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Abstract— The rapid growth in urban population poses signif-
icant challenges to moving city dwellers in a fast and convenient
manner. This paper contributes to solving the challenges from the
viewpoint of passengers by improving their on-vehicle experience.
Specifically, we focus on the problem: Given an urban public
transit network and a number of passengers, with some of them
controllable and the rest uncontrollable, how can we plan for the
controllable passengers to improve their experience in terms of
their service preference? We formalize this problem as a multi-
agent path planning (MAPP) problem with soft collisions, where
multiple controllable passengers are allowed to share on-vehicle
service resources with one another under certain constraints.
We then propose a customized version of the SC-M* algorithm to
efficiently solve the MAPP task for bus transit system in complex
urban environments, where we have a large passenger size and
multiple types of passengers requesting various types of service
resources. We demonstrate the use of SC-M* in a case study
of the bus transit system in Porto, Portugal. In the case study,
we implement a data-driven on-vehicle experience simulator for
the bus transit system, which simulates the passenger behaviors
and on-vehicle resource dynamics, and evaluate the SC-M* on
it. The experimental results show the advantages of the SC-M*
in terms of path cost, collision-free constraint, and the scalability
in run time and success rate.

Index Terms—Public transit system, multi-agent systems, path
planning, on-vehicle experience simulation, passenger behavior
modeling, time-expanded graph.

I. INTRODUCTION

OBILITY is a central service a city needs to provide to
the people. To satisfy the mobility needs given the rapid
growth in city population, Intelligent Transpiration System
(ITS) is proposed to utilize urban informatics and synergistic
techniques to improve the transportation efficiency. Intelligent
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public transit system (IPTS) is one important member in the
ITS family, which has attracted increasing interest in recent
years.

Traditional research on IPTS focuses on using information
about the state of the transportation networks for scheduling
and dispatching mass transit [1]. Although a lot of progress
has been made improving the IPTS in terms of infrastructure
construction, information sharing and fleet scheduling, limited
attention is paid to the people inside the vehicles, especially
to the travel experience of the passengers that use the public
transits. For example, in public transit systems, different pas-
sengers have different preferences, even necessities, in terms
of public resources, such as seat availability or on-vehicle
Wi-Fi. These factors seriously affect their satisfaction level
while traveling.

We advocate that, to develop an efficient IPTS, passenger-
centered research is a necessity, providing customized mobility
plans directly to each passenger for a trip with a pleasant
experience. This insight comes from the fact that an individual
passenger can neither change the existing public transportation
infrastructures nor the massive passenger and traffic flow,
but rather, can choose an alternative well-designed strategy
to accomplish the travel demand while making his or her
experience pleasant. It is not easy to help passengers achieve
this goal. On one hand, research to developing a model or a
simulator that captures the road traffic, passenger behaviors
and other factors relevant to the on-vehicle experience is a
prerequisite to the goal but has not been considered previ-
ously. Specifically, the on-vehicle experience is affected by
the surrounding passengers, traffic conditions, and facilities
that support the public on-vehicle services. On the other
hand, the mobility planner should consider the interactions
among passengers as they call for the same service, which is
challenging in the field of planning and scheduling, especially
on a city scale.

In this paper, for the first time, we address the challenges
from the viewpoint of passengers by considering the important
role of passenger experience when planning for pleasant trips
through the urban public transit systems. This paper con-
tributes a passenger-centered planner for multiple passengers
requesting multiple types of public services while limiting
the level of interference among them. We assume that the
total set of passengers is divided into two subsets — one with
passengers who request planning service from the planner,
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called client passengers, and the other non-client passengers
who do not. By viewing each client passenger as an agent,
we formalize this problem as a multi-agent path planning
(MAPP) problem, where multiple client passengers may inter-
fere with one another in terms of some service resources.
Grounded on this setting, we made the following contributions:

« Model the collisions among passengers as soft collisions,
leading to a soft-collision-based (SC-based) MAPP prob-
lem, where a collision among client passengers is soft,
quantified using a collision score, and different passen-
gers have different scores according to their experiences.
Based on this setting, the soft-collision M* (SC-M*),
which is originally proposed by the authors [2], can be
customized and applied to solve the SC-based MAPP;

o Customize the SC-M* to the bus transit system of
Porto in the simulator. Specifically, we propose the time-
expanded expectation graph to model the Porto bus
network and introduce a technical detail to SC-M* (i.e.,
the forward-the-tail-agent approach) to handle the non-
synchronization issue in the real system;

« Develop a data-driven on-vehicle experience simulator for
the bus transit system of Porto, Portugal that simulates
the passenger behaviors and the dynamics of certain
on-vehicle resources (i.e., Wi-Fi quality and space avail-
ability). We then apply the customized SC-M* to gen-
erate the mobility plans based on the time-expanded
expectation graph, which is constructed using the logs
of simulations driven by the historical data, and test the
plans’ execution based on the festing simulations driven
by the future unseen data;

o Evaluate the SC-M* method in terms of path cost, soft-
collision constraint, and scalability in run time and suc-
cess rate. The experimental results show the advantage in
scalability and flexibility of SC-M* for handling complex
environments with multiple types of passengers request-
ing multiple types of service resources.

The rest of the paper is organized as follows. Section II
discusses related work and motivations. Section III gives a
description of the MAPP definition and the SC-M* method-
ology. Section IV and V detail the implementation of the
on-vehicle experience simulator and the customization of
SC-M* to real systems. Section VI discusses experiments.
Section VII concludes our work.

II. RELATED WORK AND MOTIVATIONS
A. Related Work

The research on planning for passenger-level mobility in
the context of public transit networks traditionally finds the
shortest path for independent individuals, which is also known
as route planning [3]. Traditional path planning on public
transit networks is constrained on the scheduled networks,
consisting of a set of stops, a set of routes, and a set of
timed trips. Upon the scheduled networks, basic shortest path
algorithms, such as the Dijkstra’s algorithm [4], A* search [5]
and bidirectional search [6], can apply.

When concerning passenger’s experience, shortest path
algorithms, which only consider distance as the optimization

IEEE TRANSACTIONS ON INTELLIGENT TRANSPORTATION SYSTEMS

criterion, are not enough. For public transit networks, other
criteria are just as important, leading to a multi-criteria
planning problem. There are mainly two versions of multi-
criteria search: The Pareto set search and the scalarization-
based search. The first one is to find a Pareto set (i.e.,
a maximum set of incomparable paths [7]-[9]). This type
of search treats each criterion as equally important, which
incurs a high computational complexity and is not necessarily
true in practice. An alternative is scalarization [10], using a
linear combination of criteria as the optimization objective.
This approach is to transform the multi-criteria search to a
single-criterion search using weighted sum of criteria, which
is more practical and computationally feasible.

As one case of multi-criteria planning, a multi-agent path
planning (MAPP) finds a joint path with optimal objective for
multiple agents conditioned on certain constraints. Approaches
for MAPP can be folded into three main categories: coupled,
decoupled, and intermediate. Coupled approaches search the
joint configuration space of the multi-agent system, which
is the fensor product of the free configuration spaces of all
the individual agents. Decoupled approaches plan for each
agent separately and then adjust the path to avoid collisions.
Algorithms from this category are generally faster because
the graph search and collision-avoidance adjustment are per-
formed in low-dimensional spaces. However, optimality and
completeness are not guaranteed. Intermediate approaches lie
between coupled and decoupled ones because they dynam-
ically couple agents and grow the search space during the
planning. For a more review, we refer readers to [11]. Most
MAPP approaches assume hard collisions, i.e., they do not
allow any two agents to co-exist at the same node or edge. Our
recent work [2], [12] proposes and studies the soft-collision
M* algorithm (SC-M*) to handle the MAPP under the soft
collision context, which is the core algorithm in this paper.

