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TRIGGER-BASED LANGUAGE MODELS:
A MAXIMUM ENTROPY APPROACH

Raymond Lau
Massachusetts Institute of Technology, Cambridge, MA 02139
Ronald Rosenfeld
School of Computer Science, Carnegie Mellon University, Pittsburgh, PA 15213
Salim Roukos *
IBM T. J. Watson Research Center, P.O.Box 704, Yorktown Heights, NY 10598

ABSTRACT

We describe our ongoing efforts at adaptive statistical language mod-
eling. To extract information from the document history, we use
trigger pairs as the basic information bearing elements. To combine
statistical evidence from multiple triggers, we use the principle of
Maximum Entropy (ME). To combine the trigger-based model with
the static model, we absorb the latter into the ME formalism.

Given consistent statistical evidence, a unique ME solution is guar-
anteed to exist, and an iterative algorithm exists which is guaranteed
to converge to it. Among the advantages of this approach are its
simplicity, its generality, and its incremental nature. Among its
disadvantages are its computational requirements. We report our
current results and discuss possible improvements.

1. STATE OF THE ART

Until recently, the most successful language model (given
enough training data) was the trigram [1], where the proba-
bility of a word is estimated based solely on the two words
preceding it. The trigram model is simple yet powerful [2].
However, since it does not use anything but the very immedi-
ate history, it is incapable of adapting to the style or topic of
the document, and is therefore considered a static model.

In contrast, a dynamic or adaptive model is one that changes
its estimates as a result of “seeing” some of the text. An
adaptive model may, for example, rely on the history of the
current document in estimating the probability of a word.
Adaptive models are superior to static ones in that they are
able to improve their performance after seeing some of the
data. This is particularly useful in two situations. First, when
alarge heterogeneous language source is composed of smaller,
more homogeneous segments, such as newspaper articles. An
adaptive model trained on the heterogeneous source will be
able to hone in on the particular “sublanguage” used in each of
the articles. Secondly, when a model trained on data from one
domain is used in another domain. Again, an adaptive model
will be able to adjust to the new language, thus improving its
performance.

*Most of this work was done when Ray Lau and Ron Rosenfeld were
summer visitors at IBM T.J. Watson Research Center.

1 A fourth contributor to this work, Xuedong Huang of Carnegie-Mellon,
could not be put on the authors’ list due to ICASSP's technical restrictions.

The most successful adaptive LM to date is described in [3]. A
cache of the last few hundred words is maintained, and is used
to derive a “cache trigram”. The latter is then interpolated
with the static trigram. This results in a 23% reduction in
perplexity, and a 5%-24% reduction in the error rate of a
speech recognizer.

In what follows, we describe our efforts at improving our
adaptive statistical language models by capitalizing on the
information present in the document history.

2. TRIGGER-BASED MODELING

To extract information from the document history, we propose
the idea of a trigger pair as the basic information bearing
element. If a word sequence A is significantly correlated with
another word sequence B, then (A — B)is considered a “trigger
pair”, with A being the trigger and B the triggered sequence.
When A occurs in the document, it triggers B, causing its
probability estimate to change.

To build a successful model based on the above principles,
the following issues had to be addressed:

Filtering of the trigger pairs. Even if we restrict our atten-
tion to trigger pairs where A and B are both single words,
the number of such pairs is too large. Let V be the size
of the vocabulary. Note that, unlike in a bigram model,
where the number of different consecutive word pairs is
much less than V2, the number of word pairs where both
words occurred in the same document is a significant
fraction of V2.

Combining evidence from multiple triggers. This is a
special case of the general problem of combining evi-
dence from several knowledge sources.

Combining the trigger model with the static model.
A simple-minded approach is to linearly interpolate the
two. However, we sought a better solution: one which
would preserve, rather than average, the advantages of
both.

In the following sections, we discuss these and other issues,
and our current solutions to them.
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3. FILTERING THE TRIGGER PAIRS

Let & denote the “history” of the document (the part of the
text already seen). The goal of the language model is to
estimate probabilities of the form P(w|h) for any word w in
the vocabulary. Let W be any word sequence. Define the
events Wand W, as follows:

W : {Woccurs immediately next in the document. }
W, : {W Eh }

A natural measure of the information provided by A, on B is
the average mutual information between the two:

P(B|A,)
P(B)
P(B|A,)

P(B)

P(B|A,)
P@)
aha B|A,
+P(A3, B log %%)—)(1)

I(Ao:B) = P(A,,B)log + P(A,, B)log

+P(A,, B)log

Should mutual information be our figure of merit in selecting
the most promising trigger pairs? Consider the sentence:

“The district attorney’s office launched an investi-
gation into loans made by several well connected
banks.”

