
TOWARDS EVERY-CITIZEN’S SPEECH INTERFACE:
AN APPLICATION GENERATOR FOR SPEECH INTERFACES TO DATABASES

Arthur R. Toth, Thomas K. Harris, James Sanders, Stefanie Shriver, Roni Rosenfeld

School of Computer Science
Carnegie Mellon University
usi-requests@cs.cmu.edu

ABSTRACT

One of the acknowledged impediments to the widespread use of
speech interfaces is the portability problem, namely the consider-
able amount of labor, data and expertise needed to develop such
interfaces in new domains. Under the Universal Speech Interface
(USI) project, we have designed unified look-and-feel speech in-
terfaces that employ semi-structured interaction and thus obviate
the need for data collection. More importantly, the unified struc-
ture of USI-compliant interfaces makes possible the automatic gen-
eration of new interfaces from a terse, high-level specification. In
this paper, we describe an application generator and accompany-
ing toolkit that allow even non-programmers to generate and use
fully functional speech interfaces to their chosen database in less
than 15 minutes.

1. INTRODUCTION

One of the acknowledged impediments to the widespread use of
speech interfaces is the portability problem, namely the consider-
able amount of labor, expertise and data needed to develop such
interfaces in new domains. During the early and mid 1990s, in the
aftermath of the ATIS project [1], it was often estimated that sev-
eral person-years of effort would be needed to build ATIS-like sys-
tems. Furthermore, at least some of the people involved in such an
effort would have to be seasoned speech researchers with consid-
erable experience in building such systems. Additionally, tens of
thousands of utterances would need to be collected in Wizard-of-
Oz style experiments in order to create a sufficiently robust gram-
mar.

Subsequently, much of the experience gained in ATIS and sim-
ilar projects was generalized to new domains, with the result that
experienced dialog system developers could build new systems
in similarly limited domains with only several person-months of
effort. More recently, with the widespread commercial use of
directed-dialog systems, toolkits were created that further reduced
development time to perhaps several person-weeks. Also, speech
researchers were no longer needed to be part of the development
effort, as it could be done entirely by speech engineers and speech
interface designers.

This level of effort and expertise may be reasonable for com-
mercial development of speech interfaces. However, in order to
empower individuals to create their own speech interfaces, the bar-
rier has to be lowered further. In this paper, we describe an ap-
plication generator and accompanying toolkit that allow even non-
programmers to generate fully functional speech interfaces to their
chosen database in as little as 15 minutes. We hope that this further

lowering of the barrier will result in a large number of speech in-
terfaces being generated by many individuals for many purposes.
These could include telephone-based interfaces to useful public
data, specialized interfaces for the visually impaired, and even
one-time, throw-away telephone-based interfaces to private infor-
mation for people anticipating difficulties in data communication,
such as during foreign travel.

2. THE UNIVERSAL SPEECH INTERFACE (USI)
PROJECT

The Universal Speech Interface (USI) (a.k.a. “speech graffiti”)
project (see http://www.cs.cmu.edu/˜usi [2]) strives to create and
test unified look-and-feel speech interfaces that employ semi-struc-
tured interaction1. A main advantage of this approach is user skill
transference across applications: a user trained (for 5 minutes) in
any USI-compliant application can be immediately productive in
any other compliant application. In addition, the semi-structured
interaction increases speech recognition accuracy and obviates the
need for domain data collection. Finally, the unified structure of
USI-compliant interfaces makes possible the automatic generation
of new interfaces from a terse high-level specification, which is the
subject of this paper.

Although the USI project seeks a unified design for all appli-
cation types, our first designs were limited to information-access
type applications, more specifically database access. We have gone
through several iterations of this design, with the result that it
is now relatively stable. We have since moved on to generalize
the design to include gadget- and device-control applications, and
are planning further generalization to other application types, (e.g.
transaction systems and interactive guidance systems). However,
these newer designs have not yet been tested and thus the appli-
cation generator described here is limited to generating database-
access applications only.

3. DESIGN CONSTRAINTS

Our goal was to provide a toolkit which allows non-expert devlop-
ers to effortlessly create database-oriented USI-compliant speech
interfaces. In solving this problem, we adhered to the following
constraints:

� The resulting application should run on a single platform.

� The toolkit should help enforce USI design principles.

� The toolkit should leverage the use of existing software.

1For a more general discussion of the USI philosophy, see [3].



� The target developers should not be required to know much
about programming or speech processing to create basic
working interfaces to their applications.

� The generated application should be extensible by develop-
ers who do have knowledge of programming and/or speech
processing.

