
Carnegie Mellon University
Research Showcase

Computer Science Department School of Computer Science

1-1-2004

Creating Multi-Modal, User-Centric Records of
Meetings with the Carnegie Mellon Meeting
Recorder Architecture
Satanjeev Banerjee
Carnegie Mellon University, banerjee@cs.cmu.edu

Jason Cohen
Carnegie Mellon University, jasoncohen@cmu.edu

Thomas Quisel
Carnegie Mellon University

Arthur Chan
Carnegie Mellon University

Yash Patodia
Carnegie Mellon University

See next page for additional authors

Follow this and additional works at: http://repository.cmu.edu/compsci

This Conference Proceeding is brought to you for free and open access by the School of Computer Science at Research Showcase. It has been accepted
for inclusion in Computer Science Department by an authorized administrator of Research Showcase. For more information, please contact research-
showcase@andrew.cmu.edu.

Recommended Citation
Banerjee, Satanjeev; Cohen, Jason; Quisel, Thomas; Chan, Arthur; Patodia, Yash; Al Bawab, Ziad; Zhang, Rong; Black, Alan; Stern,
Richard M.; Rudnicky, Alexander I.; Rybski, Paul E.; and Veloso, Manuela, "Creating Multi-Modal, User-Centric Records of Meetings
with the Carnegie Mellon Meeting Recorder Architecture" (2004). Computer Science Department. Paper 1385.
http://repository.cmu.edu/compsci/1385

http://repository.cmu.edu?utm_source=repository.cmu.edu%2Fcompsci%2F1385&utm_medium=PDF&utm_campaign=PDFCoverPages
http://repository.cmu.edu/compsci?utm_source=repository.cmu.edu%2Fcompsci%2F1385&utm_medium=PDF&utm_campaign=PDFCoverPages
http://repository.cmu.edu/scs?utm_source=repository.cmu.edu%2Fcompsci%2F1385&utm_medium=PDF&utm_campaign=PDFCoverPages
http://repository.cmu.edu/compsci?utm_source=repository.cmu.edu%2Fcompsci%2F1385&utm_medium=PDF&utm_campaign=PDFCoverPages
http://repository.cmu.edu/compsci/1385?utm_source=repository.cmu.edu%2Fcompsci%2F1385&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:research-showcase@andrew.cmu.edu
mailto:research-showcase@andrew.cmu.edu


Authors
Satanjeev Banerjee, Jason Cohen, Thomas Quisel, Arthur Chan, Yash Patodia, Ziad Al Bawab, Rong Zhang,
Alan Black, Richard M. Stern, Alexander I. Rudnicky, Paul E. Rybski, and Manuela Veloso

This conference proceeding is available at Research Showcase: http://repository.cmu.edu/compsci/1385

http://repository.cmu.edu/compsci/1385?utm_source=repository.cmu.edu%2Fcompsci%2F1385&utm_medium=PDF&utm_campaign=PDFCoverPages


CREATING MULTI-MODAL, USER-CENTRIC RECORDS OF MEETINGS WITH THE
CARNEGIE MELLON MEETING RECORDER ARCHITECTURE

Satanjeev Banerjee, Jason Cohen, Thomas Quisel, Arthur Chan, Yash Patodia,
Ziad Al Bawab, Rong Zhang, Alan Black, Richard Stern, Roni Rosenfeld,

Alexander I. Rudnicky, Paul Rybski, Manuela Veloso
{banerjee+,air}@cs.cmu.edu

School of Computer Science
Carnegie Mellon University
Pittsburgh, PA 15213, USA

ABSTRACT

Our goal is to build conversational agents that combine
information from speech, gesture, hand-writing, text and
presentations to create an understanding of the ongoing con-
versation (e.g. by identifying the action items agreed upon),
and that can make useful contributions to the meeting based
on such an understanding (e.g. by confirming the details of
the action items).