B. Motivations for Multi-Passenger Mobility Planning

In mass transit systems, passengers have various prefer-
ences, even necessities, in terms of public resources, such as
seat availability (necessary for seniors) or on-vehicle Wi-Fi
supplies (preferred by video viewers and game players during
the trip). When concerning multiple passengers’ mobility on
a city scale, it is not practical to plan for each individual
passenger! independently because passengers may interfere
with one another regarding public resources. Individually
optimal paths can cause serious interference, leading to low-
quality experiences. Interference between passengers is soft
because it is possible that they do not call for the same resource
when they are on the same public vehicle. Also, they are
able to tolerate each other over a short time and distance.
Intuitively, how likely a collision (intolerable interference)
actually happens depends on 1) whether the resource supply
is less than the demands and 2) how long the lack-of-supply

n this paper, the concept of individual passenger is a generalized one,
which can also refer to a group of similar passengers sharing the same
preferences and the same Origin-Destination demands, and thus, the influence
between them is considerable. To use a group of traffic subjects, such as
vehicles, as a unit is a feasible way to model and control the mobility of the
city [13].
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condition lasts in terms of the time and distance that the
passengers stay together.

Passengers can be viewed as agents moving through the
urban public transit network. When we plan for all the agents,
eliminating any hard collision is neither necessary nor feasible.
Thus, we are more interested in another problem: how can
we plan for the client passengers (who request the planning
service) to optimize the public resources received by them such
that the probability of collision among them is bounded?

This paper formalizes the problem as a MAPP problem
under the soft-collision context, and we optimize the mobil-
ity of each client passenger over multiple public resources.
To solve this practical problem efficiently, for the first time,
we apply and customize SC-M*, which is originally introduced
in [2], to plan for and accommodate a large number of client
passengers simultaneously. Our work contributes to showing
that a SC-based MAPP solver can be extended to the public
transportation domain and can accommodate the passengers’
mobility demands on a city scale. SC-M* is expected to help
with the congestion and resource management issues in the
context of rising population and mobility needs in cities.

III. SOFT-COLLISION M* (SC-M*) FOR PASSENGER
MOBILITY PLANNING

This section defines the traditional MAPP problem and
its state-of-the-art solver, M* [11], [14], and proposes soft-
collision M* planning approach.

A. MAPP Problem Definition and M*

In MAPP problem, we have m agents indexed by the set
I ={1,...,m}. Let the free configuration space of agent j be
represented by the directed graph G/ = {V/, E/}. Each agent
has its own free configuration space. The joint configuration
space, which describes the set of all possible states of the
multi-agent system, is represented by the fensor product of
the graphs of all individual agents: G = G' ® --- ® G™.
G consists of a joint vertex set V and a joint edge set E.
As an example, in a 2-D joint configuration space given by
the agents j and k, the two 2-D joint vertexes v, = (v P> p)

and v, = (vq, k) is connected by the joint edge (epq, ek
Note that vf, € VJ and epq € EJ. Let ﬂj(l)p,l)q) denote a

sequence of joint vertexes, called a path in G/ from v’ p to vq
The cost of a path 7 (v, v) in G is defined as

g(m(wp,v) = D g(@! v}, v])), 1)

Jj=1

where g(7) is the sum of all edge costs involved in the joint
path 7.

The problem of MAPP is to find a collision-free path,
which is optimal with respect to minimal cost, from the
source configuration vy = v! ® --- ® v™ to the destination
configuration vy = vcll ® --- ®v). To determine the collision
between agents, a collision function  (v,) is defined to return
the set of conflicting agents at v .

Most fundamental MAPP approaches usually default hard

collisions that no intersection is allowed between every two

agents in terms of the occupation of any resource, such as
space. This implies that the capacity of each resource can
support only one agent at a time (i.e., a collision happens
immediately once agents intersect at any resource). Suppose
we have a set of resources A = {Ay, ..., Ar} requested by
each agent in the multi-agent system, where Ay is the set of
resource of Type k on all edges and vertexes. The traditional
hard-collision-free constrained MAPP problem is formulated
as follows:

min g (x (vs, v4))

si. | (Ak(u;',) n Ak(u;;)) =0, VAr€A, Yo, e,
Vitjel
U (Ak(e;q) N Ak(e{,q)) =0, VAreA,
Vi#jel
Vey, € E(n), @)

where Ay (v{,) and Ak(ef,q) denotes the subset of resource Ay
occupied by the agent j at the joint vertex v, and at the joint
edge e, respectively; E () is the set of joint edges involved
in path 7. This definition can be adjusted to consider edge
collision or vertex collision only according to practice.

One state-of-the-art solver to this problem is M* [11],
[14], which uses the sub-dimensional expansion strategy to
dynamically increase the dimensionality of the search space
in regions featuring some agent collisions. M* enables a
relatively cheaper graph search under the strict hard-collision-
free constraint.

The M* assumes a hard-collision-free constraint, which
does not apply to many real-world applications. Our recent
work on SC-M* algorithm in [2] generalizes the M* to soft-
collision context, which can be applied to the multi-passenger
mobility planning.

B. Soft-Collision Constrained MAPP

In this subsection, we formalize the multi-passenger mobil-
ity planning problem as a MAPP problem under the soft-
collision context (i.e., SC-based MAPP) and apply the SC-M*
to efficiently solve it.

To comply to the real-world scenario, we introduce the
soft-collision property to the behavioral model of a client
passenger. In our model, each client passenger is defined to
have the following properties: 1) a collision among client
passengers is “soft”, quantified using some collision scores
and 2) different client passengers have different collision
scores, according to their individual experiences through a
path. The influence from the non-client passengers to client
passengers is encoded as a part of the edge cost, which is
not involved in the collision among client ones. To obtain the
properties, we introduce to each client passenger an attribute
called resource experience and use the resource experience to
calculate the collision score.

1) Definition 1 (Resource Experience): We define resource
experience to quantify the dissatisfying experience per
resource about which a client passenger cares.

Let

o m =7 (vg, 0p) be a path from the source vy to some vp;
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« vy =7 (v,) be the immediate successor of v, along the
path 7;
o Ak(e{,q) be the capacity (amount) of the subset of the
resource Ay on the edge e{,q, given by the graph model;
. A,’( (e;,q) be the amount of the subset of the resource Ay
actually allocated to the client passenger j on the edge
ef,q, called the allocated resource value.
The resource experience is then defined as the dissatisfying
experience of client passenger j on resource A; along the
path 7z /:

D(nj,Ak)
= > 1(Aueh) = s nAllehy) <) - glehy). 3
Vp €T Juy,

where 1(-) is the indicator function, whose value is one if
the logical condition is true, else zero; ¢x € ¢ = {e1, ..., €L}
is the satisfying value regarding the resource Ay, which is a
positive real value; g(e{)q) is the edge cost regarding travel
time, distance, negative influence from non-client passengers
given by the graph model; Ai (ef,q) is formulated as:

Ar(ehq)
Ziel 1 (e}‘)q = 61{7 )

The numerator of Eq. (4) is the available resource k on
edge ef,q. The denominator denotes the number of agents

Aplepg) =

“)

moving to the same edge e{,q. This is judged by the logic
condition, e;q = e}y, i.e., whether or not the id of edge
occupied by agent i is the same to the id of edge occupied
by agent j. So the equation defines the actual allocation of
resource allocated to agent j. According to Eq. (4), A,j( (ef,q) =
Ay (ef,q) if and only if no other client passengers are physica!ly
moving along with client passenger j on the edge e{,q.
The allocated resource value Ai (ef,q) quantifies the level of
interference incurred by other client passengers when they
physically move together.