4. USI APPLICATION ARCHITECTURE

The architecture of the generated database-oriented USI applica-
tion is similar to that described in [2] but has been modified to
meet the goal of running on a single platform. The modifications
consist primarily of porting parts from Linux to Windows, or in
some cases to the Cygwin environment running under Windows
(http://www.cygwin.com). The design is still modular, with a text-
based component at its core. The text-based component consists
of the USI library with an API that enforces the interaction style,
and the domain manager which handles application-specific infor-
mation. The USI library interacts with the Phoenix parser [4]. In
the case of a toolkit-generated application, the domain manager
interacts with a PostgreSQL database (http://www.postgresql.org).
However, the code is currently being generalized to work with Or-
acle and other ODBC-compliant database packages, and will soon
be generalized to plain ASCII files and web tables.

Speech recognition is handled by Sphinx II [5] and speech out-
put is handled by the Festival Speech Synthesizer [6]. A general-
purpose diphone voice is included with Festival. Developers have
the option of creating higher-quality limited-domain voices based
on unit selection. Speech I/O is connected to the text-based com-
ponent via a Perl script. (It is also possible to connect the text-
based component to an existing Visual Basic script to provide ad-
ditional telephony support, but this is more hardware-specific and
is therefore not currently part of the toolkit.)

5. CREATING A NEW USI APPLICATION

A toolkit that creates a USI database application must handle the
following tasks:

� Generate code for the domain manager which properly ac-
cesses the database.

� Generate a grammar file for the Phoenix Parser which both
enforces USI interaction style and is consistent with the
database content (e.g. column names, datatypes, named en-
tities in open datatypes).

� Generate a language model and pronunciation dictionary
for the Sphinx II speech recognition system which are con-
sistent with the grammar.

� Properly cross-link these various knowledge sources so that
multiple generated USI applications do not interfere with
each other’s operation.

6. BASIC TOOLKIT

In the most general scenario, a user can create a USI application
from scratch by manually creating all the files mentioned in the
previous section, checking for consistency across the various por-
tions, and performing any necessary debugging. We have done that

with a variety of database access applications, such as USI/Movie-
Line, which provides information about movies playing in the Pitts-
burgh area, and USI/ApartmentLine, which provides information
about available apartments in the Pittsburgh area. We have sub-
sequently separated out portions of the domain manager code that
were similar across all these applications, and provided methods
that can be called with data specific to a particular system. This
allowed us to create the first version of our toolkit.

Although this reduced the amount of work necessary to cre-
ate a new application, it still required knowledge of programming
and many system details. To further simplify the task of gen-
erating new applications, we examined the remaining variability
across different domains and databases. This turned out to arise
from translating from USI-style user queries to SQL queries, and
converting the results of the queries back from SQL to the USI
style. These mappings varied across domains because they in-
volved logic particular to the domain. We were able to distill
this logic into a number of associations between USI concepts and
database concepts. These associations, coupled with the database
contents, were almost sufficient to specify a complete USI ap-
plication. The remaining necessary items included a handful of
application-level attributes and database attributes (the latter in-
cluding column names, table names, and table linking informa-
tion).

7. XML-DRIVEN APPLICATION GENERATION

The next challenge was to determine how to have users specify
this necessary information without requiring much knowledge of
programming or speech processing. We decided that having a user
create an XML document would be a good solution for a number
of reasons:

� XML is flexible enough to specify the structure of our sys-
tem information.

� A variety of editors can be used to create the document.

� XML parsers which validate the document are freely avail-
able.

One possibility was to base our approach on VoiceXML
(http://www.voicexml.org). We decided not to pursue this approach
as it would have required adopting a different system architecture,
and it would have been difficult to enforce our interface style in
that architecture.

The other option involved creating a Document Type Defini-
tion (DTD) to specify the structure of XML documents used for
generating USI applications, creating scripts to generate and com-
pile necessary files based on the DTD, and executing and docu-
menting a computing environment for doing this on a devloper’s
machine.

The items mentioned in the Basic Toolkit section fell into three
main categories, which then became elements in our DTD: Appli-
cation, Database, and Slot. An XML document according to our
DTD consists of an Application element followed by a Database
element and a variable number of Slot elements. The Application
and Database attributes mentioned earlier map directly to XML at-
tributes in our DTD. Most of the items associated with slots also
map directly to XML attributes in our DTD, but we found it use-
ful in a few cases to define further elements. These additional
elements were associated with slots and belonged to one of two
categories: names used to refer to slots and value types associated
with particular slots. It was useful to have the names as elements



because multiple names could be used with a single slot. Specify-
ing the value types as a set of elements allowed us to add further
structure to them, such as enumerations and parameterization. The
final DTD was a mere 45 lines.

8. APPLICATION GENERATION

An XML document conforming to our DTD contains all the in-
formation needed for generating the application. Once developers
create such documents, they can invoke the application generator
(AppGen) code, providing as input the XML document as well as
the database itself. The AppGen then generates and compiles all
the necessary components, as depicted in Figure 1.

Fig. 1. Application generation process.

