝑅,𝑇||𝑄𝑅,𝑇)]

=
1

𝑁𝑅
∑ 𝐷𝐾𝐿(𝑃𝑅,𝑇||𝑄𝑅,𝑇)

𝑅
, (5) 

where 𝑁𝑅  is the number of routes in the area being 
investigated. This is the expected KL divergence in spatial 
distributions over all bus routes during certain period 𝑇.  

Based on (5), the spatial KL divergences from the real 
spatial distribution to the shuffled, pre-, and post-simulation 

spatial distributions are calculated and illustrated in Figure 6. 
b). Note that the spatial pre-simulation distribution counts 
only on the trip demand (𝑂 , 𝐷 , 𝑡 ) of each passenger; in 
contrast, the spatial post-simulation distribution counts on 
the whole synthetic experience {( 𝑶 , 𝐷1 , 𝒕 ), ( 𝑂2 , 𝐷2 , 
𝑡2),…,(𝑂𝑛, 𝑫, 𝑡𝑛)} of each passenger. From Figure 6. b), we 
can observe that from shuffled to pre- and then to post-
simulation distributions, there is a decreasing trend in the 
divergence. The experimental results support that the post-
simulation data exhibit a higher degree of similarity to the 
real bus passenger data in terms of spatial activity. This 
experimental outcome also supports our claim: the joint 
traffic-passenger modeling and simulation is a meaningful 
method for transferring indirect people mobility data to 
direct and complete bus passenger data. 

VI. CONCLUSION 

We proposed a methodology for generating synthetic bus 
passenger data through joint traffic-passenger modeling and 
simulation on a city scale. It is the first use of a modeling 
and simulation approach to transfer the indirectly related 
people mobility data to direct and complete passenger data. 
This method is validated by quantifying the similarity of the 
distributions between the synthetic passenger data and real 
data. Our main contribution is a proof-of-concept of how 
academia can move forward in the absence of direct and 
complete data in the field of passenger-related research by 
using the indirect people mobility information. The proposed 
methodology is expected to serve as a potential driving force 
of intelligent transportation system success. 
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Fig. 6. a) Demand occurrence probability vs. hour for pre-simulation 

data (green), post-simulation data (blue), and real AFC data (red). b) 

Spatial KL divergences 𝐷𝐾𝐿_𝑠𝑝𝑎𝑡𝑖𝑎𝑙 vs. time periods 𝑇. 
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