The definition of resource experience in Eq. (3) actually
defines a property of a client passenger: Only the situa-
tion, in which the resource allocated to a client passenger
is dissatisfying because of the co-existence of other client
passengers, will contribute to the dissatisfying experience of
that client passenger. Furthermore, each dissatisfying con-
dition is weighted by the edge cost g(ef)q). In this way,
we can quantify how serious such a dissatisfying condition
is in terms of travel time, distance and crowdedness level,
etc, which are given by g(e{,q) in the graph. According
to different application purpose, Eq. (3) is open to modi-
fication for a more realistic model. For example, we can
multiply g(epq) by a function of Aj(ep,) to reflect the
level of dissatisfying condition on the edge. Also, different
passengers may have different ¢; for a given resource in real
world.

2) Definition 2 (Collision Score): We use the resource
experience results from Definition 1 to calculate the collision
scores. This is defined from the view point of collision
probability, that must be constrained under some threshold.
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Fig. 1. Example designs of CDFs, mapping the resource experience D of
a client passenger to a collision probability on certain resource. f|: sigmoid-
based CDF for important (sensitive) resources. f»: linear CDF for trivial
(insensitive) resource. o: offset parameter adjusting the tolerance level.

Let

e Col; be the event that client passenger j announces a
collision (i.e., client passenger j can no longer tolerate
the experience on at least one of the resources);

« D/ ={D],..., Di}, where D} = D (nj, Ak), be the set
of dissatisfying experiences of client passenger j along
path 7/ on the resource Ag;

e fx € f = {f1,..., fr} be a customized cumulative
distribution function (CDF) defined on [0, +-00), mapping
the resource experience D to a probability of collision on
the resource Ay.

The collision score of the client passenger j is defined as
the probability of the occurrence of a collision, i.e., the client
passenger j can no longer tolerate the experience on at least
one of the resources given the resource experience D/:

P(Colj‘Dj) —1- ] (1 —fk(D,g)). (5)
kefl,...,L}
Note that P (Col j ’Dj ) calculates the complement of the
success probability — the joint probability of being collision-
free on all resources.

Fig. 1 shows two example designs of f: fi(D) =
sigmoid(D — ¢), with a discontinuity point fi(0) = 0, is a
sigmoid-based CDF function, featuring a surge in the collision
score (i.e., the derivative is bump-shaped). This function is
suitable to important resources that are sensitive to the client
passenger; f2(D) = min(1, D/(40)) is a linear CDF with a
shallow slope (i.e., the derivative is a constant). This function
can apply to trivial resources that are not very sensitive to
the client passenger but still accumulate to contribute to the
collision score. We use the offset parameter J to adjust the
tolerance level of the dissatisfying experience. With larger J,
a client passenger will tolerate a more dissatisfying experience
before announcing a collision.

Although the definition of the collision score can be cus-
tomized according to different practices, the probabilistic
definition of collision score introduced here is a general one:
Different types of resources may have different value ranges,
and Eq. (5) standardizes the resource ranges, mapping them
to a value between [0, 1] and enabling an efficient integration
of different types of resources to the framework.

3) Definition 3 (Soft-Collision Function (;): According to
the collision scores from Definition 2, we want to pick out
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— M*

}SC-M*

Fig. 2. Example of applying M* and SC-M* to an MAPP problem with three
agents. Solid vertexes and arrows denote individually optimal paths. Dotted
vertexes and arrows are the nodes and edges added during expansion. Blue
and red arrows are specific edges picked by M* and SC-M*, respectively.
Black arrows are common edges picked by both algorithms. Traditional M*
has to expand all three dimensions due to hard-collision constraints while
SC-M* considers soft-collision constraints and only expands dimension 2.

the above-threshold client passengers and place them into the
soft-collision set via the soft-collision function.

Given a path # = = (vs, vp) and corresponding resource
experience D/ for the client passenger j, the soft-collision
function of client passenger j is

{j}, for P(Col;|D/) =T

?, otherwise,

yl (0p) = [ (6)
where T is the threshold of collision. The definition of the
global soft-collision function is then defined as

y o) = J v’ o). (N
jel
Based on Definition 3, we can formally model the multi-
passenger mobility planning as a SC-based MAPP problem:

min g (7 (vs, vg))
s.t. J (vp) =0, Yo,em. (8)

The interpretation of Eq. (8) is as follows: We want to move
m client passengers from the source configuration vy = vsl ®
.-+ ® ! to the destination configuration vg = v} ® - -- ® 0¥
with minimal cost, constrained on that the soft-collision set is
empty (i.e., the soft-collision constraint).

C. Illustrating the Principle of M* and SC-M*

SC-M* is a general solver for the SC-based MAPP problem
in Eq. (8). For more details about SC-M*, we refer readers
to reference [2] and Appendix VII. In this section, we give
an example to illustrate the principle of M* and SC-M* and
compare these two algorithms.

In Fig. 2, we show a three-agent MAPP planning problem.
Agents 1, 2, and 3 attempt to move from source vertexes a, a,
and g to destination vertexes d1, d2, and d3, respectively.
Assume that only edge collisions are considered and no
collisions occur in vertexes. The individually optimal paths
(with shortest distance) are a — b — e — d1 with distance
3 for Agentl, a — b — ¢ — d2 with distance 3 for
Agent2 and ¢ — b — ¢ — d3 with distance 3 for Agent3.
The total cost of the joint individually optimal path is 9.

M* solves this MAPP considering hard-collision con-
straints. It starts searching in the initial search graph consisting
of individually optimal paths and increases the space gradually
when collision occurs. At the beginning, M* explores the joint
vertexes along the individually optimal path. When moving
from the initial joint vertex (a, a, g) to (b, b, b), the algorithm
detects the collision on edge a — b between Agentl and
Agent2, which triggers the expansion of dimensionl and
dimension2 according to sub-dimensional expansion strategy.
Then, vertexes y and x are included into the search graph.
Next, M* will reroute Agentl to vertex y to avoid collision
and let Agent2 keep on its individually optimal path to move
to vertex b and then to c¢. Following this moving, the collision
on edge b — ¢ between Agent2 and Agent3 is detected,
triggering the sub-dimensional expansion of dimension3 to
include vertex z to the search graph. In next step, M* reroutes
Agent3 to vertex z to get to destination d3 (because edge
b — x is too expensive for Agent2) and let Agent2 finish its
individually optimal path. Finally, the collision-free joint path
(with black and blue edges) is found including a — y — d1
for Agentl, a - b — ¢ — d2 for Agent2 and g — b —
z — d3 for Agent3. The total costis 11 +3 +4 = 18.

