
applied
sciences

Article

SC-M*: A Multi-Agent Path Planning Algorithm with
Soft-Collision Constraint on Allocation of
Common Resources

Rongye Shi 1,* , Peter Steenkiste 1,2,* and Manuela M. Veloso 3,*
1 Department of Electrical and Computer Engineering, Carnegie Mellon University,

Pittsburgh, PA 15213, USA
2 Computer Science Department, Carnegie Mellon University, Pittsburgh, PA 15213, USA
3 Machine Learning Department, Carnegie Mellon University, Pittsburgh, PA 15213, USA
* Correspondence: rongyeshi@cmu.edu (R.S.); prs@cs.cmu.edu (P.S.); mmv@cs.cmu.edu (M.M.V.)

Received: 30 July 2019; Accepted: 21 September 2019; Published: 26 September 2019
����������
�������

Featured Application: SC-M* generalizes the M* algorithm to address real-world multi-agent
path planning problems in the soft-collision context, which considers the allocation of common
resources requested by agents. Application examples include but are not limited to city-scale
passenger routing in mass transit systems, network traffic engineering and planning for
large-scale autonomous vehicles.

Abstract: Multi-agent path planning (MAPP) is increasingly being used to address resource allocation
problems in highly dynamic, distributed environments that involve autonomous agents. Example
domains include surveillance automation, traffic control and others. Most MAPP approaches
assume hard collisions, e.g., agents cannot share resources, or co-exist at the same node or
edge. This assumption unnecessarily restricts the solution space and does not apply to many
real-world scenarios. To mitigate this limitation, this paper introduces a more general class of MAPP
problems—MAPP in a soft-collision context. In soft-collision MAPP problems, agents can share
resources or co-exist in the same location at the expense of reducing the quality of the solution. Hard
constraints can still be modeled by imposing a very high cost for sharing. This paper motivates
and defines the soft-collision MAPP problem, and generalizes the widely-used M* MAPP algorithm
to support the concept of soft-collisions. Soft-collision M* (SC-M*) extends M* by changing the
definition of a collision, so paths with collisions that have a quality penalty below a given threshold
are acceptable. For each candidate path, SC-M* keeps track of the reduction in satisfaction level of
each agent using a collision score, and it places agents whose collision scores exceed its threshold into
a soft-collision set for reducing the score. Our evaluation shows that SC-M* is more flexible and more
scalable than M*. It can also handle complex environments that include agents requesting different
types of resources. Furthermore, we show the benefits of SC-M* compared with several baseline
algorithms in terms of path cost, success rate and run time.

Keywords: multi-agent systems; planning; M* algorithm; shortest path finding; collision-free
constraint; optimality and completeness

1. Introduction

Multi-agent path planning (MAPP) involves finding the set of least-cost paths for a set of agents
co-existing in a given graph such that each of the agents is free from collision, where a collision is defined
as at least two agents moving to the same location at the same time. MAPP attracts increasing attention
due to its practical applications in multi-robot systems for surveillance automation, video gaming,

Appl. Sci. 2019, 9, 4037; doi:10.3390/app9194037 www.mdpi.com/journal/applsci

http://www.mdpi.com/journal/applsci
http://www.mdpi.com
https://orcid.org/0000-0003-4298-9358
https://orcid.org/0000-0001-7079-8212
https://orcid.org/0000-0001-6738-238X
http://www.mdpi.com/2076-3417/9/19/4037?type=check_update&version=1
http://dx.doi.org/10.3390/app9194037
http://www.mdpi.com/journal/applsci

Appl. Sci. 2019, 9, 4037 2 of 21

traffic control, and many other domains [1–4]. This problem is, however, difficult to solve because the
configuration space grows exponentially with the number of agents in the system, incurring extremely
heavy computational efforts. It is an NP-hard problem to find optimal solutions for MAPP in its
general form [5].

Approaches to solving MAPP problems fold into three main categories: coupled, decoupled and
intermediate [6]. Coupled approaches search the joint configuration space of the multi-agent system, which
is the Tensor product of the free configuration spaces of all the individual agents. A popular coupled
planner is the A* algorithm [7] that directly searches the whole joint configuration space, making such
an approach computationally infeasible when the number of agents is large. Enhanced variants of A*,
such as operator decomposition (OD), enhanced partial expansion A* (EPEA*), and iterative deepening
A* (IDA*), can—to some extent—mitigate the exponential growth in the number of neighbors by
improving the admissible heuristics [8–11]. Coupled approaches are optimal and complete, but usually
at high computational cost. Decoupled approaches plan for each agent separately and then adjust
the path to avoid collisions. Algorithms in this category are generally faster because they perform a
graph search and collision-avoidance adjustment in low-dimensional spaces. However, optimality and
completeness are not guaranteed [3,12].

Intermediate approaches lie between coupled and decoupled ones because they dynamically couple
agents and grow the search space during the planning. In this way, the search space is initially small
and grows when necessary. A few intermediate MAPP algorithms can guarantee optimality and
completeness. State-of-the-art examples include Conflict-Based Search (CBS) [6,13]. CBS is a two-level
algorithm. At the high level, conflicts are added into a conflict tree (CT). At the low level, solutions
consistent with the constraints given by the CT are found and updated to agents. CBS behaves poorly
when a set of agents is strongly coupled. Meta-agent CBS (MA-CBS) is then proposed by merging
strongly coupled agents into a meta-agent to handle the strongly coupled scenarios.

The M* algorithm is a state-of-the-art coupled approach. It starts with decoupled planning and
applies a strategy called sub-dimensional expansion to dynamically increase the dimensionality of the
search space in regions in which agent collisions occur. In this way, an efficient graph search with
a strict collision-free constraint can be achieved, while minimizing the explored portion of the joint
configuration space. M* identifies which subsets of agents can be safely decoupled and hence plans
for multi-agents in a lower-dimensional space. Compared to CBS and its variant MA-CBS, M* and its
variants, e.g., recursive M* (rM*), have much more fine-grained control over some technical details,
such as the management of conflict sets for better scalability. The fine-grained nature of M* allows it to
be integrated into MA-CBS to take advantage of both [14]. Recent work extended both M* and CBS
algorithms to handle the imperfect path execution due to unmodeled environments and delays [15,16].

Most fundamental MAPP approaches assume hard collisions, which means that solutions in
which agents share resources (nodes or edges) are rejected. In many real world scenarios, some
degree of resource sharing between agents is acceptable, so the hard-collision constraint needlessly
over-constrains the solution space. This paper relaxes the hard collisions constraint by allowing some
sharing of resources, including space and various services on edges/nodes, by agents. Such sharing
reduces the quality of the path, i.e., the satisfaction level of the agent using it, but as long as the quality
reduction for each path is below a settable threshold, the solution is acceptable. We call this concept soft
collisions. Hard collisions are still supported by having a very strict threshold, i.e., a penalty for sharing
is very high. The reduction in satisfaction level experienced by an agent caused by soft collisions on
resources in its path is quantified using a collision score. In this paper, we develop a generalized version
of the M* algorithm, called soft-collision M* (SC-M*), for solving the MAPP problem in the soft-collision
context. Note that we that we are not simply replacing hard with soft collisions, but instead introducing
soft collisions as a generalization that allows modeling different types of collisions.

SC-M* extends M* by taking the perspective of soft collision on common resources. Specifically,
SC-M* tracks the collision score of each agent and places agents whose collision scores exceed certain
thresholds into a soft-collision set for sub-dimensional expansion, a technique that limits the search space

Appl. Sci. 2019, 9, 4037 3 of 21

while maintaining the optimality of the algorithm with respect to the objective. In this way, SC-M*
achieves improved scalability to handle a larger number of agents while limiting the probability of
collisions on resources to a bound.

In this paper, we show that SC-M* has advanced flexibility and scalability for efficiently solving the
MAPP problem in the soft-collision context where common resources are considered, and can handle
complex environments (e.g., with multiple types of agents requesting multiple types of resources).
We theoretically prove that SC-M* is complete and suboptimal under the soft-collision constraints on
resources. Experimental results demonstrate the advantages/trade-offs of SC-M* in terms of path cost,
success rate and run time against baseline SC-based MAPP planners, such as SC-A* and SC-CBS.

The rest of the paper is organized as follows. Section 2 discusses the motivation of soft collisions.
Section 3 gives technical briefing of the M* algorithm. Section 4 presents our proposed SC-M* approach.
Section 5 evaluates SC-M* in a grid public transit network. Finally, Section 6 concludes our work.

