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Motivation

* Human brains significantly out-perform modern computers in energy efficiency

e Human: | | W, |.2 Liters

* |IBM Watson: over 100 kVV, 7500 Liters

* Inspired by the brain, we work to build integrated systems with brain-like
architectures, called Neural Networks (NNs)
* The focus is to utilize emerging technologies to create novel neural circuits for

information processing applications

Benefits and Opportunities

* NN circuits are proposed to surpass computational efficiency of von Neumann

based systems for certain applications
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* However, implementations based on CMOS alone and conventional techniques are

impractical due to complexity and power

* Mixed signal techniques can be more efficient through time-based processing
* Combining with emerging technologies has the potential to provide the efficiency

that surpasses traditional solutions

Neural Network Applications

* All applications are based on same primitives with different arrangements of synaptic

weights
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Objectives

* Build neuromorphic nano-primitives using emerging technologies and mixed signal design

techniques for lower power

* Demonstrate the utility of combining CMOS with post-CMOS technologies in statistical

information processing problems

* Further neuromorphic network theory in order to fabricate working systems

Oscillatory Neural Networks

* Oscillatory neural networks (ONNs) were inspired by the observation of synchronous

oscillatory behavior in the human brain

* For IC integration, ONNs can be formulated as a set of neurons that are low-precision

PLLs which are interconnected through synapses
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[F. Hoppensteadt and E. Izhidevich, Trans on Neural Networks 2000]

* Forms an associative memory where PLLs (neurons) synchronize and their phase

relations settle to a stored pattern

* System works as-originally proposed in an infinite-bandwidth configuration

Theory to Hardware: Unexpected Challenges

* In a real system, physical components cause transmission delays
* These delays cause the failure in frequency synchronization

Distorted

Original architecture

input

»

Frequency desynchronization phenomenon

/”’;;»

»

0 0.2 0.4 0.6 0.8 1 1.
\Phase relation vs. time

251
oL
15
1L
0.5 M‘n\
ok
0.5~
-1
~as
: ;
2 14 r r r

rrrrrr

Solution through Improved Architecture

* Low-precision Type-ll PLL ONNs combined with phase correction technique
are robust against transmission delays in real system

Proposed architecture
Distorted

Successful convergence
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Transition Metal Oxide Nano-Oscillators and RRAM

* TMO nano-oscillators provide very dense low-power oscillators
* Neurons are formed from these nano-oscillators for power efficiency

»
T

300 F

o
—

Device 1 Device 2
700 nm x 700 nm 5 um x5 pm

-9

--1 A
j |
i '

200k

(

Current (nA)

\
]

Device 1 Device 2 I
700 nm x 700 nm 5 pum x5 pm I

100 f

Voltage (V)
w

N
T v 1

Holding Voltage V,, (V)
':____________
[ |

Threshold Voltage V,, (V)

"X
I ]
; : | Voltage oscillations with R, =1.2 kQ |
0 . - ! | - - --simulation
00 02 04 06 08 10 1.2 0 ) . . . ) . .
700 nm crossbar Voltage (V) 0 100 200 300 400
30 nm thick time ( S)
K

* Same CMOS-compatible material can be used for synaptic weights
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* CMOS taped out for fabrication in 28nm Samsung process
* TMO Nano-oscillators will be integrated at CMU
* Mostly-digital architecture allows for future scaling

Simulation Results and Estimated Performance

* Performs associative memory operation correctly in under |0ns
* Significant performance boosts over potential system previously reported
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