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Abstract One major challenge in efficiently implementing

neuromorphic networks is the need for a large number of

variable synaptic connections. Networks that use emerging

resistive memories as synapses have been proposed to

tackle this problem, but interfacing with these devices is

still inefficient in deeply-scaled CMOS. Oscillatory Neural

Networks (ONNs) use a different paradigm than most

analog hardware implementations, and may be able to

interface more efficiently with RRAM neurons. Previous

work on ONNs, however, has not considered the effects of

actual hardware implementation realities, such as delay in

the network. In this work, the first reported IC implemen-

tation of an oscillatory neural network is designed and

fabricated. Modifications are made to the ONN architecture

based on theoretical analysis to allow for proper operation

in real-world conditions. One modification is changing the

PLL-type, giving the system a different dynamic trajectory

which is robust to global delays. Additionally, circuitry is

added to control the transport delay of the neuron output

signals. A chip with the modified ONN architecture is

designed and tested in 28 nm CMOS and estimated power

and area figures are reported.

Keywords Neuromorphic computing � Oscillatory neural

network � RRAM crossbar synapses

1 Introduction

For many years, neuromorphic networks have been pro-

posed as a way to build efficient systems that can perform a

variety of tasks, from classification, to audio and image

processing. These networks have shown massive success in

software implementation, and are found in many products

today [3, 6]. When considering hardware acceleration of

these systems, however, one large challenge is imple-

menting the amount of connectivity required. This con-

nectivity requirement is one of the main limiting factors

keeping hardware systems from being as power and area

efficient as the brain. Ideally, such connections are imple-

mented with variable weights, but efficiently building a

large number of variable weights has proven challenging

with conventional technology.

One solution to this problem that has been proposed is

the use of emerging resistive memories to act as the con-

nection between devices, and this has been partially

demonstrated in works such as [9]. Resistive memories,

briefly explained in Sect. 3.2, are capable of storing an

analog value in a very compact area. Significant strides

have been made to enable crossbar implementation of these

devices, and they are being successfully used in digital

memories. Unfortunately, there have not yet been any

fully-integrated hardware neural networks that use RRAM

crossbars as analog connection elements. This is primarily

because making analog measurements of the RRAM

memory devices in deeply-scaled CMOS is challenging. If

voltage and current are the state variables, the reduced

dynamic range and increased variability in small devices

must be corrected through expenditure of additional power

and area. Instead, this work proposes using RRAM cross-

bars in a different neural networking paradigm to extract

the information contained in them efficiently.
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Specifically, this work considers recurrent neural net-

works that use phase to compute, rather than current or

voltage. These networks are called oscillatory neural net-

works (ONNs) and were initially proposed in [4]. In an

ONN, each neuron contains an oscillator, and the phase of

that oscillator represents the state of the neuron. These

oscillatory outputs are combined through a synaptic net-

work, and each neuron settles to a value that is the con-

sensus of its neighbors. The RRAM crossbar array scales

the amplitude of the neuron outputs according to their

analog value. When summing the neuron outputs, the lar-

ger amplitude signals contribute more strongly to the

overall phase. By using time to represent analog values, the

problem of reduced supply voltage can be avoided, and

mixed signal techniques can be used to reduce error due to

variation with minimal power and area overhead. There-

fore, by using ONNs, robust and efficient neural systems

with RRAM crossbar synapses are feasible in deeply scaled

technologies.

With the resistive crossbar providing the memory of the

system, the rest of the components in the network can be

designed in CMOS. When designing a CMOS system, it is

essential to consider effects such as process variation and

transport delay of signals. Section 4 discusses the impact of

variation and delay on ONNs, and section 5 details cir-

cuitry developed to account of this impact. The paper

culminates in a presentation of the simulation results of a

chip designed in 28 nm CMOS, and a discussion of the

scalability of this architecture in future designs.

2 Oscillatory neural networks

Oscillatory neural networks are systems composed of

oscillatory neurons that use either frequency or phase of

periodic signals to perform computation. The particular

ONN being considered in this work is composed of con-

nected phase-locked loops (PLLs), as shown in Fig. 1. This

network has a few important features that are essential for

efficient and correct operation.

