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ABSTRACT 
In a typical speech recognition system, computing the match be- 
tween an incoming acoustic string and many competing models is 
computationally expensive. Once the highest ranking models are 
identified, all other match scores are discarded. We propose to make 
use of all computed scores by means of statistical inference. We 
view the match between an incoming acoustic string s and a model 
Mi as a random variable Yi. The class-conditional distributions of 
(Yi, . . . , YN) can be studied offline by sampling, and then used in a 
variety of ways. For example, the means of these distributions give 
rise to a natural measure of distance between models. 

One of the most useful applications of these distributions is as a 
basis for a new Bayesian classifier. The latter can be used to sig- 
nificantly reduce search effort in large vocabularies, and to quickly 
obtain a short list of candidate words. An example HMM-based 
system shows promising results. 

1 MOTIVATION AND OUTLINE 

During the recognition phaseof 8 typical speech recognition system. 
an incoming speech segments is matched against a large number 
of competing models MI, Mz, . . . , MN. The model or models that 
score the highest are then selected for further consideration. 

There are many variations on this basic idea. The speech model 
may represent a phoneme, a syllable or a word. The competing 
models may represent the entire vocabulary, or only that part of it al- 
lowed by the grammar. The type of models used may vary, together 
with the matching process. Template-based models would typically 
be used with dynamic time warping [l] and some metric distance 
defined over frames. In HMM-based systems, a match is typk 
cally defined as the classconditional log-probability (log P(SlMi))- 
The models themselves may be trained as Maximum Likelihood 
estimators. or else optimized for discrimination [2]. 

Common to all of these scenarios, howevez are the following: 
1. Computing the match for all the models is computationally 

2. Once the best scoring models have been identified, all other 

These observations suggest that a lot of computation is wasted in 
this process. Attempts have been made recently to overcome this 
problem by using fast preliminary search ([3, 4, 5, 61). Here, we 
take a different approach to the problem. We propose to make use 
of aZI computedscores, by means of statistical inference. In order to 

expensive. For large vocabularies, it is prohibitive. 

match scores are discarded. 

use all the scores at run time, though, we must first analyze offline 
the statistical relationships between the models. 

In section 2, we present a framework for such an analysis. Sec- 
tion 3 demonstrates the usefulness of this framework, by showing 
how it naturally gives rise to a measure of distance between models. 
In section 4 we develop the main application, reducing search time 
in large vocabularies. 

2 FRAMEWORK 

Let 

Yi(s) = the match between acoustic string s and model Mi. (1) 

Yi(s) could be any reasonable measure of agreement between a 
model and an acoustic instance. 

Consider the Yi’s as random variables. The distribution of 
dd Y = (YI, Yz, . . . YN)  is determined by the population from which 

the s’s are taken. Let 

D,(Y) zf P(Y(s E speech-unit-/). (2) 

Dj(Y)  is an N-dimensional distribution. It can be estimated by 
selecting examples of speech unitj and evaluating them by all the 
models. This can be done for all N distributions D I ,  Dz, . . . DN. 

We may also wish to consider the univariate distribution of each 
individual Yi. We define: 

Dj(Yi) F P ( Y i l s  E speech-unit-]). (3)  

There are hlL such distributions, which can be estimated in a similar 
way. 

For generative models, if MI, Mz, . . . , MN are good models of 
speech units 1 ,2 , .  . . , N, respectively, then Dj can be approximated 
by Dj’, where 

and similarly for Dj’(Yi). D ; ,  D;,  . . . , Dg can be estimated in the 
same way as D1, Dz, . . . , DN. except that the strings s are now 
generated by models Mi, Mz, . . . , MN, respectively. 

These definitions, and the following analysis, apply to models 
of any type. For empirical support, we chose to apply these ideas 
to a small SCHMM-based system [7] of 48 context-independent 
English phoneme models, as used in the baseline SPHINX system 
[8]. We chose SCHMM over the discrete model because distance 
between acoustic strings is better modeled in Continuous HMM or 
SCHMM (since they are not subject to VQ errors). For this system 
we define: 

D;(Y) ’Zf P(YIMj), (4) 

(5) 
1 Y ~ ( s )  = - logP(slMi) I4 
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/ay /  [ 6.76 5.13 8.95 0.13 0.80 -1.08 -2.36 -0.38 
/w/ I -9.55 -4.08 -10.45 1.55 -7.11 -5.99 -12.09 -6.48 

L 

/ng/ -3.70 -0.23 -5.93 -3.62 4.25 -1.81 -6.13 -0.37 
/ g /  -13.96 -9.20 -15.34 -8.71 -9.98 -0.44 -10.73 -2.60 
/sh/ -5.53 -3.50 -6.00 -4.91 -3.60 -0.87 7.80 0.21 

I /dd /  I -15.39 -12.41 -16.59 -13.40 -11.28 -8.59 -13.29 -0.19 1 

Table 1: A submatrix of E ef E; (the means of the 0; (Yi)’s). The diagonal entries 
are the row maxima but not necessarily the column maxima. See the text. 