A trigger based model may use “DISTRICT ATTORNEY” to
trigger “INVESTIGATION”, raising its probability above the
default value for the rest of the document. But when “INVES-
TIGATION” actually occurs, it is preceded by “LAUNCHED
AN”, which allows a static trigram language model to predict
it with a much higher probability.

Triggers are to be used as an additional component to the
static model. Therefore, trigger pairs are only useful to the ex-
tent that the information they provide complements the static
model. Furthermore, trigger pairs affect each others’ useful-
ness. The utility of the trigger pair A; — B is diminished by
the presence of the pair A; — B. Finally, the utility of a trigger
pair depends on the way it will be used in the model.

4. COMBINING KNOWLEDGE SOURCES
4.1. The Maximum Entropy Approach

Using several different probability estimates to arrive at one
combined estimate is a general problem that arises in many
tasks. We use the maximum entropy (ME) principle ([4, 5]),
which can be summarized as follows:

1. Reformulate the different estimates as constraints on the
expectation of various functions, to be satisfied by the
target (combined) estimate.

2. Among all probabilitydistributionsthat satisfy these con-
straints, choose the one that has the highest entropy.

More specifically, for estimating a probability function P(x),

each constraint i is associated with a constraint function f i(x)

and a desired expectation c;. The constraint is then written as:
def

Epfi = ) PXSix) = ¢i . @)
X

Given consistent constraints, a unique ME solutions is guar-
anteed to exist, and to be of the form:

Poo= [l 25 3)

where the p;’s are some unknown constants, to be found.
Probability functions of the form (3) are called log-linear,
and the family of functions defined by holding the f;’s fixed
and varying the y;’s is called an exponential family.

To search the exponential family defined by (3) for the p;’s
that will make P(x) satisfy all the constraints, an iterative
algorithm, “Generalized Iterative Scaling”, exists, which is
guaranteed to converge to the solution ([6]).

4.2. Formulating Triggers as Constraints

To reformulate a trigger pair A— B as a constraint, define the
constraint function f4p as:

1 ifA€ehw=B
0 otherwise

fa-p(h,w) = { 4)

Set ca_p to E[f 4], the empirical expectation of f 4p (i€ its
expectation in the training data). Now impose on the desired
probability estimate P(k, w) the constraint:

Ep[fa=p] = E[fa-s] (5)

4.3. Estimating LM Conditionals: The ML/ME
Solution

Generalized Iterative Scaling can be used to find the ME
estimate of a simple (non-conditional) probability distribution
over some event space. But in language modeling, we often
need to estimate conditional probabilities of the form P(w|h).
How should this be done?

One simple way is to estimate the joint, P(h, w), from which
the conditional, P(w|h), can be readily derived. We have
tried this approach without success. The likely reason is that
the event space {(h,w)} is of size O(VI*!), where V is the
vocabulary size and L is the history length. The joint distri-
bution is over a huge space and we were subjecting it to very
few (comparatively) bigram trigger constraints. Better results
were obtained by estimating a conditional model P(w|h) given
by the exponential family corresponding to the trigger con-
straints, and using the method of [7] to constrain a bigram
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conditional model to match the probability P(w|h) derived
from the trigger constraints.

A better method, which incorprates all constrains simultane-
ously, was proposed by colleagues at IBM [8]. Let P(h,w)
be the desired probability estimate, and let P(h, w) be the
empirical distribution of the training data. Let f;(h,w) be
any constraint function, and let ¢; be its desired expectation.
Equation 5 can be rewritten as:

D Ph)- > PwIR)-filh,w) = ci ©6)
h w
We now modify the constraint to be:

DBy Y PwlR)-fith,w) = c; (7
h w

One possible interpretation of this modification is as follows.
Instead of constraining the expectation of f;(h, w) with regard
to P(h,w), we constrain its expectation with regard to a dif-
ferent probability distribution, say Q(h, w), whose conditional
Q(w|h) is the same as that of P, but whose marginal Q(h) is
the same as that of P. To better understand the effect of this
change, define H as the set of all possible histories #, and
define Hy, as the partition of H induced by f;. Then the modi-
fication is equivalent to assuming that, for every constraint f;,
P(Hy,) = P(Hy,). Since typically Hy, is a very small set, the
assumption is reasonable.

The unique ME solution that satisfies equations like (7) or
(6) can be shown to also be the Maximum Likelihood (ML)
solution, namely that function which, among the exponential
family defined by the constraints, has the maximum likelihood
of generating the data. The identity of the ML and ME so-
Iutions, apart from being aesthetically pleasing, is extremely
useful when estimating the conditional P(w|h). It means that
hillclimbing methods can be used in conjunction with Gen-
eralized Iterative Scaling to speed up the search. Since the
likelihood objective function is convex, hillclimbing will not
get stuck in local minima.