2.1 Frequency synchronization

One critical result from the analysis of these networks is

that, given a symmetric weight matrix, all of the PLLs in

the network will synchronize to the same frequency,

regardless of their initial conditions. A complete mathe-

matical analysis of the system can be found in [4], and the

key results will be replicated here as they are essential to

understand phenomena that arise when building the system

in hardware.

The dynamics of the PLL system can be described by

the following dynamical system:

_/i ¼ VðXt þ /iÞ
Xn

j¼1

wijVðXt þ /j �
p
2
Þ: ð1Þ

In this equation, /i represents the phase of the output PLL

i, while Vð/iÞ represents the voltage output corresponding

to a given phase. Additionally, X represents the natural

frequency of the oscillator in the PLL (assumed to be

[ [ 1), and wij represents the connection weight between

PLL i and j. The term of p
2
is a necessary artifact due to

using a multiplier as the phase detector in the PLL.

To complete the analysis, this system is averaged in time

(over many cycles of the VCO) to get a system in terms of

only phases and connection weights:

_/i ¼
Xn

j¼1

wijHð/j � /iÞ: ð2Þ

The function H is the time averaged product of VðXt þ /iÞ
and VðXt þ /j � p

2
Þ. If the VCO output is a 2p periodic

odd-even function (e.g. square wave or sinusoid), the

function HðvÞ is zero at v ¼ f0;�pg. This means that one

equilibrium point of the system is when all oscillators are

either in phase with one another, or p out of phase.

Using stability theory, [4] shows that the stable states of

an ONN with real symmetric weights have the property

ð/i � /jÞ ¼ f0;�pg. Since each oscillator has a constant

phase offset to the rest of the oscillators, they are also the

same frequency.

Furthermore, the precise pattern of phases the PLLs of

the system settle to are a function of the weights that

connect them, and the initial phases of the oscillators. This

is one way that such a system can be used for computation,

for example, the aforementioned ONN can be used as an

associative memory, as shown in Sect. 6.

Fig. 1 A conceptual representation of the PLL ONN. The output

waveforms Vi(t) are passed through the synaptic network of weights,

and the PLLs work to match the inputs signals, Ii(t). This

figure adapted from [4]
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2.2 PLL type and hardware implementation

The first important modification proposed and tested in this

work is the use of a ‘‘Type-II’’ PLL in the ONN as opposed

to the ‘‘Type-I’’ PLL that was initially proposed in [4].

A Type-I PLL, although simpler to analyze and implement,

has some inherent issues that make them less appealing to

implement in CMOS. First, there is an unavoidable trade-

off between loop stability and ripple in the output phase

[10]. Both of these deviations from the ideal are not con-

sidered in the preceding analysis, and could cause issues in

the settling of the system.

Another non-ideality is that the acquisition range of a

Type-I PLL is low. This means that if the center frequency

of the VCO is too far from the reference signal, the PLL

may fail to lock, or may lock to a harmonic of the refer-

ence. This is particularly a problem when initializing the

proposed system, as the theoretical analysis starts from an

initialized point.

The solution to these problems is to design the PLL to

lock in both frequency and phase. Doing this requires the

addition of an additional integrator, which comes in the

form of a phase frequency detector combined with a charge

pump, as shown in Fig. 2. This removes the problem of

harmonic locking, as well as providing additional param-

eters that allow the designer to decouple loop stability and

phase ripple. We have shown in a previous work that an

ONN using Type-II PLL satisfies the same properties as the

original Type-I ONN [13].

3 Emerging technology for ONNs

Oscillatory networks are relatively simple to describe

mathematically, but when considering hardware imple-

mentation there are a few factors that make them difficult

to build efficiently. This work specifically considers

building synaptic connections and the voltage controlled

oscillators (VCOs) with emerging technology. The overall

architecture includes several novel features, including the

VCOs, as depicted in Fig. 3. The details of this architecture

will be further described in Sect. 5.

3.1 Synaptic connections

The number of connections between the neurons in a fully-

connected network scales quadratically with the number of

neurons. This polynomial scaling is not a significant impact

for a small number of neurons, but would be a significant

problem for future systems consisting of thousands if not

millions of neurons. This quadratic scaling factor means

that the synapses must be implemented as efficiently as

possible—taking up comparatively little area and power.

To further complicate matters, these synapses should be

adjustable post-fabrication to allow for general computing,

and to enable learning in the system.