SC-M* solves this MAPP using soft-collision constraints.
Assume that the collision threshold 7" in Eq (6) is properly
set and agents can tolerate an accumulated collision distance
of 1.5. In this way, following the individually optimal paths,
only Agent2 experiences a collision distance of 2 (edges
a — b and b — c). Therefore, only dimension2 is expanded
and SC-M* includes vertex x into search graph. As a result,
Agent?2 is rerouted through vertex x and other two agents stick
to their individually optimal paths. Through this joint path
(with black and red edges), no agents experience > 1.5 colli-
sion distance and the soft-collision constraint is satisfied. The
total cost is 3413 +3 = 19.

From this example, we demonstrate that by introducing a
tunable soft-collision constraint, SC-M* reduces the search
space and thus the execution time. However, it is sub-optimal.
The reason is that the soft-collision set in Eq. (6) and Eq. (7)
ignores the soft-collision conflicts in the paths of Agentl and
Agent3 in Fig. 2. Thus, the dimensions of soft-conflicting
agents are not fully searched. Though SC-M* is sub-optimal,
it is flexible to tune the built-in parameters to control the level
of sub-optimalilty.

D. Properties and Advantages of SC-M*

We recently conducted research on SC-M* [2], in which we
have obtained the following properties. SC-M* is:

« Theoretically complete: Given a finite graph, it guarantees
(in finite time) to either return a solution or to determine
that no solution exists;

o Theoretically suboptimal: It may not guarantee to always
return the optimal path. As discussed in Section III-C, this
is because the soft-collision set in (6) and (7) ignores
the soft-conflicting agents in the path in exchange for
improved scalability;

o Empirically flexible in performance by tuning the para-
meters 7 and J: We theoretically show that SC-M* can
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make a transition from a decoupled individually optimal
planner (e.g., individually optimal A*) at T = 1 to a stan-
dard hard-collision-free constrained M* at 7" = 0. And
empirically, we demonstrate the tunable performance via
experiments in a small-scale (20 x 20) grid environment.
The work in [2] shows that SC-M* has significant overall
advantages in terms of cost-optimality (i.e., path cost) and
scalability (i.e., run-time and success rate under a large agent
size) over other alternative SC-based MAPP solvers, such as
SC-A* (using the standard A* to solve the SC-based MAPP)
and SC-CBS (combining the soft-collision constraint with the
state-of-the-art conflict-based-search algorithm [15]). These
advantages make it a promising candidate for solving the city-
scale passenger mobility planning problem.

IV. ON-VEHICLE EXPERIENCE SIMULATOR

This paper focuses on improving the on-vehicle experience
of passengers based on SC-M*. To evaluate the performance
of the algorithm, we develop a passenger-level simulator
that combines: the 1) urban traffic simulation, 2) behavioral
model of passengers (for both the client and non-client),
and 3) infrastructures/facilities that support certain public
resources. This section proposes an on-vehicle passenger expe-
rience simulator for a case study of the bus transit system in
Porto, Portugal. The on-vehicle passenger experience simula-
tor is based on the widely-used traffic simulator SUMO? and
extended from the joint-traffic-passenger-modeling-simulation
framework we developed in [16].

A. Porto Bus Transit System Establishment

The Porto bus transit system is established in SUMO. The
Porto bus service operator STCP has a service website,
where detailed information about routes, station geographical
locations, and a timetable of bus trips are provided. As shown
in Fig. 3, using the STCP bus service information and urban
map resource (OpenStreetMap, etc.), we build the bus transit
system as well as the urban road network of the selected
central city area of Porto (E: -8.559543°, W: -8.66191°,
S: 41.136044°, N: 41.185110°). The imported bus network
contains 136 routes, 855 bus stops, and 5723 bus trips in a
normal weekday. The simulation tests confirmed that the bus
performance matches the actual Porto bus transit system: Each
bus departs at the scheduled time, runs along its designated
route, and pulls up at the designated stops correctly.

B. Real AFC Bus Passenger Data Processing

For passenger-level simulation, we should configure the
non-client passenger flow based on real data. The Porto
Automated Fare Collection (AFC) data is a valuable resource
that is directly suitable for such a configuration.

The AFC data contains bus passenger transaction records
that occurred in January, April, and May of 2010. The data
was collected by the AFC system installed in buses operated
by STCP in Porto. The AFC system called “Andante” is an

2http://sumo.sourceforge.net
3 https://www.stcp.pt

IEEE TRANSACTIONS ON INTELLIGENT TRANSPORTATION SYSTEMS

‘ece
|3 Eile Edit settin

IEEEIRES

] osm.sumocfg - SUMO 0.28.0 ]
=& x|

T e |X11i2/.30,yi /801 |IEAL L8610, lon-855 18"

Fig. 3. Virtual traffic and bus transit network in SUMO.

entry-only system. Each transaction record contains several
attributes of which we are interested in the following: the
1) ID; 2) transaction timestamp; 3) bus stop where the trans-
action occurred; 4) route; and 5) route direction. There are
2,374 bus stops in a broad area and 132 bus routes (4 late-night
routes were missing in 2010). We select transaction records
on Wednesdays of the three months, totaling 12 Wednesdays
with 2,422,079 transactions. Those Wednesdays are normal
weekdays and any local holidays are removed. We infer the
missing destination information from the raw passenger data
by applying the semi-supervised self-training method [17]
and >90% of the Origin-Destination (O-D) demands are
retrieved with high inference confidence. The post-processed
O-D demands serve as the set-up configuration of the non-
client passenger flow on a weekday.

C. Modeling the On-Vehicle WiFi Service

The on-vehicle services are termed public resources because
they are limited in amount and used by each individual pas-
senger to improve his or her experience. This paper considers
two public resources: on-vehicle Wi-Fi service and space
availability.

The modeling of the on-vehicle Wi-Fi service is driven by
the following concerns: In a city, buses can connect to any
wireless backhaul channel to provide Internet connectivity to
passengers, including cellular towers and city hotspots. The
connection based on cellular networks is expensive because
they are owned and operated by telecommunication companies
(e.g., T-Mobile and AT&T). Those companies have to build
and maintain the infrastructures, auction against peers to
gain a spectrum license from the Federal Communications
Commission (FCC) and support many other costs. In contrast,
urban hotspot-based infrastructures are public facilities, and
the wireless connection between a bus and a hotspot is free.
The cost, which includes Ethernet fees, hotspot maintenance,
etc., is much cheaper, and is affordable to urban governance.
In this sense, in the paper, the on-vehicle free Wi-Fi connection
is assumed to be supported by the city hotspots deployed
across the city. Passengers are assumed to seek the bus Wi-Fi
service first before using their own cellular data packages.
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Fig. 5. Map of the on-vehicle Wi-Fi capacity in megabit per second (Mbps).

We construct the on-vehicle Wi-Fi service map based on the
urban hotspot location data and the free-space-path-loss model.
Each bus will connect to the closest hotspot automatically,
ignoring the handoff delay between Wi-Fi hotspots. Without
considering the surrounding obstacles, multipath interference,
and other factors affecting the wireless signals, the capacity
of a link in bits per second (bps) follows the Shannon’s
Theory [18]:

S
C=B-I 1+ — 9
0g2(+N)9 ()

where B = 40 MHz for 801.11ac wireless networking proto-

col [19], the signal-to-noise-ratio (SNR) = 40 dB for a good

outdoor environment 2.5 meters from the hotspot [20]. The

SNR is linear to yErry—— based on the free-space-path-loss
istance

model.