To create a corpus of relevant data, we have implemented
the Carnegie Mellon Meeting Recorder to capture detailed
multi-modal recordings of meetings. This software differs
somewhat from other meeting room architectures in that
it focuses on instrumenting the individual rather than the
room and assumes that the meeting space is not fixed in
advance. Thus, most of the sensors are user-centric (close-
talking microphones connected to laptop computers, instru-
mented note-pads, instrumented presentation software, etc),
although some are indeed ”room-centric” (instrumented whi-
teboard, distant cameras, table-top microphones, etc).

This paper describes the details of our data collection
environment. We report on the current status of our data
collection, transcription and higher-level discourse annota-
tion efforts. We also describe some of our initial research
on conversational turn-taking based on this corpus.

1. INTRODUCTION

Our long–term goal is to build agents that can assist pro-
fessionals in their day-to-day work life. In particular, we
are interested in building conversational agents that can ef-
ficiently and effectively participate in multi-party meetings
and help meeting participants with meeting-related tasks.
Such tasks may include tracking the agenda items being
covered, noting action items and milestones being decided
upon, and once the meeting is done, creating a summary of
the highlights of the meeting.

Such agents, CALOs (Cognitive Agent that Learns and
Organizes),1 can conceivably be of two types: a personal
CALO that focuses on an individual meeting participant,
processing their speech and gestures, interactions with their
computer, etc, and a public CALO that focuses on the meet-
ing itself, processing the combination of the various speech
and gestures, the mutual gaze information of participants,
the strokes on a white board, etc. Thus a single meeting can
have multiple such CALOs that may cooperate with each
other and with the participants themselves.

To study how human beings behave in a meeting, and to
create a corpus of meeting data, we are collecting detailed
multi-modal records of actual meetings held at Carnegie
Mellon University. Such meetings have a wide range in
terms of the number of participants (from two to a dozen),
the length of the meeting (15 mins to two hours), the con-
tent of the discussion (core speech group meetings, spoken
dialog group meetings, vision group meetings, etc), and the
goals of the meeting (student-advisor, weekly report meet-
ings, scheduling meetings, brain-storming sessions, etc). At
each such meeting, we record different information streams
that can be classified as personal or public streams. The aim
is to collect the kinds of streams that will be used by per-
sonal and public CALOs. The personal data streams include
speech from a close-talking microphone, notes typed on the
participant’s notebook, and information from presentation
slides. Public data streams include speech from table-top
microphones, video collected using the panoramic CAMEO
system, video collected using a single whole-scene camera,
and strokes drawn on a whiteboard.

These various streams of information need to be cap-
tured, time synchronized with respect to each other and col-
lected in a central repository. In this paper we present the ar-
chitecture we are developing for data capture, and describe

1For more information about the CALO Project, please refer to
http://www.ai.sri.com/project/CALO.



Fig. 1. Meeting Recorder System Architecture.

the Carnegie Mellon Meeting Recorder system that imple-
ments the architecture. We also describe our current data
collection status, and finally report on some initial results
from the analysis of the collected data.

2. THE MEETING RECORDER ARCHITECTURE

Over time we expect to incorporate additional sensors to
create more detailed records of meetings. Keeping this in
mind, our goal is to create a recording architecture that al-
lows rapid, simple incorporation of new information streams.
In this section we describe the meeting recorder architecture
from the point of view of how a stream of information is in-
corporated into the meeting record.

2.1. An Event View of Information Streams

An information stream can consist of either a sequence of
discrete events (such as the utterances from a speech stream)
or one long continuous event whose beginning and end co-
incide with the beginning and end of the meeting (such as
a video stream). Further, discrete events can be instanta-
neous (such as pressing a key on the keyboard) or may in-
volve a variable amount of time. We treat all three of these
streams in the same way, and expect each stream to gen-
erate events that have a start time and an end time. Thus
continuous streams generate only one event, while for in-
stantaneous events, the start and the end time are the same
and coincide with when the event took place.

2.2. Synchronizing Time Stamps

Each generated event must be associated with a start and
end time stamp. It is crucial that these time stamps be syn-
chronized with those generated for events on other streams.