Previous systems in silicon have used transistors or

small analog circuits as synaptic devices. Transistors in

traditional CMOS, however, cannot store their own state.

Therefore, using a transistor as a synapse requires an

explicit storage of the analog value of that synapse. To

allow for interface with digital circuits, this weight is often

stored digitally and converted via a digital to analog con-

verter (DAC). This translates to synaptic hardware that is

relatively large, and designers are forced to use techniques

such as time multiplexing [12] or weight sharing [7], which

introduces additional overhead or limit computational

power.

Fig. 2 A Type-II PLL. Given enough time, the output V1ðtÞ will

match the input IiðtÞ in frequency and phase. The key difference

between this and a Type-I PLL is the Phase-Frequency Detector

(PFD) and charge pump between the input and the VCO

Fig. 3 The proposed ONN architecture. The divided output of each

PLL is passed through a synaptic network of variable resistors. These

signals are summed on a common node, and fed to the reference input

of the PLL. Efficient implementation of these networks is enabled by

resistive crossbar memories in the weight array, and low-power nano-

oscillators in the VCOs

Analog Integr Circ Sig Process (2016) 89:619–629 621

123



Alternatively, some recent systems floating-gate tran-

sistors as synaptic connections. This solves the problem of

needing explicit storage and many DACs, but these devices

suffer from a high amount of non-linearity, making them

difficult to use in some applications. For example, in the

case of [8], multiple devices are needed to make the

synaptic impact on the system linear, reducing the scala-

bility of the synapse. In addition, although they are capable

of dense integration, manufacturers are already reaching

the scaling limits of flash devices, and have started to resort

to exotic topologies that require special processing [2].

In this work, we consider using emerging RRAM tech-

nology as synapses, since they are capable of dense,

monolithic CMOS integration and multi-level storage.

There has been recent success in using resistive memories

as synapses in neural networks, for example in [1, 9]. In

these systems, however, off-chip analog devices are

required to read the memory devices, and therefore systems

must either be small [9] or time-multiplexed [1], which

reduces overall power efficiency. For truly efficient sys-

tems, RRAM devices should interface with the CMOS used

to read them on-chip.

The specific devices presented here are composed of a

metal oxide between two metal electrodes. They are

bipolar devices, and depending on the polarity of the

voltage applied to them their resistance either increases or

decreases. Plots showing an example IV curve from such a

device, and showing the multi-level capability of these

devices, are shown in Fig. 4. More details regarding these

devices and their operation can be found in our earlier work

[5]. The key concept is that they behave as non-volatile,

variable resistors that are capable of dense CMOS

integration.

3.2 Nano-oscillator based VCOs

The same materials used to make RRAM memory devices

can be used to design efficient VCOs that can also be used

in oscillatory neural networks. One such device is shown in

Fig. 5 along with its output waveforms. By including a

transistor in series with a transition metal-oxide device, a

low-power relaxation oscillator can be built with a high

degree of tunability. The detailed operation of these nano-

oscillators is given in [5].

These nano-oscillators can scale to tens of nanometers,

and are capable of low power operation over a large

operating range. Although VCOs are not difficult to build

in CMOS, it is challenging to build a VCO with as small a

form factor and power budget while still operating at high

frequency. Given the correct CMOS design, these devices,

along with resistive crossbar synapses, will enable highly

efficient oscillatory networks.

4 Desynchronization of ONNs in hardware

To effectively use the emerging technologies described in

the previous section, CMOS circuitry must be designed to

interface with it. As part of implementing ONNs in a

physical system, it is essential to consider physical effects

that may change the behavior of the system. In particular,

the existence of delay in the feedback of the system may

affect its stability and operation. In the case of the PLL

ONN, delay in the system causes PLLs to settle at different

frequencies.

4.1 Theoretical basis of desynchronization

As noted in Sect. 2, one of the key attributes of the PLL

ONN is that the oscillators naturally synchronize to the

same frequency. Synchronization allows for comparison of

phase, as comparing phases between two signals of dif-

ferent frequency is meaningless. Unfortunately, the system

proposed in [4] becomes desynchronized in the presence of

delay in the network. A theoretical analysis of this

desynchronization effect is provided in [13], but the key

result is shown here.