2. Motivation

In some planning problems, solutions in which agents share resources, i.e., they collide using the
traditional MAPP problem definition, may be acceptable, at the cost of having a reduced level of agent
satisfaction. Problems of this type have two properties in common: (1) Agents’ satisfaction conditions
are reduced when meeting at the same place; and (2) the extent of reduction in satisfaction depends on
how long the dissatisfying situation lasts in terms of distance or time.

One motivating example of this type of problems involves mass transit systems, in which
passengers have various preferences, even necessities, in terms of common resources, such as seat
availability (necessary for seniors) and on-vehicle Wi-Fi supply (preferred by video viewers and
game players during the trip). Passengers may interfere with one another on common resources in
crowded situations. Individually optimal paths can cause serious interference, leading to low-quality
experiences. Interference between passengers is soft because it is possible that they do not call for the
same resource when they are on the same public vehicle. In addition, even when they call for the same
resource and interfere, they are able to tolerate each other over a short time and distance. Intuitively,
how likely a collision (intolerable interference) actually happens depends on: (1) whether the resource
supply is less than the demands; and (2) how long the lack-of-supply condition lasts in terms of the
time and distance that the passengers stay together. Passengers can be viewed as agents, moving
through the transportation network. When planners plan for all the agents, sticking to eliminating any
hard collision is neither necessary nor feasible. Thus, people are more interested in another problem:
How can the resource received by all agents be maximized such that the probability of collision of each
agent is less than a bound? This is an important topic of passenger-centered research [17–19].

In addition to public transit scenarios, other examples include: network traffic engineering, where
multiple data streams can route through a router. Long streams will have a higher chance of being
blocked when unexpected traffic spikes pop up, exceeding the link capacity [20]. How to maximize
the throughput with a bounded chance of blocking is of great interest to researchers in the field of
communications and computer networks.

Another example is planning for large-scale self-driving cars, where multiple cars can share the
same lane, and the number of cars on a road will influence the chance of crashes among autonomous
vehicles [21,22]. Scholars and engineers dealing with the fundamentals of autonomous vehicles in
unstructured and dynamic environments aim to increase the road traffic while bounding the crash risk.

Military transportation also has the soft-collision property, in which transport aircrafts or vehicles
are subject to higher risks to be detected and attacked by enemy troops when many of they move
together due to path overlap for a long distance. Formally, as the transportation volume on a road
increases, the degree of concealment decreases [23]. The dispatcher must bound the security risk when
attempting to maximize the military transportation efficiency.

To support these application classes, we introduce the soft-collision property (related to common
resources) to MAPP. SC-M*, introduced in this paper, is the first attempt to generalize M* to handle

Appl. Sci. 2019, 9, 4037 4 of 21

real MAPP problems in a soft-collision context, considering various common resources requested by
agents. Specifically, SC-M* changes M*’s definition of a collision so it can represent soft collisions on
resources and their impact on an agent’s dissatisfaction level. We show the advantages of the SC-M*
against other SC-based MAPP solvers.

3. Technical Briefing of M*

Before introducing the SC-M* method, this section reviews the traditional MAPP problem and
the M* algorithm [6].

3.1. MAPP Problem Definition

In this problem, we have m agents indexed by the set I = {1, . . . , m}. Let the free configuration
space of agent j be represented by the directed graph Gj = {V j, Ej}. For any agent j, graph Gj is the
same. The joint configuration space, which describes the set of all possible states of the multi-agent
system, is defined as the tensor product of the graphs of all individual agents: G = G1 × · · · × Gm.
G consists of a joint vertex set V and a joint edge set E. As an example, in a 2-D joint configuration space
given by the agents j and k, the two 2-D joint vertexes vp = (vj

p, vk
p) and vq = (vj

q, vk
q) is connected

by the joint edge (ej
pq, ek

pq). Note that vj
p ∈ V j and ej

pq ∈ Ej. Let π j(vj
p, vj

q) denote a sequence of joint

vertexes, called a path in Gj from vj
p to vj

q. The cost of a path π(vp, vq) in G is defined as

g(π(vp, vq)) =
m

∑
j=1

g(π j(vj
p, vj

q)), (1)

where g(π) is the sum of all edge costs involved in the joint path π.
The goal of MAPP is to find a collision-free path, which is optimal with respect to minimal cost,

from the source configuration vs = v1
s × · · · × vm

s to the destination configuration vd = v1
d × · · · × vm

d .
To determine the collision between agents, a collision function ψ(vp) is defined to return the set of
conflicting agents at vp.

Most fundamental MAPP approaches use hard collisions, where no intersection is allowed
between any two agents in terms of the occupation of any resource, such as a workspace. This implies
that the capacity of each resource can support only one agent at a time (i.e., a collision happens
immediately once agents intersect at any resource). Suppose we have a set of resources A =

{A1, . . . , AL} requested by each agent in the multi-agent system, where Ai is defined as the set
of resource of type i on all edges and vertexes in G. Ai is a continuous set because only continuous
resources are considered in the paper. A traditional hard-collision constrained MAPP problem is
formulated as follows:

min
π

g (π (vs, vd))

s.t. ⋃
∀i 6=j∈I

(
Ak(vi

p) ∩ Ak(v
j
p)
)
= ∅, ∀Ak ∈ A, ∀vp ∈ π,

(2)

where Ak(v
j
p) denotes the subset of resource Ak occupied by the agent j at the joint vertex vp.

One state-of-the-art solver to this problem is M*, which uses the sub-dimensional expansion strategy to
dynamically increase the dimensionality of the search space in regions featuring some agent collisions.
M* enables a relatively cheaper graph search under the strict hard-collision constraint.

3.2. Graphic-Centric Description of M*

This section uses the graphic-centric description introduced by wanger [6] to illustrate M*. M* is
a complete and optimal MAPP algorithm. The main idea of M* is to iteratively construct/update a

Appl. Sci. 2019, 9, 4037 5 of 21

so-called search graph Gsch (i.e., to iteratively remove the collision configuration vertexes and expand
necessary neighbors) and apply the A* algorithm on the new Gsch until the optimal collision-free
path to vd exists in the Gsch and is found by the A* search. Specifically, Gsch is a sub-graph of G and
consists of three other sub-graphs: the expanded graph Gexp, neighbor graph Gnbh, and policy graph Gφ.
The expanded graph Gexp is the sub-graph of G that has been explored by M*. Gnbh contains the
limited neighbors of all the joint vertexes in Gexp. The definition of limited neighbors is given below.
Gφ consists of the paths induced by the individually optimal policy φ that connects each joint vertex in
Gnbh ∪Gexp to vd without the collision-free constraint. Specifically, φj is the individually optimal policy
for the agent j that leads any vj in Gnbh ∪ Gexp to vj

d without considering collisions. Examples of policy
φ include the standard Dijkstra’s algorithm [24] and A* [5]. Using the above graphic concepts, we can
define the collision set Cp as

Cp =

{
ψ
(
vp
)⋃ {⋃vq∈VpVpVp ψ

(
vq
)
}, f or vp ∈ Gexp

∅ , f or vp /∈ Gexp , (3)

where VpVpVp = {vq|∃π(vp, vq) ⊆ Gexp} is the set of the joint vertexes to which there exists a path to from
vp in Gexp. Let φj(vj) be the immediate successor vertex of vj in the policy path, then the set of limited
neighbors Vnbh

p for the joint vertex vp in Gnbh is defined as

Vnbh
p =

{
vq

∣∣∣∣∣
{

ej
pq ∈ Ej, f or j ∈ Cp

vj
q = φj

(
vj

p

)
, f or j /∈ Cp

}
, (4)

where ej
pq = edge

(
vj

p, vj
q

)
. The definition of the limited neighbors implies the sub-dimensional

expansion strategy: We only expand the search space at the dimensions where the collision occurs
(j ∈ Cp), otherwise for collision-free dimensions (j /∈ Cp), M* will not expand, limiting the unexpanded
search space to the graph that only consists of individually optimal path induced by the policy φ.