That is, if two events on two different streams start simul-
taneously, the generated start time stamps should also be
the same. To perform such synchronization we have im-
plemented a light-weight version of the Simplified Network
Time Protocol (SNTP). This module queries the time on a
reference NTP server and also estimates the round-trip time
of the query. Using this information, the module estimates
the difference in clock time between the local machine (on
which the information stream is being captured) and the
NTP server. The stream capturing module can then use this
information to put time stamps on the events that reflect the
time on the NTP reference server. By synchronizing every
stream capturing machine to a single NTP server, all the
streams can be synchronized.

To empirically establish the synchronization accuracy
this method achieves on our network we collected reference
clock time stamps and found the variance in these times to
be under 10ms. This implementation is sub-optimal since
it assumes that the network is high-speed, which may not
always be the case. As future work we plan to implement
more sophisticated synchronization techniques. Note that
not all data streams are capable of equal resolution. For ex-
ample, a conventional video stream has an inherent lower
limit tied to its frame rate (30 fps). Nevertheless other phe-
nomena, such as managing turn-taking may require fairly
high temporal resolution.

2.3. Identifying Information for Events

Generated events include other information that helps iden-
tify the event. These include identifiers for the meeting, the
name of the participant, whether the information stream is
user-focused, and the modality (speech/video/hand-writing
etc).

2.4. Data Aggregation

As several different CALO sites will be making use of the
meeting corpus, we have developed a process for aggregat-
ing data on a central server. Data aggregation is a two-step
process. During the meeting all data are stored locally. This
preserves bandwidth and allows flexibility in the physical
location of the meeting (in the extreme, no external connec-
tions would be necessary). After the end of the meeting and
subject to bandwidth availability, all data are uploaded to
the server, as a background process.

The Microsoft Background Intelligent Transfer Service
(BITS) protocol is used to manage uploading. We imple-
mented a BITS client, termed wxBITS, that runs as a sep-
arate background process and transparently uploads event
files. A stream capturing system saves event data files to
the local machine, and spawns the wxBITS client if it is not
already running. The wxBITS client checks the event data
directory, and uploads any data file therein using the BITS



protocol to a Microsoft IIS BITS-enabled web server, and
then deletes the files from the local machine. While upload-
ing, the client can throttle its use of the network bandwidth
if it detects high network activity on the local machine so
that the act of uploading does not obstruct other work on
the local machine. Further, if the connection to the server
is lost during upload, the wxBITS client has the capabil-
ity of restarting the upload from the point at which it had
stopped. This robustness ensures that the event data from a
meeting will reach the server over a reasonably small inter-
val. If wxBITS detects that it has not uploaded any files in
60 seconds, it self terminates to save system resources.

2.5. Logging Event Information

Although event data is not uploaded to the server as soon
as the event is generated, we do send a summary block with
event information (time stamps, identifying information, etc)
to a central server. While not strictly necessary for creat-
ing a record of the meeting, this creates a redundant record
of session events that can be used for debugging purposes.
Presently, event summaries can be sent to a host running
a PERL script that collates the information into an HTML
file, or to a Timeline Server through the Open Agent Archi-
tecture (OAA). The format of the event summary allows for
new streams to be easily incorporated without the need to
alter the underlying protocol.

We have used the above architecture to implement the
capture, synchronization and storage of several information
streams. In the following sections we describe the charac-
teristics of each stream capture component.

3. CAPTURING CLOSE-TALKING SPEECH AND
TYPED NOTES

Our principal interest is the speech produced by meeting
participants. In our meetings, each participant wears a head-
mounted microphone (typically an Emkay VR-3345 micro-
phone, though individuals may show up with a different
though similar headset on occasion). To record the speech
from these microphones, as well as to capture the notes
typed out by the participant on their notebook, we have im-
plemented the Meeting Recorder Cross Platform (MRCP),
a screen shot of which is shown in figure 2. To accommo-
date personal choices of computer, we have implemented
MRCP in a platform independent manner, usable on Win-
dows, Linux and Macintosh OSX systems.

3.1. Processing the Speech Stream

The MRCP implementation borrows components of the CMU
Sphinx 2 real-time recognition system, such as end-pointing
and utterance management (this was done with a view to
later integration of recognition capabilities into the personal

Fig. 2. Meeting Recorder Client.