Fig. 4 (Left) An IV curve of a typical RRAM device. After a one-

time forming process (shown in black), the device changes resistance

when a threshold is exceeded in one direction or the other. (Right) An

example of how devices can be consistently programmed to multiple

resistance values by using multiple pulses of the same amplitude

Fig. 5 (Left) The voltage and current outputs of the RRAM VCO as a

function of time. (Right) A schematic showing an RRAM nano-

oscillator. By replacing the resistor with a transistor, the device can

have variable output frequency with voltage
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For analysis, instead of introducing delay at every point

in the system, the delay is lumped at the input to each PLL.

This means that the input to the ith PLL is taken to be

Iiðt þ d/iÞ, where the d/i term represents some amount of

delay accrued around the loop. Our analysis in [13] shows

that, in this case, the dynamics of the system at the stored

pattern points becomes

_/i ¼
Xn

j¼1

cijHðd/iÞ: ð3Þ

The important takeaway from this equation is that, in the

originally proposed architecture described in [4], a non-

zero d/i means a non-zero _/i. This indicates that the

system does not synchronize to a constant frequency at the

predicted pattern points, since d/i is a function of both

random variation, and synaptic weight pattern. Further-

more, this phenomenon occurs in systems with both Type-I

and Type-II PLLs. This non-synchronization of the ONN

can be observed in transistor level SPICE simulations, as

shown below.

4.2 Desynchronization simulations

Although desynchronization was shown as a possibility in

theoretical analysis, little insight is given in into the mag-

nitude of the desynchronization in a real architecture. An

ONN was designed in the 28 nm Samsung PDK using

Type-II PLLs and a resistive crossbar consisting of silicon

resistors. These components are detailed in Sect. 5 along

with the corrections to the architecture. The network con-

sists of 20 PLL neurons, fully connected. The weight pat-

tern in the network was designed to act as an associative

memories, storing three different binary patterns shown in

Fig. 6.

The system is tested by initializing it to a distorted

pattern (see Fig. 6). In this case, the network should settle

to the closest stored figure, ‘4’. When testing the unmod-

ified architecture, however, the system does not success-

fully recover the pattern, and the phase relationships

between the neurons do not stabilize. The results from the

unmodified architecture test are shown in Fig. 7. Instead of

synchronizing in frequency (and therefore having a con-

stant phase relationship), some of the neurons fail to syn-

chronize, continually accruing negative phase relative to

the reference neuron.

An interesting fact to note is that the desynchronization

occurs at a different time scale than the phase shift

induced by the correct network operation. This is high-

lighted in Fig. 7 with a blue circle, which identifies the

two neurons that are supposed to change from 180� to 0�
(or equivalently, 360�) change faster than the rest of the

system. Unfortunately, the process of frequency

desynchronization happens on a similar timescale, so the

correct solution is quickly lost. Another important fact

gleaned from the original system is that the neurons tend

to synchronize in groups. Although there is no global

synchronization, the neurons in this example separate into

two distinct groups. These groups correlate to the delay

caused by the weight matrix. Specifically, neurons that

experience the same delay due to the weight matrix end

up in the same group. This is an important fact that

inspired the corrected design.

Fig. 6 (Top) The three patterns stored in the weights of the ONN.

Given an input that is not one of these patterns, the system should

settle to the pattern closest to the input. (Bottom) The test input/output

pair

Fig. 7 The phase of the neuron outputs as a function of time. Before

200 ns, the PLLs are initialized to either 0� or 180� phase. The red

lines represent neurons that should settle to 180�, while the black lines
represent neurons that should settle to 0�. The lines with the ’x’

marked on them are the two neurons that should flip from 180� to 0�
in correct operation (they do not in this test, due to desynchroniza-

tion). The blue circle highlights the ‘‘high speed’’ transition

associated with correct operation (Color figure online)
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5 Corrected ONN architecture

The key to building a working IC version of this ONN is

correcting the frequency desynchronization phenomenon.

Through the theoretical analysis provided in [13], it was

discovered that the PLLs synchronize even in the face of

delay as long as the delay experienced by each neuron is

identical. This is the basis for the solution in hardware. By

ensuring the delay from output to input of each PLL is

identical, the system synchronizes successfully.