3.3. Algorithm Description of M*

The high-level description of M* is as follows [6]: Initially, M* computes the individually optimal
policy φ for each agent from source vs to destination vd. The initial search graph Gsch only consists of
an individually optimal path: Initial Gexp contains vs only; initial Gnbh contains φ(vs) only, which is
the successor of vs along the individually optimal policy; and initial Gφ contains the optimal policy
path from the vertex in Gnbh and Gexp all the way to vd. Cp = ∅ for all vp in initial Gsch. Given the
initial Gsch, the A* algorithm is applied using the following admissible heuristic

h
(
vp
)
= g(πφ(vp, vd)) ≤ g(π∗(vp, vd)), (5)

where πφ is the individually optimal path induced by policy φ, and π∗ is the ground-truth optimal
multi-agent path we want to find. The initial open list (i.e., priority queue) contains vs only, with zero
cost. The open list is sorted according to vp.cost + h

(
vp
)
, where vp.cost is the current cost of vp from

the source.
In each iteration, M* expands the first-ranked vertex vp from the open list to Gexp and investigates

each joint vertex vq in the limited neighbors of vp (i.e., vq ∈ Vnbh
p) if no collision occurs at vp; otherwise,

it jumps to the next iteration. If there exists a collision (i.e., ψ
(
vq
)
6= ∅), M* will update the collision

set Cq with Cq ∪ ψ
(
vq
)
, and this update will back-propagate from vq to: (1) its immediate predecessor

vp; and (2) all the way back to any ancestors that have at least one path inside of Gexp leading to vq

(see Equation (3) for details). After this pre-processing, the algorithm:

• investigates and updates the cost of the vertex vq and records its corresponding predecessor; and
• adds vq and all its predecessors/ancestors, of which the collision sets are changed, to the open list.

Appl. Sci. 2019, 9, 4037 6 of 21

This process is repeated until vd is expanded or open list is empty.
The critical point is that: Only when a collision set Cp is changed will the search graph Gsch

change. It is the operation of updating the collision set in a back-propagation way that makes the
story different: By including ψ

(
vp
)

to Cp, M* can tell which agents are immediately collided at the
current vp; by including all ψ

(
vq
)

for vq ∈ Vp to Cp (i.e., the collision information of all the expanded
downstream successors from vp), M* can preview which agents will collide in the future, making it
possible to pre-plan to avoid that. Therefore, using the limited neighbor set in Equation (4) makes
sense: It advises M* to only expand the dimensions where there exists an immediate collision at vp or
there will be collisions in the future, starting from vp, in the current expanded graph Gexp. Figure 1
shows an example of how M* solves the optimal collision-free path planning for the two agents.

s10

O1

O2

D1,D2

O1

O2

D1,D2

a) b) c) d)

e) f) h)g)

s10

Figure 1. Illustration of traditional M* for two agents, where we show the evolution of the expanded
graph Gexp (circle), neighbor graph Gnbh (diamond), and policy graph Gφ (square) for Agent 2 as the
M* algorithm proceeds. (a) Individually optimal paths; (b) the first expanded vertex; (c) the third
expanded vertex; (d) collision occurs at vertex s10; (e) sub-dimensional expansion; (f) search in the
expanded space; (g) the destination of Agent 2 founded; (h) collision-free optimal paths for both agents
founded by M*.

In Figure 1, we can visualize the evolution of the search graph Gsch of Agent 2. Gsch consists of an
expanded graph Gexp (circle), a neighbor graph Gnbh (diamond), and a policy graph Gφ (square). Edge
cost and direction-changing cost are considered during planning. Yellow zones are preferred areas
with lower edge cost. In M*, individually optimal paths are induced by φ for each individual agent
(Figure 1a). We can observe that there will be a collision at vertex s10, which is ignored by φ. For Agent 2,
M* searches in the subspace, and the most promising vertex is expanded at each iteration (Figure 1b,c).
Then, a collision occurs at vertex s10 and triggers the removal of the rest of Gsch (Figure 1d), which is
equivalent to jumping to the next iteration. Following the sub-dimensional expansion strategy, M*
extends the search space to include the limited neighbors, and a new Gsch is obtained (Figure 1e).
By searching in the new Gsch, M* finds the optimal collision-free path for Agent 2 (Figure 1f,g). On the
other hand, the planning for Agent 1 is conducted simultaneously, and, finally, the collision-free
optimal paths for both agents are found by M* (Figure 1h).

4. Soft-Collision M* (SC-M*)

M* assumes hard-collision constraint which does not apply to many real-world applications.
Our contribution in this paper is to generalize M* to soft-collision context where common resources are
considered, and to introduce soft collisions as a generalized concept allows us to model different types

Appl. Sci. 2019, 9, 4037 7 of 21

of collisions. In addition, we show the advantages and trade-offs of the proposed algorithm in this new
scenario. The proposed SC-M* extends M* by changing the definition of a collision, so paths with hard
collisions but with a level of dissatisfaction on resources below a given threshold are acceptable. In this
section, we formulate the concept of soft collision on common resources, describe the generalized M*
(i.e., soft-collision M*) for planning in the soft-collision context, and extend our approach to a more
complex environment with multiple types of agents requesting multiple types of resources.

4.1. Soft-Collision Constraint on Common Resources

Inspired by real-world scenarios, we introduce the recourse-related soft-collision property to the
model of an agent. We define that all the agents have the following properties: (1) a collision among
agents is soft, quantified using some collision scores; and (2) different agents have different collision
scores, according to their individual experiences through the paths. We suppose that each agent cares
about a set of resources A = {A1, . . . , AL}. To obtain the properties, we introduce to each agent an
additional attribute called resource experience (for each resource) and use the resource experience to
calculate the collision score.

In doing so, this section first uses the resource experience (as defined in Section 4.1.1 Definition
1) to quantify how dissatisfying the agent is about the resource allocated to it. Then, we combine
this information of all the resources into a collision score (as defined in Section 4.1.2 Definition 2) that
indicates the probability of the agent announcing a collision given its resource experience. Threshold
of collision is used to limit the collision score, implying to what degree of unpleasantness we want
to pursue the solution. The agent, of which the collision score exceeds the threshold, will be placed
into a soft-collision set via the soft-collision function for sub-dimensional expansion (as defined in
Section 4.1.3 Definition 3).

4.1.1. Definition 1 (Resource Experience)

We define resource experience to quantify the dissatisfying experience per resource about which an
agent cares.

Let

• π = π (vs, vb) be a path from the source vs to some vb;
• vq = π

(
vp
)

be the immediate successor of vp along the path π;

• Ak(e
j
pq) be the capacity (amount) of the subset of the resource Ak on the edge ej

pq, given by the
graph model; and

• Aj
k(e

j
pq) be the amount of the subset of the resource Ak actually allocated to the agent j on the edge

ej
pq, called the allocated resource value.

The resource experience is then defined as the dissatisfying experience of agent j on resource Ak
along the path π j:

D
(

π j, Ak

)
= ∑

vp |vp∈π/vb

1
(

Ak(e
j
pq) ≥ εk ∧ Aj

k(e
j
pq) < εk

)
· g(ej

pq), (6)

where 1(·) is the indicator function, whose value is one if the logical condition is true, else zero;
εk ∈ ε = {ε1, . . . , εL} is the satisfying value regarding the resource Ak, which is a positive real value;
g(ej

pq) is the edge cost regarding travel time/distance given by the graph model; and Aj
k(e

j
pq) is

formulated as:

Aj
k(e

j
pq) =

Ak(e
j
pq)

∑k∈I 1
(

ek
pq = ej

pq

) . (7)

Obviously, Aj
k(e

j
pq) = Ak(e

j
pq) if and only if no other agents are physically moving along with

agent j on the edge ej
pq. The allocated resource value Aj

k(e
j
pq) quantifies the level of interference

Appl. Sci. 2019, 9, 4037 8 of 21

incurred by other agents when they physically move together. In contrast, the traditional hard-collision
setting will always label a collision to the agent j and all other involved agents whenever Aj

k(e
j
pq) is

(even slightly) smaller than Ak(e
j
pq). The resource experience is implemented as an attribute of the

vertex class and can be calculated incrementally using Algorithm 1.

Algorithm 1 Function: experience(vk, vl , A).

Input: vk: base vertex; vl : immediate successor of the base vertex; A: list of resources
Output: vl with updated experience

1: for Ap in A do

2: for j in I do

3: vl .exp[Ap][j]← vk.exp[Ap][j]+D(π(vk, vl)
j, Ap)

4: end for
5: end for
6: return vl //the successor with updated experience

Combined with the allocated resource value, which serves as a proxy of the interference level,
the definition of resource experience in Equation (6) actually defines a property of an agent: Only the
situation in which the resource allocated to an agent is dissatisfying because of the co-existence of
other agents (i.e., Ak(e

j
pq) ≥ εk should hold), will contribute to the dissatisfying experience of that

agent. Furthermore, each dissatisfying condition is weighted by the edge cost g(ej
pq). In this way,

we can quantify the resource experience in terms of how long such a dissatisfying condition lasts in
travel time or distance, which is quantified by g(ej

pq). As discussed below, the resource experience of
an agent will determine its collision score, which is defined from a probabilistic point of view.