We use the hotspot location data to form the map of the on-
vehicle Wi-Fi service capacity. The real Wi-Fi hotspot location
data for Porto is presented in Fig. 4, where each blue point
is a hotspot location. Fig. 5 is the map of the on-vehicle
Wi-Fi service capacity using Eq. (9), where we assume that
the capacity is not affected by whether two or more buses
are connecting to the same hotspot. The capacity decays with
respect to the distance from the hotspot and the areas with
higher hotspot distribution density will provide higher and
more robust quality of Wi-Fi service.

D. Bus Passenger Behavior Modeling + SUMO Simulation

Given a bus passenger mobility plan generated by some
planner, we develop a joint simulator to simulate how the
passenger moves through the bus transit network and interacts
with buses and traffic to ultimately reach the destination. One
of the core functions of the simulator is the bus passen-
ger behavioral model which runs jointly with SUMO via a
monitor-control algorithm. The algorithm is based on TraCl,
which is a traffic control interface of SUMO. Specifically,
the algorithm is to update the states of buses, simulate
passenger behaviors and record important moments (e.g.,
bus arrival time, etc.). We refer readers to [16] for detailed
descriptions, and here we highlight some points about the joint
simulator:

« The interactions between buses and passengers take place
at the bus stop, and the bus dwell time is affected by the
number of boarding and alighting passengers;

o The interactions between buses and other road traffic are
simulated by SUMO, where the travel time of a bus on
the road varies according to the traffic conditions and the
dwell time at stops;

o The simulation log stores detailed passenger experience
information (wating/boarding/alighting time at the stop,
Wi-Fi quality on bus, cost, etc.) and bus state information
(bus arrival time at each stop, on/off passengers’ IDs at
each stop, stop dwell time, passenger volume, etc.).

Using the joint simulator and the on-vehicle Wi-Fi service
model, we record the simulated capacity of the Wi-Fi access
rate (Mbps) on each bus trip and add the records to the
simulation output log. Specifically, at every 10 seconds in
the simulation, we associate the geographical location of each
bus trip to the closest Wi-Fi hotspot and calculate the Wi-Fi
access rate using Eq. (9). This capacity becomes an attribute of
the bus state record. The average Wi-Fi access rate allocated
to each passenger becomes an attribute of the passenger’s
experience record.

Fig. 6 illustrates how the average on-vehicle Wi-Fi service
allocated to each passenger is obtained from the simula-
tion. We record the Wi-Fi capacity along Trip 801-1, which
departed at 6 am on the Wednesday of May 5, 2010; collect
the passenger volume; and take the ratio of the two. This trip
starts from the central city area, and the Wi-Fi quality is high.
However, at around 2000 meters along the trip, the passenger
volume increases and the average Wi-Fi quality declines to
around 25 Mbps. After 4000 meters, the bus moves into poor
Wi-Fi area while the passenger volume is large, and thus,
the Wi-Fi service is low from the viewpoint of each passenger.

Because the passenger volume will change from day to day,
the average Wi-Fi profile is unique on a daily basis. However,
instead of complete randomness, human trajectories show a
high degree of temporal and spatial regularity [21], and thus,
the Wi-Fi quality pattern along Trip 801-1 may still apply to
a future normal Wednesday. Based on this dynamic pattern of
the Wi-Fi quality on Trip 801-1, a planner could encourage
the passenger who has a high Wi-Fi preference to take the
segment of the trip before 2000 meters and avoid traveling
through the segment after 4000 meters.
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Fig. 6. Example of the average Wi-Fi quality profile along Trip 801-1 on the Wednesday of May 5, 2010.

As will be discussed later in the next section, the simulation
log will be used to construct the expectation graph. The
expectation graph is a model of the public transit network,
which is a prerequisite for the planning. Based on model,
the SC-M* is applied. We run the simulation for all the four
Wednesdays in May of 2010, using the simulation logs of the
first three Wednesdays (May 5, 12, and 19) as the historical
data for constructing the expectation graph, based on which
we apply the SC-M* to generate mobility plans. The generated
plans are tested by executing them in the testing simulation of
the unseen Wednesday on May 26, 2010.

V. CUSTOMIZING SC-M* TO BUS TRANSIT SYSTEMS

Before applying the SC-M* to generate mobility plans,
we need to 1) pre-process the simulation-log data to build the
expectation graph of the bus transit network and 2) customize
certain technical details of the SC-M* to the environment
of bus transit systems because the real systems differ from
the traditional MAPP environments. To this end, this section
introduces the time-expanded expectation graph model and the
forward-the-tail-agent approach.

A. Expectation Graph of Bus Transit Network

One key point to planning for improved experience with
soft-collision constraints is to construct a model of the urban
public transit network with necessary information. In addition
to the static infrastructure information about the bus routes
and stop locations, dynamic information obtained from the
simulation (e.g., the timing of the bus trips, Wi-Fi quality,
and passenger volume) is needed. We use a time-expanded
model to model the static and dynamic information about
the public transit system in a weekday, and the average of
the time-expanded models of several weekdays produces the

expectation graph, upon which we apply the SC-M* during
the planning phase.

1) Time-Expanded Model (An Off-Line Model for One
Weekday): The public transit network is based on a timetable,
consisting of a set of stops, routes, and trips. A trip of a
route corresponds to a vehicle visiting a list of stops along
the route at specific times of day [3]. The main approach for
constructing a graph of the public transit network from the
timetable is time-expanded modeling [22]. The time-expanded
model creates a vertex for every event (e.g., a bus-arrival
event at a stop) in the timetable and uses edges to connect
subsequent events in the direction of time flow. In our research,
we replace the traditionally used timetable events with the bus-
arrival events in the simulation log to build the time-expanded
model.

As illustrated in Fig. 7, we consider the bus transit network
as a directed graph G (note that the graph G here is the
same as G/ in Section III for simplification). Each vertex
corresponds to an event in the simulation log. An event is
defined as a bus arriving at a stop during a bus trip of a
certain route. In Fig. 7(a), for example, the blue route (with
blue solid arrows) has three bus trips, and v2,; corresponds
to a bus-arrival event at the bus stop V; during the blue bus
trip 2 (i.e., the second row of blue vertexes in the figure) at
the time fp 1. V| is defined as the set of the arrival events
occurring at the same stop (i.e., Stop 1). The arrow edge
connects two subsequent bus-arrival events along a bus trip.
The color of the edge indicates the route the bus trip belongs
to. For example, the blue edge from v1,; to vy indicates that,
during the blue bus trip 1, the arrival event at the Stop 1
(associated with the set Vi) at time #{| precedes the arrival
event at the successor Stop 2 (associated with the set V) at
time 1 . In the graph, passengers can transfer to another bus
trip of the same route. The transfer connections are represented
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Fig. 7. Time-expanded graph for the bus transit network of one weekday. (a) shows the time expanded graph for the blue route and (b) shows how passengers
can transfer between two different routes. (c) shows the transfer links between walking-reachable stops. All dashed vertexes/ovals (e.g., Vq in [a] and Vg in

[c]) indicate the set of events occurring at the same stop.

by the yellow dotted arrow edges. The events at the same stop
are fully connected, and any pair of subsequent events has a
yellow dotted connection.