5.1 Re-timing for synchronization

To ensure each neuron sees the same delay, the signals into

each PLL are delayed by a constant amount larger than the

largest intrinsic system delay. This is shown in Fig. 8. As

long as the intrinsic delay of each path is less than the delay

introduced by re-timing, the system works correctly. This

method does introduce some quantization error, but this

can be minimized by careful design of the re-timing delay

to be only slightly larger than the largest delay in the

system.

This re-timing is implemented through the use of a

clocked comparator (see the full neuron schematic in fig-

ure 9). The specific architecture used provides both

clocking and significant insensitivity to variation, while

consuming very little static power. Details of this latch

design, referred to as a StrongARM latch, can be found in

[11]. Since there is no external reference for the system

while it is in evaluation mode, the comparators are all

clocked from the VCO of one of the neurons. The VCO

output is sent through a frequency divider before it

becomes the neuron output, therefore the comparator clock

runs significantly faster than the neuron outputs, reducing

quantization. Since the PLL detects phase rather than

multiplying signals, information is not lost when the

summed input passes through a comparator (the zero

crossings are preserved).

5.2 PLL-based neuron

The most complex component of the system is the PLL

neuron, and it is shown in Fig. 9. The neuron consists of a

Type II PLL, with additional circuitry to get the neurons to

synchronize correctly.

The summed signal from the synaptic network enters at

the left. This signal is passed through a clocked comparator

into the phase frequency detector (PFD), which outputs

pulses to the charge pump proportional to the phase dif-

ference between the two signals. The PFD is shown in

Fig. 10, and consists of standard digital circuits.

The charge pump uses current pulses to change the

voltage on the VCO input. To ensure stability of the PLL, it

is necessary to filter this input with a low-pass network.

This prototype uses a silicon resistor and gate capacitors to

build the analog filter. The use of gate capacitance causes

some nonlinearity in the filter, but this was not found to

impact the overall operation of the system, since these

PLLs do not need to be extremely accurate.

The VCO used in this design is a five stage, current-

starved inverter-based ring oscillator. It was designed to

have a nominal center frequency of 1 GHz, and sufficient

gain for high parametric yield at this frequency. The ring

oscillator was chosen due to its relatively small area and

efficient implementation in any CMOS process. Further-

more, its frequency and input range were selected to be

comparable to fabricated RRAM nano-oscillators for a

proof-of-concept design.

Fig. 8 The re-timing technique used to ensure synchronization of the

neurons in the system. The value /con must be designed to be larger

than the intrinsic delay in the loop. This method causes all neurons to

see the same delay at their input. This figure adapted from [13]

Fig. 9 The schematic of a neuron in the ONN. It is a Type-II PLL

with additional circuitry to ensure the system will synchronize. The

output of the neuron is taken after the divider, and is buffered before

being sent to the synapse network. This figure represents the reference

neuron, whose VCO output is used as the clock for the re-timing of

the entire network
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The VCO output is passed through a frequency divider,

and the output of the divider is fed back into the PFD. The

divider allows the VCO output to be used as the re-timing

clock. Furthermore, by reducing the frequency of the

information-carrying waveform, the signals passed through

the synaptic network are lower frequency and therefore less

impacted by skew. Before the feedback signal is input to the

PFD, it passes through a flip-flop clocked by the re-timing

signal used by the comparator. This ensures the inner loop of

the PLL sees the same amount of delay as the reference

signal, preventing the VCO from rapidly running to its limit.

The neuron shown in Fig. 9 is the ‘‘reference’’ neuron.

This is the neuron that all the other phases are measured

against, and it further provides the re-timing clock for the

rest of the network. The clock is to all of the flip-flops and

comparators via balanced clock tree routing.

5.3 Resistive synaptic crossbar

The resistive crossbar is shown in Fig. 3. The output of

each PLL is fed to each synapse, which consists of an XOR

gate and a resistive memory element. The XOR gate is

required to enable negative weights in the system. With

resistive devices, only positive weights are possible, the

XOR can shift the digital signal by 180�, which is equiv-

alent to negating in the phase domain.

As noted in Sect. 3, the network is designed with resistive

RRAM elements in mind. Since, however, this technology is

still under development, the prototype in this work uses

silicon resistors to emulate RRAM devices. The synapses

used are shown in Fig. 11, and consist of three binary-

weighted silicon resistors that are switched via transmission

gates. The binary weighting allows for 8 possible weights,

plus sign. Although RRAM devices are capable of arbitrary

analog storage, storing a precise value can be difficult,

making a quantized neuron an appropriate emulation.