4.1.2. Definition 2 (Collision Score)

We use the resource experience results from Definition 1 to calculate the collision scores. This is
defined from the view point of collision probability, that must be constrained under some threshold.

Let

• Col j be the event that agent j announces a collision (i.e., when agent j calls for one of the resources,
the allocated resource is less than satisfying);

• Dj = {Dj
1, . . . , Dj

L}, where Dj
k = D

(
π j, Ak

)
, be the set of dissatisfying experiences of agent j

along path π j on the resource Ak; and
• fk ∈ f = { f1, . . . , fL} be a customized cumulative distribution function (CDF) defined on [0,+∞),

mapping the resource experience D to a probability of collision on the resource Ak.

The collision score of the agent j is defined as the probability of how likely a collision occurs to the
agent j on at least one of the resources given its resource experience Dj:

P
(

Col j

∣∣∣Dj
)
= 1− ∏

k∈{1,...,L}

(
1− fk(Dj

k)
)

. (8)

Note that P
(
Col j

∣∣Dj) calculates the complement of the success probability—the joint probability
of being tolerable at all resources.

Figure 2 shows two example designs of f : f1(D) = sigmoid(D− δ), with a discontinuity point
f1(0) = 0, is a sigmoid-based CDF function, featuring a surge in the collision score (the derivative is
bump-shaped) at the experience value around δ. This function is suitable to important resources that
are sensitive to the agent; f2(D) = min(1, D/(4δ)) is a linear CDF with a shallow slope (the derivative
is flat). This function can apply to trivial resources that are not very sensitive to the agent but still
accumulate to contribute to the collision score. We use the offset parameter δ to adjust the tolerance level

Appl. Sci. 2019, 9, 4037 9 of 21

of the dissatisfying experience. With larger δ, the agent will tolerate a longer unpleasant experience
before announcing a collision.

Although the definition of the collision score can be customized according to different practices,
the probabilistic definition of collision score introduced here is a general one: Different types of resources
may have different value ranges, and Equation (8) standardizes the resource ranges, mapping them to a
value within [0, 1] and enabling an efficient integration of different types of resources to the framework.

0

0.5

1



D

1f 2f

4

Figure 2. Example designs of cumulative distribution functions (CDFs), mapping the resource
experience D of an agent to a collision probability on certain resource. f1: sigmoid-based CDF for
important (sensitive) resources. f2: linear CDF for trivial (insensitive) resource. δ: offset parameter
adjusting the tolerance level.

4.1.3. Definition 3 (Soft-Collision Function)

Now, according to the collision scores from Definition 2, we want to pick out the above-threshold
agents and place them into the soft-collision set via the soft-collision function for the purpose of applying
the sub-dimensional expansion.

Given a path π = π (vs, vb) and corresponding resource experience Dj for the agent j,
the soft-collision function of the agent j is

ψ̃j (vb) =

{
{j} , f or P

(
Col j

∣∣Dj) ≥ T
∅, otherwise

, (9)

where T is the threshold of collision. The definition of the global soft-collision function is then defined as

ψ̃ (vb) =
⋃
j∈I

ψ̃j (vb). (10)

Based on Definition 3, we can formally construct the soft-collision constraint on common resources
and obtain the soft-collision constrained MAPP problem:

min
π

g (π (vs, vd))

s.t.

ψ̃
(
vp
)
= ∅, ∀vp ∈ π.

(11)

This problem setting is general and can be utilized to express the hard collision setting in
Equation (2) by setting T = 0 or changing the condition inside the indicator function of Equation (6) to
Ak(e

j
pq) 6= Aj

k(e
j
pq) with infinite cost.

4.2. SC-M* Description

SC-M* is a general solver to the MAPP problem in Equation (11) by adjusting M* to the
soft-collision constraints on common resources. The pseudocode for SC-M* is presented in Algorithm 2,

Appl. Sci. 2019, 9, 4037 10 of 21

where critical commands relative to the soft-collision constraint are underscored. In this algorithm,
Lines 1–7 initialize each vertex v in the vertex set V with infinite cost from the source vs (the cost of vs

itself is zero), set dissatisfying experience to zero and make collision set Ck empty. The initial open
list contains vs only (Line 8). In each iteration, SC-M* expands the first-ranked vertex vk in the open
list ordered by the total cost vk.cost + heuristic[vk] (Lines 10 and 11). The algorithm terminates and
returns the result if the expanded vk is the destination vd (Lines 12–14) or jumps to the next iteration if
immediate collision occurs at vk, i.e., ψ̃ (vk) 6= ∅ (Lines 15–17). Line 18 constructs the limit neighbors
Vnbh

k of vk using Equation (4). For each vertex vl in Vnbh
k (Line 19), it adds vl to the descendant set Vk

of vk (Line 20), updates the dissatisfying experience of vl using Algorithm 1 (Line 21), and merges
the immediate collision at vl to its soft-collision set Cl (Line 22). On top of the new collision set of vl ,
SC-M* backpropagates to update all the affected ancestor vertexes from vl (see Equation (3)) and adds
them back to the open list for re-expanding (Line 23). After this collision set updating operation, if vl
is free from collision and has improved cost, the algorithm accepts the new cost by save the trace-back
information and adding vl to the open list for expansion (Lines 24–28). This process repeats until the
open list is empty (Line 9) when no solution exists or the optimal solution is found (Lines 12–14).

Algorithm 2 Soft-collision M*.

Input: vs: source joint vertex; vd: destination joint vertex; {V, E}: joint configuration graph;

A: list of resources
Output: Path finding results

1: for all vk in V do

2: vk.cost← +∞
3: vk.exp← all zero experience
4: Ck ← ∅
5: vk.traceBack← ∅
6: end for
7: vs.cost← 0
8: open← {vs}
9: while open 6= ∅ do

10: open.sort() by v.cost+heuristic[v] //i.e., sort the open list from small to large
11: vk ← open.pop()
12: if vk = vd then

13: return back_track_path[vk] //optimal path found
14: end if
15: if ψ̃(vk) 6= ∅ then

16: continue //skip the vertex in collisions
17: end if
18: conduct the construction of Vnbh

k using Eq.(4)
19: for vl in Vnbh

k do

20: add vl to Vk //note Vk = {vq|∃π(vk, vq) ⊆ Gexp}
21: vl ← experience(vk, vl , A) //update experience using Algorithm 1
22: Cl ← Cl ∪ ψ̃(vl)
23: backpro_update(vk, Cl , open) // 1) update all the affected soft-collision sets using Eq.(3)

//2) add all affected vertexes back to open list (see reference [6] for details)
24: if ψ̃(vl) = ∅ and vk.cost+ekl .cost < vl .cost then

25: vl .cost← vk.cost+ekl .cost
26: vl .traceBack← vk
27: open.add(vl)
28: end if
29: end for
30: end while
31: return no path exists

Appl. Sci. 2019, 9, 4037 11 of 21

SC-M* can make a transition from a decoupled individual A* (T = 1) to a standard hard-collision
constrained M* (T = 0), providing more flexibility to the performance of the algorithm with bounded
soft-collision scores.

4.3. Completeness and Cost-Suboptimality

A MAPP algorithm is complete if it guarantees that it will either return a path, or determine that
no path exists in finite time. An algorithm is optimal if it guarantees returning an optimal path if
such a solution exists. SC-M* is complete and suboptimal conditioned on the soft-collision constraint
(i.e., P

(
Col j

∣∣Dj) < T, for a given collision threshold T).

4.3.1. Completeness

Theorem 1. SC-M* is a complete algorithm.

Proof of Theorem 1. SC-M* inherits the sub-dimensional expansion from M* (i.e., it changes the Gsch

only when one of the soft-collision sets Cp changes). The algorithm applies A* in the updated search
graph. Due to the merging operation applied to collision set Cp, as shown in Equation (3), Cp for each
vertex will change finite times (at most m times, which is the number of agents). Because A* is complete,
applying A* to a given Gsch takes finite time to return a result. Therefore, SC-M* is complete.

4.3.2. Cost-Suboptimality

Different from M*, which is optimal, SC-M* is suboptimal because Equations (9) and (10) only
include the immediate conflicting agents to the soft-collision set; the agents that softly interfere with
the conflicting agents in the upstream path are excluded. Those excluded agents also contribute to
the announced collision (i.e., making the collision score above the threshold). Because of this, SC-M*
cannot guarantee the inclusion property, which is the basis to ensure the optimality in M* [6]: The optimal
path for some subset of agents costs no more than the optimal joint path for the entire set of agents. Without the
inclusion property, SC-M* may not guarantee cost optimality.