For the time-expanded graph, Fig. 7(b) illustrates that the
red route (with red dashed arrows) and the blue route (with
blue solid arrows) share the same stop (i.e., Stop 2 associated
with the set V»), and that passengers can transfer from the
red route to the blue route at this stop (52 < 12 is a
prerequisite for creating such a transfer edge). In addition to
transfer edges at the same bus stop, walking transfer edges
are introduced into the graph, as illustrated in Fig. 7(c). Stops
within a short geographical distance (e.g., 640 meters) are
considered as reachable via walking, and passengers would
be willing to walk a few more meters to transfer routes there.
The transfer edge between bus stops (dashed circles/ovals)
in Fig. 7(c) indicates the full connection between any pair
of subsequent events occurring at the two stops.

2) Expectation Graph (An Off-Line Average Model of Sev-
eral Weekdays): After obtaining the simulation log of a
weekday from the on-vehicle experience simulator, we extract
the simulated travel time, average Wi-Fi quality, and passenger
volume as each edge’s attributes. The yellow dotted transfer
edges are outside of the vehicles; thus, their Wi-Fi and
passenger volume attributes are set to zero. We construct
the time-expanded models of three simulated Wednesdays in
May (i.e., May 5, 12, and 19). By averaging the attributes over
the three models, we obtain the expectation graph of the bus
transit network. SC-M* uses the graph to plan for the client
passengers in the planning phase. Using this graph, passengers

who reach one of the events at the destination stop fulfill their
individual travel plan.

One disadvantage of the time-expanded model is that the
resulting graph is quite large. To handle this issue, the expec-
tation graph only contains bus trips of which departure times
are within a 30-minute time window. For example, our exper-
iments use a time window between 14:00 and 14:30.

B. Forward-the-Tail-Agent Approach

In contrast to the traditional MAPP settings, in which the
agents are assumed to reach certain vertexes at a time step
(i.e., the time spent on each edge is the same), the agents in
real-world networks do not synchronize because of the various
travel times spent on different edges. As shown in Fig. 8(a)
three agents in the traditional MAPP context are assumed to
synchronize at the joint vertexes (vll, vf, v%), (v%, vg, v%),
and (v%, vé, vg) at the times ?1, t», and t3, respectively.
Therefore, the planner will know that the Agent 1 and Agent
3 meet up at vp and interfere on the edge from v, to v3.
Note that the superscript indicates the index of an agent
and subscript indicates the index of a vertex. However, when
traditional MAPP planners are applied directly to real-world
networks, as shown in Fig. 8(b), agents will move from the
joint vertex (1)11, v%, vg) to (v%, vi, v%) after the first step,
and the interference on the edge from vy to v3 cannot be
detected in real time. Thus, without the synchronization prop-
erty, SC-M* and other MAPP algorithms cannot be directly
applied. Note that identical vertexes are shaded in colors and
we have 1] <1 <3 <14 <t5in Fig. 8.
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real systems. 0?2, indicates the event that Agent 2 arrives at vertex v3.

To deal with this practical issue, we introduce the forward-
the-tail-agent approach. At each time step, this approach only
forwards the agent at the tail (i.e., the last agent in the time
flow). If multiple agents synchronize at the tail, they will all be
forwarded simultaneously. In Fig. 8(b), three agents start with
the joint vertex (v% , v%, vg) and the approach only forwards
Agent 3 (Agent 3 is at the tail in time, which is underscored)
from vg’ to v% at the first step, and the joint vertex (v%, v%, vf)
is reached. At step 2, Agent 2 is at the tail and is forwarded
from v% to v‘%. Then, the joint vertex (v{, v%, vf) is reached,
in which both Agent 1 and Agent 3 are at the tail. At step 3,
both Agent 1 and Agent 3 are moved to v% and vg , respectively,
and the interference on the edge from v to v; is detected at
this step. Compared to the three joint vertexes in the traditional
MAPP setting in Fig. 8(a), Fig. 8(b) shows a sequence of four

joint vertexes by using the proposed approach: (v } , v%, vg),
(v%, v%, v{’), (ﬁ, v%, ﬁ), and (v%, v%, v%). The forward-

the-tail-agent approach can also be directly applied to the
synchronization scenario in Fig. 8(a), performing exactly the
same as the traditional MAPP algorithms.

Based on the expectation graph and the forward-the-tail-
agent approach, the SC-M* planner can be generalized to the
real Porto bus transit system to generate mobility plans for
client passengers. The client passengers’ mobility planning
is based on the expectation graph in the planning phase
and executed in the testing environment of a future unseen
weekday (provided by the testing simulation) in the testing
phase.

VI. EXPERIMENTS AND EVALUATIONS

This section evaluates the customized SC-M* using the

on-vehicle experience simulator. The evaluation has two parts:

« First, we start with the planning tasks for a small number

of client passengers under the strict hard-collision-free

constraint. For this experiment, we can conduct a one-by-

one checking on the quality of each generated mobility
plan.

o Second, we then apply the SC-M* to a large number

of passengers under the soft-collision context, in which
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we can conduct a property checking on the scalability
(i.e., the run time and success rate under various client
passenger sizes) and on the satisfaction of the soft-
collision constraint of all generated mobility plans. In this
experiment, the planning tasks are O-D pairs of client
passengers randomly generated over the city.

We run SC-M* with an Intel Core i7-6700 CPU at 3.4 GHz
with 16 GB RAM. We consider two public resources: Wi-Fi
and available space on public vehicles. The goal of SC-M* is
to find a joint path in the public transit system for multiple
client passengers, optimizing the overall multi-criteria objec-
tive constrained on the soft-collision-free condition.

The cost objective, which is customized according to pas-
sengers’ preference, is defined in terms of three criteria: travel
time, Wi-Fi cost, and space cost. The Wi-Fi cost of an edge is
given by max(0, 150 — ave_WiFi_data_rate), which is a
rectified linear function of the negative average Wi-Fi quality
in Mbps. The cost regarding the lack of space is quantified
using the passenger volume on the edge. Note that the travel
time, average Wi-Fi quality, and passenger volume are the
three attributes of an edge given by the expectation graph,
which is defined in Section V-A. We apply the scalarization
method to define the cost objective in SC-M* and optimize
over the linear combination of the three criteria. The overall
cost of an edge used in the SC-M* is given by:

COStedge = O - COStiime + P - cOStwip; + 7 - cOStgpace, (10)

where a, f, and y are the scale coefficients.

A. Evaluations With Respect to Path Cost and the
Hard-Collision-Free Constraint

1) Experimental Setup: We first apply the SC-M* to a
small client passenger size and investigate each mobility plan’s
quality with respect to path cost and satisfaction of the hard-
collision-free constraint. Specifically, each experiment corre-
sponds to a planning task for five client passengers under the
strict hard-collision-free constraint (i.e., the collision threshold
T in Eq. (6) is set to zero). To start with a small number of
client passengers and the hard-collision context is necessary
because we can easily check and evaluate the quality of each
generated plan one by one.

The planning task of each experiment is designed to
encounter at least one collision along the individually optimal
path. Thus, the SC-M* paths must differ from the individually
optimal paths. We use the standard A* as the individually
optimal planner. We evaluate the quality of each plan gener-
ated by SC-M* and individually optimal A* via the festing
simulation of the final Wednesday in May, which is unseen
during the planning phase. Because the expectation graph is
based on the other three Wednesdays in May, it is expected
that the environment in the testing simulation is similar to the
expectation graph in terms of the non-client passenger flow
and road traffic. Along this line, the planner should achieve
a reasonably low path cost with the collision-free constraint
satisfied for each planning task.