5.4 Digital interface

For most applications, neural networks will likely be used

in conjunction with traditional computing architectures to

solve problems that are more efficiently tackled in the

massively parallel domain. As a result, these neural co-

processors will need to interface with traditional digital

processors, meaning that they will need to support digital

inputs and outputs. This prototype supports both. The

inputs to the network are the weights and the initial con-

dition of the neurons. The weights are binary, as discussed

in the previous section. The initial conditions are similarly

chosen in a digital manner.

To initialize the system, an off-chip reference is used to

generate a high-speed clock signal. This signal is then

divided, and multiple phases of the divided signal are

isolated and distributed to each neuron. For this proof of

concept, four initialization phases are possible (0�, 90�,
180�, and 270�). A digital multiplexer is used in each

neuron to select the desired initial phase.

A digital output interface is possible due to the dynamical

properties of the ONN discussed in Sect. 2. Each neuron

settles to be either 0� or 180� relative to one another.

Therefore, the outputs are measured by comparing each

neuron with the reference neuron through an XOR gate. If

the signals are in phase, the output remains low, while if

they are 180� out of phase it remains high. This provides an

efficient digital interface to the output of the network.

6 Hardware ONN simulation results

The network described in Sect. 5 was implemented in the

Samsung 28 nm process. The simulations confirm the

network operates as expected, all of the neurons synchro-

nizing and their phases taking on the desired stored pattern.

Fig. 10 The phase-frequency detector. When V1 (the feedback

signal) arrives before Vn (the input signal) the VCO frequency is

slightly increased, advancing the phase of the PLL output signal. The

amount of increase is proportional to the difference in phase between

the two signals. The opposite occurs if Vn arrives first, delaying the

VCO output

Fig. 11 The CMOS approximation of a multi-level resistive device.

Binary-weighted silicon resistors are used to provide eight linearly-

spaced conductance values

Analog Integr Circ Sig Process (2016) 89:619–629 625

123



6.1 Pattern recovery example

To demonstrate the operation of the system, the three

patterns shown in Fig. 6 were stored in the network using

the Hebbian learning algorithm. The weights and initial-

ization of the network are input digitally via scan chain,

and the system is initialized using an input reference signal

to synchronize the PLLs. This initialization is done for

200 ns before the reference input is disconnected and the

neurons are all connected to one another. The results of this

simulation are shown in Fig. 12.

With the addition of the re-timing circuitry, the system

synchronizes and the neurons all settle to stable phase

relationships as originally predicted by the theoretical

analysis of the PLL ONN. The settling happens over the

course of a few nanoseconds, which corresponds to tens of

cycles of the neuron outputs, given the frequency of the

system operation. The PLLs all show a critically-damped

behavior in the time response of their phase, which is the

ideal point for trade-off between stability and speed.

6.2 System power and area cost

This neural system was designed in Samsung 28 nm pro-

cess. The relative sizes of the components are illustrated by

the layouts shown in Figs. 14, 15, 16.

Looking at the first layout, it is apparent that, even with

20 neurons, the synapses take up significantly more area in

the network than any other component. This is the main

reason for looking to alternative technologies for synapse

implementation - as the network scales up the number of

synapses scales quadratically. Most of the synaptic area is

consumed by the memory for the transmission gates, and

by the resistors. The XOR is only a small portion of the

digital circuitry shown. Therefore, moving to an RRAM

technology would significantly reduce the area of the

Fig. 12 The phase of each neuron in the corrected architecture. The

red lines represent neurons that should settle to 180� while the black

lines represent neurons that should settle to 0�. The marked lines are

the two neurons that will change from 180� to 0� during evaluation.

These lines settle to 360�, which is equivalent to 0� in phase (Color

figure online)

Fig. 14 Layout of the full neuromorphic network

Fig. 13 The digital output of four of the neurons in the network. The

top two plots are the neurons that change from being out of phase to

in-phase with the reference neuron. All neurons start with an output of

‘‘1’’ since all of the oscillators are initially in-phase. The neurons are

initialized between zero and 200 ns, when the evaluation begins. At

the evaluation, only the neurons that are incorrect flip in value

Fig. 15 Layout of one neuron, showing the loop filter, voltage

controlled oscillator, charge pump, frequency divider, and clocked

comparator
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synapse, as the memory, transmission gates, and resistors

would all be replaced by a single device scalable to 10 nm.