Figure 3 provides a counterexample of the inclusion property of SC-M* in the soft-collision
MAPP context defined in this paper. Let π′Ω(vk, v f) be the joint path constructed by combining the
optimal path for a subset Ω ∈ I of agents with the individually optimal paths for the agents in I\Ω.
The inclusion property is defined as follows: If the configuration graph contains an optimal path
π∗(vk, v f), then ∀Ω ⊂ I, g(π′Ω(vk, v f)) ≤ g(π∗(vk, v f)). See Lemma 6 in [6].

In the soft-collision context, this inclusion property does not always hold. In Figure 3, we have a
three-agent MAPP problem (I = {r1, r2, r3}) in the soft-collision context. Agents r1, r2, and r3 attempt
to move from the vertexes a, f , and h to the vertexes e, g, and i, respectively. The individually optimal
paths (shortest distance) are a→ b→ c→ d→ e with distance 4 for r1, f → c→ d→ g with distance
3 for r2, and h→ b→ c→ i with distance 3 for r3. The total cost of the joint individually optimal path
is 10. However, assuming that the agents can only tolerate a dissatisfying experience with distance 1,
r1 will announce a collision at vertex d because of the interference on the edge b→ c and c→ d from
agents r3 and r2, respectively.

If we choose Ω = {r1, r2} ∈ I, as can be seen in Figure 3, the only solution would be that r1 takes
a detour through the vertex x to avoid the collision on the edge c → d, resulting in a cost of 5 for
r1, and the total g(π′Ω(vk, v f)) is 11 (3 for r2, 5 for r1 and 3 for r3). On the other hand, by searching
through all three dimensions, a better solution would be that r3 detours through the vertex y, and r1 is
free from collision because the interference on the edge b→ c disappears. The total cost of this joint
path is 10.5, and we have g(π′Ω(vk, v f)) = 11 > g(π∗(vk, v f)) =10.5, which is contradictory to the
inclusion property.

Appl. Sci. 2019, 9, 4037 12 of 21

a

b c d e

f

b c

x

1

1 1 1

1
1

1.5 1

2

Dim 1

r2

r1

c d1

g

1

hr3 i
y

1

Dim 2

Dim 3

1 1

Figure 3. Counterexample of the inclusion property of soft-collision M* (SC-M*) in the soft-collision
context. Agents r1, r2, and r3 have the planning O-D demands (a, e), (f , g), and (h, i), respectively.
Vertexes in the system are labeled as a, b, c, etc.

The reason for this phenomenon is that, in the hard-collision context, only the immediate
conflicting agent r2 contributes to the collision of r1 at vertex d. However, in the soft-collision context,
both r2 and r3 contribute to the collision of r1 at vertex d, and thus, the inclusion property does not
apply. Without this inclusion property, which is the basis of the optimality of M*, the optimality of
SC-M* cannot be guaranteed.

However, we notice that suboptimal methods have long been used successfully to solve many
interesting MAPP problems [15,25,26]. Given the fact that we show in the next section that SC-M* is
superior to other alternative SC-based MAPP solvers (e.g., SC-A* and SC-CBS) in terms of scalability,
run time, and path cost, we demonstrate that the proposed method, which is adjusted to MAPP in the
soft-collision context, is a powerful tool in practice.

5. Experiments and Results

We evaluated SC-M* in simulation on a grid public mass transit network with an Intel Core
i7-6700 CPU at 3.4 GHz with 16 GB RAM. As shown in Figure 4, the grid transit environment has
20 × 20 stops. There are 20 bidirectional horizontal lines. Likewise, 20 bidirectional vertical lines are
deployed in the environment. At each stop, agents can switch lines. The yellow areas are covered by
some resources, such as the on-vehicle free Wi-Fi in our experiments. Agents traversing those areas
can enjoy high-quality on-vehicle Wi-Fi connections. A fully covered edge has a Wi-Fi resource value
of 100, and the Wi-Fi value of an edge is proportional to the length of coverage. Each agent wants to
move from its source (square) to its destination (circle) with the lowest cost (i.e., a linear combination
of distance cost and Wi-Fi cost) as well as bounded collision score. The second resource is the space
on the edge, which is fixed at 5. The satisfying values are ε1 = 20 and ε2 = 1 for Wi-Fi and space
resources, respectively.

We randomly generated a source–destination pair for each agent. Each trial was given a 1000-s
run-time limitation to find a solution. For each configuration (including the number of agents,
collision threshold T, and offset parameter δ), we ran 20 random trials to calculate the average
metrics (i.e., the success rate and run time). The success rate is the number of trials ending with a
solution divided by the number of trials. The run time is the average over trials ending with a solution
or a no-solution declaration. If all trials under a certain configuration exceeded 1000 s, we used “>1000”
to represent the run time of the corresponding configuration. We used the standard A* as the coupled
planner and policy generator in the SC-M* framework and compared our results to the baselines.

Appl. Sci. 2019, 9, 4037 13 of 21

Figure 4. Grid system with 20 × 20 stops and 40 bidirectional lines. Square and circle of the same color
correspond to the source and destination of an agent, respectively.

5.1. Planning for the One-Resource-One-Agent-Type

The first experiment considered Wi-Fi as the only resource requested by agents (i.e., A = {A1 :
“WiFi”}). Only one agent type exists, and all agents use sigmoid-based function f1 as the collision CDF.

We first studied the influence of the collision threshold T and the offset parameter δ on
performance. Figure 5a shows the success rate of the one-resource-one-type SC-M* with different
thresholds T =0 (equivalent to the basic M*), 0.2, 0.4, and 0.45, while the offset parameter is fixed
to δ = 6.0. Table 1 (left) shows the run time in seconds for the experiment. The results clearly show
that larger thresholds bring improvement in performance with a higher success rate and lower run
time for a large system size (m > 50). The improvement in performance results from the property of
SC-M* that larger thresholds render more relaxed constraints, and thus, agents are less likely to collide
on resources.

0 20 40 60 80
0

20

40

60

80

100
T=0.45T=0.4

T=0.2T=0

0 20 40 60 80 100 120
0

20

40

60

80

100

= 3 .0
= 6 .0 =9.0

Number of Agents Number of Agents

S
u

c
c
e

s
s
 R

a
te

(%
)

=0

(a) (b)

Figure 5. Impact of the collision threshold T (given δ = 6.0) and offset parameter δ (given T = 0.35) on
one-resource-one-type SC-M*.

Figure 5b shows the success rate of the SC-M* with different offset parameters δ = 0, 3.0, 6.0,
and 9.0, with fixed T = 0.35. Table 1 (right) shows the run time for the experiment. The results

Appl. Sci. 2019, 9, 4037 14 of 21

illustrate that SC-M* is sensitive to δ and can efficiently handle up to 100 agents with δ = 9.0. These
results are reasonable because the sigmoid-based CDF is used in the experiments, featuring a surge in
the collision probability at the experience value around the offset, and the offset parameter poses a
cutoff value on the resource experience, with collision always announced once the resource experience
is larger than the offset. The standard M* (T = 0) can only scale to fewer than 30 agents. Taking
advantage of this property, one can tune the parameters to trade off the scalability against the tightness
of constraints.

Table 1. Run time of one-resource-one-type SC-M* under different parameters.

m T = 0 T = 0.2 T = 0.4 T = 0.45 m δ = 3.0 δ = 6.0 δ = 9.0

5 0.556389 0.52489 0.5472 0.3616 5 0.506 0.3616 0.575
10 1.25143 1.18687 0.7057 0.7965 10 1.0765 0.7965 1.0427
20 403.3011 2.72513 1.4871 1.4488 20 2.2578 1.4488 2.1034
40 >1000 56.1898 4.2336 4.4318 40 17.201 4.4318 4.525
70 >1000 370.059 257.59 255.78 80 477.96 292.17 59.31
95 >1000 >1000 951.34 774.40 120 >1000 >1000 857.0

Left: δ = 6.0 Right: T = 0.35

5.2. Planning for the Two-Resource-Two-Agent-Type

We also evaluated SC-M* in more complex environments: two agent types requesting two
resources. This experiment considered both Wi-Fi and space capacity (i.e., A = {A1 : “WiFi”, A2 :
“Space”}). Type I agents use f1 in Figure 2 as the collision CDF for the Wi-Fi resource, and the linear
CDF f2 for the space resource, implying that they treat Wi-Fi and space as important and trivial,
respectively. On the other hand, Type II agents use f1 for space and f2 for Wi-Fi. Each agent has a 50%
chance of being Type I. Both CDFs are adjusted using the same δ at each trial, as illustrated in Figure 2.