4.4. Pros and Cons

The ME principle and the Generalized Iterative Scaling algo-
rithm have several important advantages:

1. The ME principle is simple and intuitively appealing. It
imposes all of the constituent constraints, but assumes
nothing else. For the special case of constraints derived
from marginal probabilities, it is equivalent to assuming
a lack of higher-order interactions [9].

2. ME is extremely general. Any probability estimate of
any subset of the event space can be used, including
estimates that were not derived from the data or that

are inconsistent with it. Many other knowledge sources
can be incorporated, such as distance-dependent corre-
lations and complicated higher-order effects. Note that
constraints need not be independent of nor uncorrelated
with each other.

3. The information captured by existing language mod-
els can be absorbed into the ME model. Later on we
will show how this is done for the conventional N-gram
model, and for the cache model of [3].

4. Generalized Iterative Scaling lends itself to incremental
adaptation. New constraints can be added at any time.
Old constraints can be maintained or else allowed to
relax.

5. A unique ME solution is guaranteed to exist for con-
sistent constraints. The Generalized Iterative Scaling
algorithm is guaranteed to converge to it.

This approach also has the following weaknesses:

1. Generalized Iterative Scaling is computationally very ex-
pensive. When the complete system is trained on the
entire SOM words of Wall Street Journal data, it is ex-
pected to require many thousands of MIPS-hours to run
to completion.

2. While the algorithm is guaranteed to converge, we do
not have a theoretical bound on its convergence rate.

3. It is sometimes useful to impose constraints that are not
satisfied by the training data. For example, we may
choose to use Good-Turing discounting [10], or else the
constraints may be derived from other data, or be ex-
ternally imposed. Under these circumstances, the con-
straints may no longer be consistent, and the theoretical
results guaranteeing existence, uniqueness and conver-
gence may not hold.

5. COMBINING WITH THE STATIC
MODEL

We combined the trigger based model with the currently best
static model, the N-Gram, by reformulating the latter to fit into
the ME paradigm. The usual unigram, bigram and trigram
ML estimates were replaced by unigram, bigram and trigram
constraints conveying the same information. Specifically, the
constraint function for the unigram w; is:

1 ifw=wl
0 otherwise

le(h’ w) = { (8)

and its associated constraint is:

D B®)D PR v (h,w) =Ef (W) (9)
h w
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Similarly, the constraint function for the bigram wy, w, is

_J 1 ifhendsinw, and w = w2
f”"“”(h’w)_{ 0 otherwise (10)

and its associated constraint is

STBB) S PO wiwa (W) = Ef (W) (11)
h w

and similarly for higher-order ngrams.

The computational bottleneck of the Generalized Iterative
Scaling algorithm is in constraints which, for typical histories
h, are non-zero for a large number of w’s. This means that bi-
gram constraints are more expensive than trigram constraints.
Implicit computation can be used for unigram constraints.
Therefore, the time cost of bigram and trigger constraints
dominates the total time cost of the algorithm.

6. INCORPORATING THE CACHE
MODEL

It seems that the power of the cache model, described in sec-
tion 1, comes from the “bursty” nature of language. Namely,
infrequent words tend to occur in “bursts”, and once a word
occurred in a document, its probability of recurrence is sig-
nificantly elevated.

Of course, this phenomena can be captured by a trigger pair
of the form A — A, which we call a “self trigger”. We
have done exactly that in [11]. We found that self triggers are
responsible for a disproportionatelylarge part of the reduction
in perplexity. Furthermore, self triggers proved particularly
robust: when tested in new domains, they maintained the
correlations found in the training data better than the “regular”
triggers did.

Thus self triggers are particularly important, and should be
modeled separately and in more detail. For example, the
trigger model as described above does not distinguish be-
tween one or more occurrences of a given word in the history,
whereas the cache model does.

‘We plan to model self triggers in more detail. We will consider
explicit modeling of frequency of occurrence, distance from
last occurrence, and other factors. All of these aspects can
easily be formulated as constraints and incorporated into the
ME formalism.

7. RESULTS

The model described above was trained on 5 million words of
Wall Street Journal text. It used some 40,000 unigram con-
straints, 200,000 bigram constraints, 200,000 trigram con-
straints, and 60,000 trigger constraints. It took about 500

MIPS-hours per iteration. After 13 iterations, it produced a
language model whose perplexity was 12% lower than that of
a conventional trigram, as measured on independent data.

The trigger constraints used in this run were selected very
crudely, and their number was not optimized. We believe
much more improvement can be achieved. Special modeling
of self triggers has not been implemented yet. Similarly, we
expect it to yield further improvement. We will report our
latest results at the conference.
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