We design five planning tasks (one task per experiment).
In each experiment, we
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Fig. 9.

o Apply the two MAPP planners (individually optimal A*

and SC-M* [T = 0]) separately to the task;

o Each planner generates three independent plans for each

task using the time-only (a, £, y = 1, 0, 0), Wi-Fi-only
(a, B,y =0, 1, 0) and space-only (a, S, y = 0, 0, 10)
objectives, respectively.

2) Experimental Results: We execute the planned paths in
the testing simulations and obtain the path cost and collision
information of the planned paths, as presented in Fig. 9. From
the figure, we observe that:

o The time cost (i.e., the travel time of the planned path) is
minimized by both planners under the time-only objective
(see Fig. 9(a) and Fig. 9(d)) in the five experiments. The
same phenomenon consistently occurs to the Wi-Fi cost
under the Wi-Fi-only objective (Fig. 9(b) and Fig. 9(e))
and to the space cost under the space-only objective
(Fig. 9(c) and Fig. 9(f)). These results verify the basic
function of both planners of minimizing the customized
cost objectives;

o Most individually optimal A* paths encounter collisions
(marked with red asteroid indicators), whereas the paths
from the SC-M* are all collision-free (marked with green
triangle indicators).

The experimental results demonstrate that the SC-M*

can optimize the path cost while preventing each client
passenger from collisions, and thus, improving the client

Comparison of the path costs between individually optimal A* and SC-M* (T = 0).

passengers’ travel experience conditioned on the collision-free
constraint.

B. Evaluations With Respect to Scalability

This paper attempts to mitigate the scalability problem in
real world: The global search space grows exponentially with
the number of agents and will become prohibitively large when
planning on a city scale; the involvement of multiple prefer-
ence types and resources produces more collisions, leading to
a quick increase in dimensional expansion. Three techniques
can improve the scalability: To 1) choose a reasonable time
window (e.g., 40 seconds) to limit the number of client
passengers that SC-M* must deal with at a time for the whole
city; 2) reduce the chance of collisions by tuning the build-in
parameters of SC-M*; and 3) group several similar passengers
(i.e., passengers sharing the same preferences and the same
O-D demands) as a single agent when running the planner.

In this section, we evaluate the scalability of SC-M* in
real systems. In the experiments,each client passenger attempts
to move from the origin to the destination with a low path
cost and with bounded collision scores (i.e., the probability of
collision [defined in Eq. (5)] is bounded).

1) Two-Resource-Two-Passenger-Type  Setting: In this
experiment, we consider two types of client passenger
requesting two public resources: Wi-Fi and space (i.e.,
A={A]:“WiFi", Ay : “Space’}). We use client passenger
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TABLE I
THE IMPACT OF T AND ¢ RUN TIME (IN SECONDS)

m T=0 T=0.15 T=0.25 T=0.35 T=1.0 6=2 6=4 0=6

(M*) (idv. A*)

2 9755 16.56
5 381.26 45.10
10 757.95 177.58 89.80| 300.97
20 >1500 733.19 340.17 180.48| 508.90
30 >1500 1023.95 64830 602.10 269.99|1266.13 769.68 602.10
40 >1500 1254.28 1023.05 682.56 358.16|1408.25 1255.60 682.56
50 >1500 1460.95 1160.49 1134.24  450.35| >1500 1364.94 1134.24
60 >1500 >1500 1336.63 1357.88  540.84| >1500 1497.44 1357.88

30.45
79.43

32.94
83.52
182.21

30.93
80.70
160.93
436.08

33.88
151.73

30.14
77.84
222.63
369.16

30.93
80.70
160.93
436.08

Left: 6 = 6.0

Right: 7" = 0.35
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Fig. 10. (a) The impact of the collision threshold 7 on the success rate
of SC-M*, given d = 6.0; (b) The impact of the offset parameter ¢ on the
success rate, given 7 = 0.35.

group as an agent which contains a group of ten client
passengers. The Wi-Fi capacity is the data rate of the edge
and the space capacity is the number of the remaining seats.
We set the satisfying values to &1 = 60 and &, = 5 for Wi-Fi
and space, respectively. Type I client passenger groups apply
f1 as the collision CDF for the Wi-Fi resource and the linear
CDF f; for the space resource, implying that they view Wi-Fi
and space as important and trivial, respectively. On the other
hand, type II client passenger groups use f» for the Wi-Fi
resource and f for the space resource. Each client passenger
group has a 50% chance of being type 1. Both CDFs are
adjusted using the offset parameter J, and the collision score
is constrained by the collision threshold parameter 7. The
parameters and symbols used here are defined in Section IV.

Each trial randomly generates O-D pairs for client passenger
groups, and we give each trial 1500 seconds to find a solu-
tion. For each configuration (including the number of client
passenger groups, the collision threshold 7, and the offset
parameter o), we run 20 trials to calculate the average metrics
(i.e., the success rate and run time).

2) Success Rate and Run Time Results: We study the
influence of the collision threshold 7" and offset parameter J on
the SC-M* performance. Fig. 10(a) shows the success rate of
the SC-M* in the planning phase under the collision thresholds
of T = 0 (equivalent to the basic hard-collision-free M*), 0.15,
0.25 and 0.35 while the offset parameter is fixed to J = 6.0.
Table I-Left shows the run time (in seconds) in the planning
phase under various collision thresholds. Here, 7 = 1.0 is
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Fig. 11. Maximal collision scores of the planned paths in the planning
phase and in the testing phase. To satisfy the constraint, the observed maximal
collision score is expected to be less than the collision threshold 7'.

equivalent to individually optimal A*, denoted as idv. A*.
Fig. 10(b) shows the success rate under the offset parameters
of 0 = 2.0, 4.0, and 6.0 while the collision threshold is fixed
to 7 = 0.35. Table I-Right shows the corresponding run time.

The results clearly show that a large collision threshold T
and offset parameter 0 improve the scalability (i.e., improving
the success rate of finding a solution and reducing the run
time under large client passenger group sizes [m > 40] in the
planning phase). The planning under the hard-collision-free
constraint, which is equivalent to applying the basic M* to
the public transit network, does not scale well as it can only
handle the planning tasks for fewer than 12 client passenger
groups.

The experimental results show that for the SC-M*, larger
thresholds and offset parameters render more relaxed con-
straints; thus, each client passenger is expected to tolerate more
interference on the resources before announcing a collision.
With this property, one can tune the parameters to trade off
the scalability against the slackness of the constraints, being
flexible when planning on a city scale. This experiment also
demonstrates that the SC-M* can feasibly handle a complex
environment with multiple resources and multiple types of
client passengers.

3) Satisfaction of the Constraints on Collision Scores: The
scalability should also consider satisfying the soft-collision
constraints in the testing phase. We execute all the planned
paths in the testing simulation (i.e., the simulation of the
unseen Wednesday on May 26, 2010) and extract the col-
lision scores of each client passenger group to check the
satisfaction of the constraints. Fig. 11 presents the maximal
collision score observed for each configuration when executing
the planned paths in the planning phase and in the testing
phase, respectively. Note that each point in the figure corre-
sponds to the maximal collision score in the 20 trials of a
certain configuration. If the maximal collision score is less
than the collision threshold 7, the planning of the SC-M*
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Fig. 12.  Comparison between SC-M* and SC-CBS on run time and cost.

under the corresponding configuration is successful for all
20 trials.