Figure 6a shows the success rate of the two-resource-two-type SC-M* with different thresholds
T = 0 (equivalent to the basic M*), 0.2, 0.35, and 0.45, and with a fixed offset parameter δ = 9.0. Table 2
(left) shows the run time for the experiments. As can be seen from the results, in general, SC-M* can
handle the two-resource-two-type systems and plan for more than 80 agents. Because more resources
contribute more factors to increasing the collision score, a relatively large offset (δ = 9.0) is needed to
achieve comparable performance to the one-resource-one-type SC-M*.

0 20 40 60 80 100
0

20

40

60

80

100

Number of Agents

S
u

c
c
e

s
s
 R

a
te

(%
)

0 20 40 60 80 100
0

20

40

60

80

100

T=0 T=0.45T=0.3T=0.2

Number of Agents

=6.0 =12.0 =15.0=0

(a) (b)

Figure 6. Impact of the collision threshold T (given δ = 9.0) and offset parameter δ (given T = 0.35) on
two-resource-two-type SC-M*.

Appl. Sci. 2019, 9, 4037 15 of 21

Table 2. Run time of two-resource-two-type SC-M* under different parameters.

m T = 0.2 T = 0.35 T = 0.45 m δ = 6.0 δ = 12.0 δ = 15.0

5 0.3438 0.3493 0.363948 5 0.333498 0.3677 0.527464
20 1.2485 1.8549 1.807993 20 1.479236 1.4032 2.369483
40 10.102 3.2387 4.415021 40 61.49792 4.5024 4.04331
60 503.94 106.02 104.6499 60 521.2721 306.46 60.30944
90 901.91 801.47 702.4526 70 627.0925 347.14 209.5725

100 >1000 909.0 901.1799 100 901.91 751.78 606.6522

Left: δ = 9.0 Right: T = 0.35

Figure 6b and Table 2 (right) present the impact of the offset parameter δ on performance. Different
from the first experiment, SC-M* with the above configurations is less sensitive to δ, when compared to
Figure 5. The reason is that 50% of the agents are insensitive to one of the resources because of the linear
CDF f2, thus increasing δ does not contribute to a significant reduction in collisions. This property
implies that we can control the importance levels of resources efficiently through the design of collision
CDFs. This experiment demonstrates that, with the proper parameter settings, SC-M* can feasibly
handle a complex environment with multiple resources and multiple agent types.

5.3. Comparison of SC-M* to Baselines

We next compared the SC-M* to other SC-based MAPP algorithms, including SC-A* (optimal)
and SC-CBS (suboptimal), in the one-resource-one-type environment.

5.3.1. Path Cost

Firstly, we compared the path cost of the three algorithms. We designed 60 planning tasks for
environments with 4–6 agents (20 tasks for each), in which agents will encounter at least one collision
along the individually optimal paths under the T = 0.05, δ = 1 setting. We start with small agent
numbers because SC-A* cannot handle a large number of agents.

Figure 7 shows the average difference of the three SC-based solvers relative to the individually
optimal cost (i.e., the sum of the optimal cost of each agent when the agent is the only one in the
system). In other word,s the Y-axis represents the cost of collisions. We observe that SC-A* and SC-CBS
have the lowest and highest additional cost, respectively. SC-M* solutions cost more than SC-A* but
noticeably less than SC-CBS.

4 5 6
0

20

40

60

80

100

120 SC-CBS
SC-M*
SC-A*

A
v
e

.
d

if
fe

re
n

c
e

 f
ro

m
 i
n

d
iv

id
u

a
l

o
p

ti
m

a
l
c
o

s
t

Number of Agents

Figure 7. Average cost difference of soft-collision-based multi-agent path planning (SC-based MAPP)
solvers from the individually optimal cost in the one-resource-one-type context.

Appl. Sci. 2019, 9, 4037 16 of 21

To be more detailed, in the experiments, we designed MAPP tasks for environments containing
4–6 agents with 20 tasks for each. All tasks were designed to encounter at least one collision along the
individually optimal paths under the above-mentioned configuration. Thus, additional costs relative to the
individually optimal path are expected for each of the three SC-based MAPP solvers. Table 3 compares the
results of SC-M* and SC-CBS to the optimal solutions obtained by SC-A*. The top half of the table shows
the increase in cost relative to the cost for SC-A*; the costs for SC-A* for all scenarios vary within a small
range so the results are in absolute numbers. The bottom half shows the ratio in run time with respect to
SC-A*; the run time for SC-A* varies greatly across the experiments so we show the cost reduction as a
percentage. In the table, we observe that the additional cost of SC-M* from the SC-A* is consistently lower
than that of SC-CBS. We also observe that SC-M* is significantly faster than SC-A* and competitive relative
to the run time of SC-CBS. The standard deviations show the fluctuations of the solutions for SC-M* and
SC-CBS around the optimal solutions for SC-A*.

Table 3. Results of the path cost experiments.

m = 4 m = 5 m = 6
idx SC-CBS SC-M* SC-CBS SC-M* SC-CBS SC-M*

1 50.60 0.00 287.00 216.60 22.00 0.00
2 11.00 0.00 5.50 0.00 50.60 50.60
3 1.10 1.10 45.10 7.70 5.50 0.00
4 136.50 0.00 6.60 0.00 11.00 0.00
5 62.70 31.80 81.40 81.40 177.10 0.00
6 9.90 9.90 38.93 34.31 0.00 0.00
7 22.00 22.00 270.50 204.50 33.14 26.65

Cost 8 16.50 16.50 3.30 3.30 182.18 0.00
difference 9 13.20 0.00 27.50 0.00 211.10 169.30
from 10 104.50 0.00 78.30 67.08 32.33 20.89
SC-A* 11 58.08 24.08 22.00 0.00 79.20 0.00

12 20.90 0.00 36.84 5.94 52.80 15.40
13 11.00 0.00 115.40 56.00 72.16 59.73
14 28.60 28.60 17.15 9.34 63.70 26.84
15 13.20 0.00 66.00 0.00 19.11 14.05
16 94.60 0.00 35.53 23.65 18.70 1.10
17 16.83 2.86 14.90 10.71 318.90 0.00
18 205.70 22.00 1.10 1.10 48.86 8.94
19 53.24 27.71 14.90 10.71 1.10 1.10
20 12.10 3.30 34.75 2.53 32.61 8.62

Std. dev 52.44 12.00 80.49 64.14 84.64 39.15

1 38.39% 52.84% 24.54% 18.24% 0.33% 0.58%
2 10.41% 20.12% 4.37% 3.42% 0.23% 0.26%
3 14.53% 24.58% 0.09% 0.30% 2.32% 4.60%
4 25.12% 15.42% 0.29% 0.71% 0.92% 1.35%
5 0.81% 0.54% 21.62% 56.30% 0.55% 0.82%
6 19.17% 15.67% 0.52% 0.59% 3.48% 3.07%
7 14.02% 23.87% 16.39% 17.05% 0.43% 0.44%

Run time 8 29.82% 19.11% 1.40% 1.89% 0.07% 0.18%
percentage 9 64.67% 14.87% 6.16% 8.93% 0.13% 0.14%
to 10 46.67% 37.19% 0.45% 0.73% 0.10% 0.15%
SC-A* 11 5.94% 16.49% 1.96% 5.56% 0.15% 0.23%

12 5.16% 36.22% 2.36% 3.29% 0.46% 1.19%
13 11.40% 19.94% 0.44% 1.12% 0.47% 0.61%
14 6.18% 17.72% 0.76% 2.11% 0.78% 0.58%
15 33.07% 44.81% 25.38% 34.96% 0.48% 0.56%
16 86.83% 37.86% 1.92% 3.10% 0.26% 0.20%
17 16.10% 29.91% 0.92% 2.10% 4.01% 3.95%
18 11.68% 31.59% 10.04% 9.57% 0.28% 0.67%
19 3.97% 14.12% 0.92% 2.10% 1.67% 1.80%
20 4.37% 13.83% 1.01% 1.54% 0.60% 0.52%

Std. dev. 22.34% 12.57% 8.65% 14.08% 1.12% 1.30%

Appl. Sci. 2019, 9, 4037 17 of 21

The reason for the results is that SC-A* is an optimal solver for this type of MAPP problem because
it always explores cheaper paths in the entire multi-agent joint space before considering the paths that
cost more [7]. SC-M* is suboptimal because of the process discussed in Section 4.3.2. Compared to
SC-M*, SC-CBS suffers from more path cost due to the way it collects a collision: CBS collects collisions
into a conflict tree and arranges the collision into the form [agent j, vertex v, step s], indicating that agent
j collides at vertex v at step s. In each iteration, CBS conducts decoupled planning to avoid agent j
reaching vertex v at step s. This might lose some information in the soft-collision context because there
might exist another path that leads j to vertex v at step s without announcing a collision, by avoiding
one of the upstream vertexes involved in soft interference. In contrast, SC-M* can explore those paths
excluded by SC-CBS because it searches the entire space of the immediate colliding agents. Figure 8
provides an example to visualize the difference in planning among the three SC-based MAPP solvers.

a

b c d

e

f

b c d

g

x y

z

1

1 1
1

1
1 1

1

1 1

1.5

1 2 1

Dim 1

Dim 2

r2

r1

Figure 8. Illustration of the difference in planning among soft-collision A* (SC-A*), soft-collision M*
(SC-M*), and soft-collision conflict-based search (SC-CBS).