CALO). For recording, we have standardized on a 11.025
kHz sampling rate. This sampling rate, although not widely
used in the ASR community, provides maximum flexibility
in choice of platform. It does not result in significant degra-
dation of recognition relative to a 16kHz sampling rate. Record-
ing stops when the end of speech is detected; the resulting
utterance constitutes an event and is associated with syn-
chronized time stamps (obtained with the help of the NTP
module described above) and saved to local disc. A sum-
mary of this event is sent to a central server, and the utter-
ance file itself is queued up for transfer to the central storage
using wxBITS.

To make MRCP portable, the audio core of Sphinx 2
was updated to use PortAudio,2 a cross-platform low-level
audio API. Multi-threading allows MRCP to manage GUI
interaction, disk usage, network usage and other computa-
tion. A high priority thread receives audio and perform si-
lence removal. One or more separate threads retrieve the
audio in the form of buffered utterances and perform other,
potentially time-consuming operations, such as sending net-
work messages, storing audio to disk, speech processing,
etc.

Audio input must be available with low latency for real-
time level monitoring and interactive speech control. The
audio must also be available to higher latency threads, such
as writing entire utterances to disk. To make both situa-
tions simple, we created a structure to buffer utterances sep-
arately along with information about each utterance. The
structure representing an utterance contains a FIFO queue
for audio, so utterance length is not limited by memory, only
disk space. Utterances themselves are also queued, allowing
slow threads to lag many utterances behind.

2PortAudio is a free, cross platform, open-source, audio I/O library.
Information is available at http://www.portaudio.com/



3.2. Processing the Note-Taking Stream

The MRCP interface provides a text area within which par-
ticipants can take notes during the meeting. This text area
mirrors Windows Notepad in functionality; as we gain ex-
perience with MRCP, we plan to add to the capabilities of
this interface.

While the decision of how to discretize the speech stream
into events is relatively straightforward, it is not equally
clear what constitutes an event in the notes stream. One pos-
sibility is to treat the stream as being a continuous one, gen-
erating one note taking “event” that starts with a blank slate
at the start of the meeting, and ends with a full set of notes
at the end. However this view does not allow us to cap-
ture detailed timing information for the various segments
(say sentences) in the notes. The other extreme possibility
is to generate an instantaneous event for each key press; this
approach is not satisfying because it splits the notes into un-
intelligible pieces making it harder to work with the events.
As a middle ground we generate an event every time the
Enter key is pressed. The data for each event consists of all
the text in the area, thereby creating a record of everything
that has changed since the last press of the Enter key. We
anticipate that this information will be useful as a source
of evidence for higher-level processing of the meeting, for
example topic-spotting and segmentation.

As before, these event files are time stamped, their sum-
maries are sent to the server, and the files are queued up for
transfer using wxBITS.

3.3. Interface and Networking Issues with MRCP

To support platform independence, the MRCP is based on
wxWidgets (formerly known as wxWindows3) for its graph-
ical user interface (GUI), file access, and networking ca-
pabilities. The MRCP interface has been designed to be
fast, modern, and easy to use. Users begin recording speech
and notes by “Join”-ing at which stage they enter the name
of the meeting which is used as a way to group together
all the event files generated by the various participants dur-
ing a single meeting. Besides the notes text box discussed
above, the interface also features a toolbar, a volume meter,
and a status bar. The toolbar allows users to join a meet-
ing with two clicks, disconnect with one, as well as save
notes to a local file. The status bar reports useful status
information, such as whether a meeting is joined and how
many utterances have occurred. In a standard drop down
menu bar, various menu items allow users to customize the
Meeting Recorder’s functionality. All customizations are
stored in a settings file, which allows information such as
default servers and usernames to be reused. The Meeting

3wxWidgets provides a single API for writing GUI applications on mul-
tiple platforms. See http://www.wxwidgets.org/ for more infor-
mation

Recorder’s user interface is controlled by an explicit finite
state machine, which eliminates the possibility of bad user
input and invalid state transitions by disabling and enabling
controls at the appropriate times.