The area of the neuron in this design is dominated by the

loop filter. The primary reason for this is the size of the

capacitor needed to stabilize the PLL. At the target fre-

quency, this capacitor is about 7.2 pF, a very large

capacitance for the target technology. Future designs will

explore replacing this analog loop filter with a digital filter,

as the system is already quantizing at the input with a local

clock. The use of a digital loop filter will reduce the size of

the neuron, as well as increasing its flexibility and allowing

it to be scaled more easily to other technology nodes.

Using RRAM nano-oscillator VCOs helps reduce the

power of the system in two ways. First, each neuron in the

system uses approximately 226.5 lW of power during

evaluation, but 155.9 lW of the power is used in the VCO.

Therefore, replacing the VCO with a more efficient nano-

oscillator would significantly reduce the power drawn per

neuron. Additionally, the RRAM VCO is capable of

operating at much lower frequencies than the CMOS VCO.

While the CMOS VCO stops working at hundreds of

megahertz, the nano-oscillator VCO can operate into the

hundred kilohertz range. Since there is very little static

power burned in the neuron, reducing the VCO frequency

can directly cut power, allowing the system to flexibly

trade off power for speed.

6.3 System scalability

This system is designed to scale up in number of neurons

and synapses, while being capable of easy scaling to

smaller technology nodes. Scaling in both dimensions is

necessary for a future system to be large enough to be

useful in a real application.

In terms of increasing the number of neurons and

synapses, the neurons must be able to drive many synapses

effectively. This is known by many as ‘‘fan-out’’ in neural

networks. Since the outputs of the neurons are square

waves, they are straightforward to buffer with digital cir-

cuits accurately—despite containing analog information

there is no need for an analog buffer. Therefore, a single

neuron can easily be scaled to drive many synapses at the

relatively small cost of additional buffering.

A scaling challenge specific to oscillatory networks is

skew across a large chip. The farther a signal has to travel,

the more its phase information will be distorted. Clock

skew is a problem that also exists in traditional syn-

chronous digital design, and therefore many tools exist to

analyze and control the skew of a signal as it travels long

distances.

To fit even more neurons on a chip, a clear path is to

scale the CMOS components to smaller technology nodes.

One of the biggest challenges in scaling a mixed-signal

system is that often the analog components need to be

redesigned, and they do not scale well. Many components

of this system are already digital, the only analog compo-

nents are the charge pump, loop filter, and VCO. Further-

more, as discussed previously, the input to the PLL is

already quantized, so for future systems the loop filter and

charge pump can also be made digital without a loss in

performance. This ‘‘mostly-digital’’ design allows the

system to easily benefit from technology scaling.

7 Conclusion

To approach brain-scale neuromorphic computing in power

efficiency and connectivity, it will be necessary to use

emerging technologies such as resistive memories. These

devices are capable of dense integration and analog stor-

age, both key properties for effective synapses. To date,

there have been no integrated solutions that can utilize

these devices in a scalable fashion. In this work, we pro-

pose using oscillatory neural networks to interface with a

crossbar array of RRAM devices.

As part of implementing an ONN in an integrated

circuit, theoretical analysis was done to expand the orig-

inal work on PLL ONNs to include delay effects. This

work found that some of the theoretical properties are no

longer guaranteed in the face of random variation,

specifically the property of guaranteed network synchro-

nization. The impact of the desynchronization was

observed in transistor-level simulations, and these obser-

vations helped inform changes to the design to combat

these effects. By changing the PLLs in the system from

Type-I to Type-II PLLs, the system synchronizes under a

constant global delay. Then, re-timing circuitry is added

to change the random delays at the input to each neuron to

Fig. 16 Layout of one synapse. The use of emerging RRAM

technology could replace the resistors, transmission gate, and memory

with a single device scalable to 10 nm
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a constant, identical delay, allowing the system to syn-

chronize. A scalable 20 neuron proof-of-concept network

was demonstrated in 28 nm CMOS and was shown in

simulation to operate correctly.
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