Figure 8 shows a two-agent MAPP problem in the soft-collision context. Agents r1 and r2 attempt
to move from vertexes a and f to vertexes e and g, respectively. The individually optimal paths (shortest
distance) for both agents are a→ b→ c→ d→ e with distance 4 for r1 and f → b→ c→ d→ g with
distance 4 for r2, respectively. The total cost of the joint individually optimal path is 8. r1 and r2 softly
collide on the edge b→ c and c→ d, where r2 can tolerate the dissatisfying experience with distance 2.
However, r1 can only tolerate the dissatisfying experience with distance 1 and announces a collision at
the vertex d.

When using SC-CBS, we record the collision that occurred to r1 as [r1, d, 3], indicating that agent
r1 will collide at vertex d at the third step. Then, SC-CSB will avoid any paths leading r1 to d at Step
3 (including a → b → x → d → e and a → b → c → d → e) and will end up with a longer detour
through vertex y. The SC-CBS solution has a cost of 5 for r1 and 9 in total.

When using SC-M*, the collision at d triggers the sub-dimensional expansion of the search graph
in dimension 1, which includes both x and y. Thus, it can find a cheaper collision-free path through x
and end up with a path a→ b→ x → d→ e with a dissatisfying experience of distance 1 and a cost of
4.5 for r1 (8.5 in total). However, SC-M* does not expand dimension 2 because no collision has been
announced by r2.

When using SC-A*, the joint search space of both dimension 1 and dimension 2 is expanded and
searched. Instead of vertexes x and y, SC-A* will first investigate vertex z in dimension 2 according
to some heuristics. This process leads to another cheaper path f → b → z → d → g with distance 4
for r2 (8 in total, which is the same as the individually optimal cost) and avoids all interference by
moving through this path. As a result, SC-A* returns an optimal solution that satisfies the soft-collision
constraint at the expense of search space.

The example in Figure 8 illustrates the optimality of SC-A* and the advantage of SC-M* in path
cost over SC-CBS. To be specific, SC-M* provides a better solution than SC-CBS by searching thoroughly

Appl. Sci. 2019, 9, 4037 18 of 21

through the expanded dimensions, whereas the way SC-CBS identifies collisions is inappropriate in
the soft-collision context. To the best of our knowledge, no other methodology capable of dealing with
the soft-collision path planning defined in Equation (11) has been developed. It is expected that, in the
future, more high-performance algorithms will be developed for solving the problem.

5.3.2. Run Time

Table 4 shows the average run time of the three SC-based MAPP solvers and we observe that
both SC-M* and SC-CBS are significantly faster than SC-A* in terms of run time. This is reasonable
because SC-A* always searches the global high-dimensional joint space, which is expensive. SC-CBS
is faster than SC-M* because it always searches in one individual dimension at a time, whereas the
SC-M* needs to occasionally deal with high-dimensional space when collisions occur.

Table 4. Average run time of SC-based MAPP solvers in the one-resource-one-type context.

m SC-CBS SC-M* SC-A*

4 1.971 2.002 47.35
5 1.798 3.312 473.7
6 1.942 2.969 390.0

5.3.3. Scalability

We compared the scalability of the three SC-based MAPP solvers in terms of planning for a large
system size (m > 50). Figure 9 presents the success rate, average additional cost (i.e., how much more
cost than the individually optimal path), and run-time ratio over SC-CBS under different thresholds T,
where the run-time ratio of SC-CBS is compared to itself and thus is constant. SC-A* has the slackest
constraint (T = 0.35, δ = 9.0) but poorest performance because of the prohibitively large search space.
SC-CBS has the best success rate because of the property of the decoupled searching. However, this is
at the expense of path cost. SC-M* performs decently in terms of both the success rate (significantly
superior to SC-A*) and cost (noticeably lower than SC-CBS) as the number of agents increases.

0 20 40 60 80
0

20

40

60

80

100

0 20 40 60
0

50

100

150

200

250

A
v
e

.
d

if
fe

re
n

c
e

 f
ro

m

in
d

iv
id

u
a

l
o

p
ti
m

a
l
c
o

s
t

R
u

n
-t

im
e

 r
a

ti
o

 o
v
e

r
P

C
-C

B
S

S
u

c
c
e

s
s
 R

a
te

(%
)

Number of Agents Number of Agents(a) (b) Number of Agents(c)

SC-A* (T=0.35,

SC-M* (T=0.25)
SC-CBS (T=0.25)

SC-M* (T=0.05)
SC-CBS (T=0.05)
=9.0) SC-A*

SC-CBS/SC-CBS
SC-M*/SC-CBS(T=0.25)
SC-M*/SC-CBS(T=0.05)

=9.0)(T=0.35,

0 20 40 60 80
0

5

10

15

10 30 50 70 10 30 50 10 30 50 70

2.5

7.5

12.5

Figure 9. Success rate, cost, and run time ratio of the three SC-based MAPP solvers under different T.

The run time of the SC-M* is generally longer than that of SC-CBS. In another experiment,
we observe that the run-time ratio of SC-M* over that of the SC-CBS starts to decrease after a peak.
This is because we force all algorithms to terminate after 1000 s, and both curves will converge to
value one when their success rates decline to zero. We conducted another scalability experiment with
different offsets δ (given T = 0.25) and observe the same results in terms of scalability. Figure 10 shows
the experimental results.

Appl. Sci. 2019, 9, 4037 19 of 21

0 20 40 60 80
0

20

40

60

80

100

0

5

10

0 20 40 60
0

50

100

150

200

SC-A*

SC-M*/SC-CBS

SC-M*/SC-CBS

SC-CBS/SC-CBS

(=9.0)

=9.0)(T=0.35,SC-A* =9.0)(T=0.35,

SC-M* (=2.0)
SC-CBS (=2.0)

SC-M*(=9.0)
SC-CBS(=9.0) (=2.0)

R
u

n
-t

im
e

 r
a

ti
o

 o
v
e

r
P

C
-C

B
S

A
v
e

.
d

if
fe

re
n

c
e

 f
ro

m

in
d

iv
id

u
a

l
o

p
ti
m

a
l
c
o

s
t

S
u

c
c
e

s
s
 R

a
te

(%
)

Number of Agents Number of Agents(a) (b) Number of Agents(c)

7.5

2.5

20 40 60 8010 30 50 7010 30 50

12.5

10 30 50 70

Figure 10. Success rate, cost, and run-time ratio of the three SC-based MAPP solvers under different δ.

Considering the scalability and path cost altogether, SC-M* demonstrates its overall advantages
over alternative SC-based solvers.

6. Conclusions

This paper proposes SC-M*, a generalized version of M* with soft-collision constraints on common
resources, which can scale to solving the multi-agent path planning problem in the soft-collision context.
The SC-M* tracks the collision score of each agent and place agents, whose collision scores exceed
some thresholds into a soft-collision set for sub-dimensional expansion. We show that the SC-M* has
advanced flexibility and scalability for efficiently solving MAPP problems in the soft-collision context
and can handle complex environments (e.g., with multiple types of agents requesting multiple types
of resources). We compare the SC-M* to other SC-based MAPP solvers and show the advantages and
trade-offs of the SC-M* against baselines in terms of path cost, success rate, and run time.

Future work will focus on leveraging advanced variants of M*, such as EPErM*, ODrM*, etc.,
to remove the basic A* component in our planner. We believe that better performance can be obtained
this way because these variants improve the coupled planner and policy generator (two important
components in the basic M*), which are directly related to the M* bottlenecks that limit the planning
scalability. We are also interested in applying SC-M* to real-world applications for case studies.
One promising research direction is to use the proposed algorithm to serve the passengers in public
transits. It is expected that SC-M* will handle large-scale mobility demands in cities

Author Contributions: Conceptualization, R.S., P.S. and M.M.V.; Methodology, R.S. and M.M.V.; experimental
design, R.S. and P.S.; software, R.S.; analysis, R.S.; writing, original draft preparation, R.S.; writing, review and
editing, R.S., P.S. and M.M.V.; supervision, M.M.V. and P.S.; and funding acquisition, M.M.V. and P.S.