4. CAPTURING WHITEBOARD PEN STROKES

We use a Mimio device (www.mimio.com) to capture the
pen strokes made on the whiteboard during a meeting. The
device attaches to a normal whiteboard and uses infrared
sensors to track marker position; data is transmitted to a
computer using a USB cable. The commercial software that
ships with the device allows users to save the contents of
the whiteboard for later perusal. Our goal was to capture
the pen strokes and draw temporal relations between them
and other modalities, similar to the notes stream.

To do so, we have implemented the Mimio Logger that
uses the Mimio Recorder API (along with sample code pro-
vided by the Oregon Health and Science University) to de-
tect the state of the whiteboard (such as “pen down”, “pen
up”, etc), and, when the pen is down, the sequence of X-
Y coordinates that represents the trajectory that the pen is
following on the board at that instant. We defined an event
as the collection of the X-Y coordinates captured between
pen down and pen up. As soon as a pen down is detected,
the Mimio Logger starts recording the X-Y coordinates to a
file. Recording stops when pen up is detected. The result-
ing file containing the X-Y coordinates represents a single
stroke on the whiteboard, and constitutes a single event for
this stream. As before, this event is time stamped using the
NTP module, a summary block for this event is sent to the
central server, and the file itself is queued up for transfer to
the central storage using wxBITS.

When the Mimio Logger is started, the user is presented
with a login screen where the user can enter the meeting
name, user id, and the server to which the data must be up-
loaded.

5. CAPTURING SLIDE PRESENTATIONS

Often in the meetings we are recording, one or more par-
ticipants makes a slide presentation. Our goal is to capture
the information on each slide of the presentation, as well as
capture the timing information of the slide changes, mouse
button clicks, etc.

To do so, we have implemented the PowerPoint Scraper
which uses the PowerPoint API provided by Microsoft to
query the PowerPoint application for information such as
the format of the slides being shown, their contents, etc. The
PowerPoint Scraper queries PowerPoint at short intervals so
that whenever a slide change occurs, the program obtains
all the information on the new slide. Since this information
is available instantaneously, events are instantaneous—that



is, the start time and the end time are both the same. The
PowerPoint scraper creates an event every time the slide
changes, and the data for this event consists of all the in-
formation on the new slide. As usual, these events are time
stamped using the NTP module, summary blocks are sent
to the central server, and the files themselves are eventually
uploaded to a central storage using wxBITS.

6. CAPTURING VIDEO USING CAMEO

The Camera Assisted Meeting Event Observer (CAMEO)4

has been developed to support research in the physical aware-
ness aspect of the CALO personalized learning assistant.
CAMEO is designed to be an inexpensive high-resolution
omnidirectional vision system that lets us focus our research
on multi-person meeting scenarios. Panoramic images are
generated from CAMEO’s circular camera configuration (see
Figure 3). CAMEO was developed to help explore the is-
sues involved with using a small portable sensor system for
meeting understanding, rather than specially instrumenting
a room for that task. Ultimately, CAMEO is a designed to
be taken into a meeting environment and simply placed in
the center of the room without requiring any special calibra-
tion.

There are a number of specific scientific issues that we
are using CAMEO to address. The first is how to generate
coherent high-resolution images in real time from multiple
cameras. We are exploring automatic techniques by which
the images are registered and merged by having CAMEO
identify local feature points and correlating them between
the images. Another area of research includes real-time per-
son tracking within the generated panoramic images. We
are examining methods that make use of sparse data, in-
cluding local feature and color histogram information, in
order to achieve rapid tracking performance. Face recog-
nition algorithms are also being pursued as an independent
area of research. A method has been developed by which
CAMEO can extract faces from the image in real time, learn
a classification dataset, and then use that dataset to classify
the detected faces. Finally, we are trying to understand the
scientific issues involved with inferring the state of individ-
ual people (their actions and activities) as well as the global
state of the meeting (people’s interactions) from only see-
ing the positions of people’s faces. Because we make the
assumptions of using CAMEO in a completely uncalibrated
environment, CAMEO will only realistically be able to de-
tect people when it sees their faces. This is currently an
off-line process that operates after CAMEO has identified
and tracked the positions of people in the video stream.