9. A WEB-BASED APPLICATION GENERATOR

After gaining some experience with the XML-based Application
Generator, we concluded that the process could be simplified even
further. The solution was a Web-based program that lets the de-
veloper fill out some forms, and then generates an XML docu-
ment. The forms to be filled out include application-level informa-
tion, slot-level information, and new datatype information. When-
ever possible, a pulldown menu of choices is offered. The short
prompts and questions labelling fields in the forms are hyperlinked
to pop-up help windows. An example slot-level page is shown in
Figure 2.

Much effort was made to reduce the number of form fields
to a minimum, in order to simplify the interaction. As a result,
some less commonly used options are not available via the Web
interface, but can still be invoked by editing the resulting XML
document.

The Web interface has the following advantages:

� It requires the least amount of expertise or computer savvy.
Virtually anyone who uses computers knows how to fill
forms and select from menus.

� The Web program can check for data consistency and com-
pleteness, issuing error messages or confirmation prompts
where appropriate.

� If the server is run centrally by the USI development team,
design changes, upgrades and bug fixes are immediately
available to all users, wherever they may be.

Fig. 2. Example Application generator screen.

The Web Application Generator serves as both a repository for
USI applications and as a tool to create new ones. Each user has
the ability to either create an application from scratch or to adapt
one from a previously created application. In fact, anything created
using this generator can be shared freely among users, including
whole applications, as well as slot types and even datatypes. This
practice maximizes utility and minimizes the time it takes to create
new applications.

The Application Generator is designed to minimize the num-
ber of questions the average user would need to fully specify a
simple to moderately complex database application. Only 10 min-
utes was required by an experienced user to create an application to
access a simple, 8-column database of flight information. In gen-
eral, new users can expect to spend about an hour to create their
first USI application using the Web based Generator; the amount
of time decreases considerably with increased usage and levels off
to about one to two minutes per slot.

10. SUMMARY AND FUTURE PLANS

We created a toolkit for streamlining the generation of USI-compli-
ant speech interfaces for database access. The need for explicit
programming was eliminated by the introduction of an XML-based
repository of domain-specific and application-specific declarative
knowledge. The process was in turn further simplified by using
an interactive Web-based interface to automatically generate such
XML documents. This allows even non-programmers to create
fully functional speech interfaces in as little as 15 minutes.

We have tested our application generator and are now mak-
ing it freely available (for further information, send mail to usi-
requests@cs.cmu.edu). We plan to offer this tool to students and
instructors for incorporation into course projects, at Carnegie Mel-
lon and elsewhere. At ICSLP, we will report on all such experi-
ences and related feedback.

Our ultimate goal for this project is to make talking to struc-
tured data as easy and as ubiquitous as typing at it. Our imme-
diate plans include generalizing the backend interface to ODBC-



compliant databases, including ASCII files, and soon thereafter to
HTML-based tables. We hope that this latter step will facilitate
the automatic “speechification” of Web information. We also plan
to extend the application generator to other USI application types,
such as gadget- and device-control, and interactive guidance sys-
tems.

11. ACKNOWLEDGEMENTS

The USI project is funded in part by the Pittsburgh Digital Green-
house (http://www.digitalgreenhouse.com). This research was also
sponsored by the Space and Naval Warfare Systems Center, San
Diego, under Grant No. N66001-99-1-8905. The content of the
information in this publication does not necessarily reflect the po-
sition or the policy of the US Government, and no official endorse-
ment should be inferred.

12. REFERENCES

[1] Patti J. Price, “Evaluation of spoken language systems: the
ATIS domain,” in Proceedings of the DARPA Speech and Nat-
ural Language Workshop, June 1990.

[2] Ronald Rosenfeld, Xiaojin Zhu, Stefanie Shriver, Arthur Toth,
Kevin Lenzo, and Alan W Black, “Towards a universal speech
interface,” in Proceedings of ICSLP ’00, Oct. 2000.

[3] Ronald Rosenfeld, Dan Olsen, and Alexander Rudnicky, “A
universal human-machine speech interface,” Tech. Rep.
CMU-CS-00-114, School of Computer Science, Carnegie
Mellon University, Pittsburgh, PA, Mar. 2000.

[4] W. Ward, “The cmu air travel information service: Under-
standing spontaneous speech,” in Proceedings of the DARPA
Speech and Natural Language Workshop, June 1990.

[5] X.D. Huang, F. Alleva, H.W. Hon, M.Y. Hwang, K.F. Lee,
and R. Rosenfeld, “The sphinx-ii speech recognition system:
An overview,” Computer, Speech and Language, vol. 2, pp.
137–148, 1993.

[6] Alan W Black, P. Taylor, and R. Cayley,
“The festival speech synthesis system,” 1998,
http://www.cstr.ed.ac.uk/projects/festival/.