Funding: This research was funded by the Fundação para a Ciência e a Tecnologia (FCT), the Portuguese
national funding agency, under the Sensing and Serving a Moving City (S2MovingCity) project (Grant
CMUP-ERI/TIC/0010/2014).

Acknowledgments: The authors would like to thank Stephen F. Smith and Carlee Joe-Wong for helpful discussions.

Conflicts of Interest: The authors declare no conflict of interest.

Abbreviations

The following abbreviations are used in this manuscript:

MAPP Multi-Agent Path Planning
SC-M* Soft-Collision M*
OD Operator Decomposition
EPEA* Enhanced Partial Expansion A*
IDA* Iterative Deepening A*
CBS Conflict-Based Search
MA-CBS Meta-Agent Conflict-Based Search

Appl. Sci. 2019, 9, 4037 20 of 21

References

1. Dresner, K.; Stone, P. A multiagent approach to autonomous intersection management. J. Artif. Intell. Res.
2008, 31, 591–656.

2. Pallottino, L.; Scordio, V.G.; Bicchi, A.; Frazzoli, E. Decentralized cooperative policy for conflict resolution in
multivehicle systems. IEEE Trans. Robot. 2007, 23, 1170–1183.

3. Silver, D. Cooperative Pathfinding. In Proceedings of the 1st Conference on Artificial Intelligence and
Interactive Digital Entertainment (AIIDE), Marina del Rey, CA, USA, 1–3 June 2005; pp. 117–122.

4. Wagner, G.; Choset, H. M*: A complete multirobot path planning algorithm with performance bounds.
In Proceedings of the 2011 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS),
San Francisco, CA, USA, 25–30 September 2011; pp. 3260–3267.

5. Ratner, D.; Warmuth, M.K. Finding a shortest solution for the NxN extension of the 15-PUZZLE is intractable.
In Proceedings of the 5th AAAI Conference on Artificial Intelligence (AAAI), Philadelphia, PA, USA,
11–15 August 1986; pp. 168–172.

6. Wagner, G.; Choset, H. Subdimensional expansion for multirobot path planning. Artif. Intell. 2015, 219, 1–24.
7. Hart, P.E.; Nilsson, N.J.; Raphael, B. A formal basis for the heuristic determination of minimum cost paths.

IEEE Trans. Syst. Sci. Cybern. 1968, 4, 100–107.
8. Standley T.S. Finding optimal solutions to cooperative pathfinding problems. In Proceedings of the 24th

AAAI Conference on Artificial Intelligence (AAAI), Atlanta, GA, USA, 11–15 July 2010; pp. 173–178.
9. Felner, A.; Goldenberg, M.; Sharon, G.; Stern, R.; Beja, T.; Sturtevant, N.; Schaeffer, J.; Holte, R. Partial-expansion

A* with selective node generation. In Proceedings of the 26th AAAI Conference on Artificial Intelligence (AAAI),
Toronto, ON, Canada, 22–26 July 2012; pp. 471–477.

10. Goldenberg, M.; Felner, A.; Stern, R.; Sharon, G.; Sturtevant, N.; Holte, R.C.; Schaeffer, J. Enhanced partial
expansion A*. J. Artif. Intell. Res. 2014, 50, 141–187.

11. Korf, R.E. Depth-first iterative-deepening: An optimal admissible tree search. Artif. Intell. 1985, 27, 97–109.
12. Sanchez, G.; Latombe, J.C. Using a PRM planner to compare centralized and decoupled planning for

multi-robot systems. In Proceedings of the 2002 IEEE International Conference on Robotics and Automation
(ICRA), Washington, DC, USA, 11–15 May 2002; pp. 2112–2119.

13. Sharon, G.; Stern, R.; Felner, A.; Sturtevant, N.R. Conflict-based search for optimal multi-agent pathfinding.
Artif. Intell. 2015, 219, 40–66.

14. Ferner, C.; Wagner, G.; Choset, H. ODrM* optimal multirobot path planning in low dimensional search
spaces. In Proceedings of the 2013 IEEE International Conference on Robotics and Automation (ICRA),
Karlsruhe, Germany, 6–10 May 2013; pp. 3854–3859.

15. Wagner, G.; Choset, H. Path planning for multiple agents under uncertainty. In Proceedings of the 27th
International Conference on Automated Planning and Scheduling (ICAPS), Pittsburgh, PA, USA, 18–23 July
2017; pp. 577–585.

16. Ma, H.; Kumar, T.S.; Koenig, S. Multi-agent path finding with delay probabilities. In Proceedings of
the 31st AAAI Conference on Artificial Intelligence (AAAI), San Francisco, CA, USA, 4–9 Feburary 2017;
pp. 3605–3612.

17. Shi, R.; Steenkiste, P.; Veloso, M.M. Second-order destination inference using semi-supervised self-training
for entry-only passenger data. In Proceedings of the 4th IEEE/ACM International Conference on Big Data
Computing, Applications and Technologies (BDCAT), Austin, TX, USA, 5–8 December 2017; pp. 255–264.

18. Shi, R.; Steenkiste, P.; Veloso, M.M. Generating synthetic passenger data through joint traffic-passenger
modeling and simulation. In Proceedings of the 21st IEEE International Conference on Intelligent
Transportation Systems (ITSC), Maui, HI, USA, 4–7 November 2018; pp. 3397–3402.

19. Shi, R. Optimizing Passenger on-Vehicle Experience Through Simulation and Multi-Agent Multi-Criteria
Mobility Planning. Ph.D. Dissertation, Carnegie Mellon University, Pittsburgh, PA, USA, May 2019.

20. Wang, H.; Xie, H.; Qiu, L.; Yang, Y.R.; Zhang, Y.; Greenberg, A. COPE: Traffic engineering in dynamic
networks. In Proceedings of the 2006 Conference of the ACM Special Interest Group on Data Communication
(SIGCOMM), Pisa, Italy, 11–15 September 2006; pp. 99–110.

21. Fletcher, L.; Teller, S.; Olson, E.; Moore, D.; Kuwata, Y.; How, J.; Leonard, J.; Miller, I.; Campbell, M.;
Huttenlocher, D.; et al. The MIT—Cornell Collision and Why It Happened. J. Field Robot. 2008, 25, 775–807.

Appl. Sci. 2019, 9, 4037 21 of 21

22. Leonard, J.; How, J.; Teller, S.; Berger, M.; Campbell, S.; Fiore, G.; Fletcher, L.; Frazzoli, E.; Huang, A.;
Karaman, S.; et al. A perception-driven autonomous urban vehicle. J. Field Robot. 2008, 25, 727–774.

23. Zhou, W.; Zhang, C.; Wang, Q. Optimal flow distribution of military supply transportation based on network
analysis and entropy measurement. Eur. J. Oper. Res. 2018, 264, 570–581.

24. Dijkstra, E.W. A note on two problems in connexion with graphs. Numer. Math. 1959, 1, 269–271.
25. Jansen, M.R.; Sturtevant, N.R. Direction Maps for Cooperative Pathfinding. In Proceedings of the 4th

Conference on Artificial Intelligence and Interactive Digital Entertainment (AIIDE), Stanford, CA, USA,
22–24 October 2008; pp. 185–190.

26. Van Den Berg, J.; Abbeel, P.; Goldberg, K. LQG-MP: Optimized path planning for robots with motion
uncertainty and imperfect state information. Int. J. Robot. Res. 2011, 30, 895–913.

c© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction
	Motivation
	Technical Briefing of M*
	MAPP Problem Definition
	Graphic-Centric Description of M*
	Algorithm Description of M*

	Soft-Collision M* (SC-M*)
	Soft-Collision Constraint on Common Resources
	Definition 1 (Resource Experience)
	Definition 2 (Collision Score)
	Definition 3 (Soft-Collision Function)

	SC-M* Description
	Completeness and Cost-Suboptimality
	Completeness
	Cost-Suboptimality

	Experiments and Results
	Planning for the One-Resource-One-Agent-Type
	Planning for the Two-Resource-Two-Agent-Type
	Comparison of SC-M* to Baselines
	Path Cost
	Run Time
	Scalability

	Conclusions
	References