4Paul E. Rybski, Fernando de la Torre, Raju Patil, Carlos Vallespi,
Manuela Veloso and Brett Browning, CAMEO: Camera Assisted Meeting
Event Observer, In Proceedings of the IEEE International Conference on
Robotics and Automation, 2004.

Fig. 3. CAMEO panoramic video capture device.

As part of the meeting recording architecture, CAMEO
generates panoramic images in real time and streams them
to an MPEG-4 movie file that can be used for off-line pro-
cessing. While CAMEO can process video data directly
from its cameras, it can load and process these movies off-
line which allows the state information to be extracted and
used as part of the larger meeting understanding problem.

7. CURRENT STATUS OF DATA COLLECTION

At this time we have collected a total of 14 meetings, con-
taining a total of 11,559 utterances. Utterances in this case
have been automatically segmented and this count should
be understood as an overestimate, since some proportion of
utterances will be non-speech vocalizations (such as loud
breathing) or other sounds. On the other hand, when a
presentation is being made, very long utterances will be
recorded. A more accurate characterization of the evolving
corpus will be available once transcription is completed.

8. INITIAL RESEARCH USING THE DATA

To participate in a meeting, an agent needs to be able to
track the conversation in progress and create an understand-
ing in terms of what topic is being discussed, what agenda
points are being covered, what milestones are being decided
upon, etc. A possible first step towards acquiring such a



set of capabilities is to be able to create a coarse judgment
on the state of the meeting. Possible states include discus-
sion, information flow (when one participant is giving infor-
mation to one or more other participants), and presentation
(when one participant is making a presentation to the whole
group). Our initial goal is to see how well we can make such
a classification using very simple speech–only information.
(Later we plan to experiment with how much better we can
do when we combine information from multiple modalities
such as both speech and vision).

Towards this goal, we have hand-annotated about half
an hour of a meeting with 5 participants. The annotation
consists of three layers. At the highest layer, the annotator
classified each point of the meeting as being in one of the
three states above. At the next layer, the annotator spec-
ified the role of each participant during a particular meet-
ing state. Roles include presenter, information producer,
information consumer, etc. At the lowest level, the annota-
tor precisely defined the start and stop times of each region
of overlapped speech, along with who were speaking at all
points of the meeting. We have found that it is easiest to
do such annotation by observing the video captured by the
single whole–scene camera, since that stream contains both
audio and visual information that the human being can rely
on to make the classifications.

Using this annotated data we trained a decision tree clas-
sifier to label each second of the meeting into one of the
three meeting states, based on very simple speech features
such as the number of speakers, the number of overlaps, the
lengths of the utterances, etc. All such features are defined
for a window immediately preceding the particular second
of the meeting that is being classified.

We evaluated the learned models using a separate 15
min test set from a similar meeting and found that our sim-
ple model labeled meeting state with 51% accuracy and par-
ticipant role at 53%, both at a window size of about 20 sec.
The accuracy of both classifiers was well above chance.

Given the small amount of training data and the sparse
feature set, we believe that much higher accuracies should
be possible to achieve. Once available the resulting labelling
can be used as a component of meeting understanding.

9. CONCLUSION

We have described an architecture for flexible multi-stream
collection of meeting data. The architecture is still evolving
but so far has shown itself to be a viable approach of meet-
ing data collection, particularly with respect to our goal of
creating a mobile and easy-to-use system that can be man-
aged by a broad base of users.

10. ACKNOWLEDGEMENT

This work was supported by DARPA grant NBCH-D-03-
0010. The content of the information in this publication
does not necessarily reflect the position or the policy of the
US Government, and no official endorsement should be in-
ferred.


	Carnegie Mellon University
	Research Showcase
	1-1-2004

	Creating Multi-Modal, User-Centric Records of Meetings with the Carnegie Mellon Meeting Recorder Architecture
	Satanjeev Banerjee
	Jason Cohen
	Thomas Quisel
	Arthur Chan
	Yash Patodia
	See next page for additional authors
	Recommended Citation
	Authors