From Fig. 11, we observe that all the collision scores in
the planning phase (blue curves with asteroids) are below
the given collision thresholds (black horizontal lines), indi-
cating that the SC-M* plans strictly satisfy the soft-collision
constraints in the environment described by the expectation
graph. For the collision scores in the testing phase (red curves
with circles), we observe that, despite a few outlier points
slightly exceeding the collision thresholds, the executions of
the planned paths in the testing simulation perform reasonably
well and confine the collision score of the on-vehicle experi-
ence below the bound, even if the number of client passenger
groups is large.

The experimental results support that the SC-M* can scale
to assure the quality of the plans, satisfying the soft-collision
constraints in the expectation graph and extending the soft-
collision-free property to the real-world environment, as long
as the expectation graph reasonably reflects the real public
transit environment.

C. Comparison to Baseline

We compare the proposed SC-M* to another SC-based
MAPP algorithm: SC-CBS. SC-CBS extends and customizes
the state-of-the-art MAPP algorithm, conflict-based-search
(CBS) [15] to the multi-passenger path planning problem in
Eq. (8). SC-CBS is a two-level algorithm. At the high level,
conflicts are added into a conflict tree (CT). At the low level,
solutions consistent with the constraints given by the CT are
found for each agent. Collisions are formatted as [agent j,
edge e, step s], indicating that agent j collides on edge e at
step s. The collision information is stored in tree nodes and
inherited by their descendant nodes. In each iteration, SC-CBS
selects a tree leaf and conducts decoupled planning to find
solutions consistent with the constraints associated to the leaf.
If collisions occur in the newly-planned path, the conflict tree
grows by adding new leaves, otherwise, a joint collision-free
path is found.

We apply both SC-M* and SC-CBS to two-resource two-
passenger-type settings. In each trial, both algorithms plan for
multiple client passenger groups, and we give each algorithm
1500 seconds to find a solution. For each configuration, we run
20 trials to calculate the average run time and path cost.

Fig. 12 shows the results. The adjusted path cost denotes
the additional path cost from the individually optimal A*.
From Fig. 12(a), we observe that the two algorithms are
comparable in terms of run time. However, in terms of path
cost in Fig. 12(b), SC-M* is noticeably superior to SC-CBS,
especially when the number of agents is large.

VII. CONCLUSION

In this paper, we propose a customized SC-M*, a scalable
multi-passenger multi-criteria mobility planner, to improve the
on-vehicle experience of passengers when travelling through
the public transit system in a city. The proposed methodology
can optimize the passengers’ experience while limiting the
probability of collisions among passengers to a bound. The
parameters control the slackness of the constraints and brings
advanced scalability to the SC-M*, making it a powerful tool
in practice. The case study of the Porto city, Portugal shows
the advantages of the SC-M* in terms of path cost, success
rate and run time.

Future work is twofold: First, we will leverage advanced
variants of M*, such as EPErM* and ODrM* [11], to remove
the basic A* component in our planner. We believe that
better performance can be obtained this way because these
variants improve the coupled planner and policy generator (two
important components in the basic M*), which are directly
related to the M* bottlenecks that limit the planning scalability.

Second, we will consider on-line planning to deal with
the failures in executing the plans in the real world. The
SC-M* generates plans based on the off-line expectation graph
in the planning phase, implying that failures may occur at
some points during the real-world executions. Solving this
problem requires a fast re-planner at the execution time from
the location of failure to the destination given the state of
public networks, which is a promising direction in the future.

APPENDIX
SC-M* DESCRIPTION

SC-M* is a general solver to the MAPP problem in Eq. (8)
and the pseudocode for SC-M* is presented in Algorithm 1,
where critical commands relative to the soft-collision con-
straint are underscored. In this algorithm, Lines 1-7 initialize
each vertex v in the vertex set V with infinite cost from the
source vy (the cost of vy itself is zero), make dissatisfying
experience to zero and make collision set C; empty. The
collision set is used to store indexes of collided agents, which
is defined by Eq. (3) in [2]. The initial open list contains
vg only (Line 8). In each iteration, SC-M* expands the first-
ranked vertex v in the open list ordered by the total cost
vk.cost + heuristic[vog] (Lines 10 and 11). The algorithm
terminates and returns the result if the expanded vy is the desti-
nation vy (Lines 12—14) or jumps to the next iteration if imme-
diate collision occurs at vg, 1.€., J(vk) # ¢ (Lines 15-17).
Line 18 constructs the set of limit neighbors Vk”bh of vg.
A limit neighbor is defined by Eq.(4) in [2] and is the core
component of the sub-dimensional expansion strategy used by
M#* algorithm. For each vertex v; in anbh (Line 19), SC-M*
adds v; to the downstream vertex set Vi of v; (Line 20).
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Algorithm 1 Soft-Collision M*

Input: v: source joint vertex; vy: destination joint vertex;
{V, E}: joint configuration graph;
A: set of resources

Output: Path finding results

1: for all v in V do

2 Dk.COSt <— +00

3:  vg.exp < all zero experience

4: Cp <0 //Cy is called collision set to store indexes

of collided agents. See Eq.(3) in [2] for definition

vi.traceBack < ¢

: end for

1 vg.cost < 0

: open < {vg}

: while open () do

10:  open.sort() by v.cost+heuristic[v]

list from small to large.
11:  vx < open.pop() //pop out the first-ranked vertex
12: if vy = vy then

/lto sort the open

13: return back_track_path[vk] /loptimal path found
14:  end if

15: if y(vx) # ¥ then

16: continue  //skip the vertex in collisions

17:  end if

18:  construct the limited neighbours Vk”bh of vy /I limited

neighbours is the set of vertexes to expand. It is defined
by Eq.(4) in [2]
19:  for v; in Vk”bh do
20: add v; to Vi //Vy is the set of “downstream” vertexes
existing in expended graph. It is used for constructing
and updating collision set Cy
21: Exp_update(v;, A) //update experience of v; using
Eq.(3) B
22: Cr <~ CrUw(v)
23: Backpropagate_update(vg, C;, open)  // update open
list and all the affected collision sets using backpropa-
gation method given by Algorithm 1 in [11]

24: if J(vl) = () and vj.cost+ey;.cost < v;.cost then
25: 0].COSt <— Dj.COSt+ey;.cost

26: v;.traceBack <— vy,

27: open.add(v;)

28: end if

29: end for

30: end while
31: return no path exists

The downstream vertex set is used for constructing and
updating the collision set C; and the definition is included
in Eq.(3) in [2]. The algorithm then updates the dissatisfying
experience of v; using Eq.(3) (Line 21), and include the
indexes of immediate colliding agents at v; to its collision
set C; (Line 22). When the new collision set of v; is obtained,
SC-M* updates the open list and all the affected collision sets
using backpropagation given by Algorithm 1 in [11]. After the
updating operation, if v; is free of collisions and has improved
cost, SC-M* accepts the new cost by saving the trace-back
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information and adding v; to the open list for future expansion
(Lines 24-28). This process repeats until the open list is empty
(Line 9) (i.e., no solution exists) or when the optimal solution
is found (Lines 12-14).
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