3 DERIVING A MEASURE 
OF DISTANCE BETWEEN MODELS 

To illustrate the usefulnessof our formalism, we now use it to derive 
a measure of distance between models. 

Consider the means of the Dj(Yi)’s: 

J def Ejj = E[Dj(Yi)] = P(slspeech-unit$ Yi(s) ds (6) 

def A l l p  suchmeanscanbeestimatedtogetherinamatrixE = {E+}.  
E* is defined similarly. Table 1 shows a submatrix of E‘ for our 
example system. The diagonal elements are the row maxima. This 
is to be expected, since they were derived by evaluating strings using 
the same models that were used to generate them. Note, however, 
that this argumentdoesnotcany over to the columns; some diagonal 
elements are not the column maxima (e.g. D / a x / ( Y / a x / ) ) .  This 
reflects the fact that some models tend to generate more “agreeable” 
strings than others. 

A rough feel for similarity between some phonemes can be 
gleaned from this data. For example, columns /ae/ and /ay/ 
are similar (compare them to column /g/), as are rows /ae/  and 
/ay/. Thiscorrespondstothesimilarity betweenthese twovowels. 

For a more rigorous measure of distance between models, con- 
sider how the off-diagonal means differ from the diagonal element. 
Let 

(7) 
and similarly for DIST’. 

This measure can be used to cluster larger speech units. It is su- 
perior to phonemic clustering, which considers phonemes as atomic 
units. For example, bat and pa t  are more similar acoustically than 
phonetically’. 

Recall that, for our HMM based system, we defined 

Yi(s) = h logP(s1Mi). For simplicity, let us write Pi@) for 
P(slM;). Then 

def DISTU; i) = Ejj - Eji 

def 

We are grateful to Raj Reddy for this example. 

The last expression is similar to the “Asymmetric Divergence” 
- a well known measure of distance between two distributions[9]. 
The difference is in the presence of the ft factor. Asymmetric 
Divergence was proposed as a measure of distance between HMMs 
by Juang and Rabiner [ lo ] .  They derived it from information 
theoretic arguments. D’orta et al.[ll] used their measure, with 
a sampling technique similar to ours, to cluster phonemes. In our 
derivation, both the measure and the estimation method naturally 
“fall out” of the definition of the Dj(Yi)’s. More importantly, our 
definition is not limited to HMMs. 

4 REDUCING SEARCH 
IN LARGE VOCABULARIES 

4.1 Changing the Classifier 
As a first step towards reducing the search effort, we replace 
the original Bayesian classifier MI, M2, . . . , MN with a new one, 

Since Dj(Y(s)) is an N-dimensional distribution, an unrestricted 
non-parametric estimation is impractical for even a large sample. 
We proceed by assuming that the individual D,(Yi)s are indepen- 
dent. This is clearly incorrect, as our data (and intuition) indicate. 
In making this assumption we are merely choosing to concentrate 
on the first-order statistics of the Dj(Yi)’s. 

Thus we are looking for the j that maximizes ni D,(Yi). This 
still leaves us with the problem of estimating the p distributions 
D,(Yi). What do they look like? Figure 1 shows histograms of 
selected D;(Yi)’s, each based on a sample of 1000 strings, which 
were generated from the appropriate model. 

The distributions are well characterized by a Normal curve. This 
is true for all the distributions we checked. It is not difficult to see 
why this happens. Since the strings were generated from Hidden 
Markov Models, each frame in each codebook was drawn inde- 
pendently. Therefore, logP(s1Mi) is a sum of many independent 
events, hence the Gaussian. 

The Normal shape of the distributions is welcome news, because 
they can be characterized well with only two parameters each: 
mean and standard deviation. These can be estimated accurately 
and reliably from a modest sample. Note that, in other models, if the 
Dj(Yi)’s are not Gaussians, accurate characterization may be more 
difficult. However, the mean and standard deviation can still be 

Dl(Y) ,  D2(Y), . . . , DN(Y). 
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Figure 1: Histograms of some typical DT(Yi)’s, each based on a sample of 1000 strings generated from the HMM model Mi. 
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used to derive statistical bounds. The resulted inference is expected 
to be weaker, though. 

Assuming Dj(Yi) - N(E,i, ai;), classification can now be done 
by finding the j  that minimizes: 

,- - 

Where the subscript“1”denotes the use of firstader statistics only. 

4.2 Performance of the New Classifier 
How goodis the new classifier? If the Mi’s are ML classifiers, some 
performance degradation is expected. Table 2 lists one possible 
measure of performance. In the first row, in 24% of the strings 
tested, the generating models was correctly given the highest Pi 
valueby thenewclassifier. In37%ofthecases,it wasrankedamong 
the top 2 contenders, and so on (the percentages are cumulative). 

How can these results be improved? The performance of any 
Bayesian classifier depends crucially on how well separated the 
class distributions are. In our context, this translates into the ratio 
of between-string variability to between-model variability. A close 
look at our data reveals very significant between-string variability. 
Some strings receive good scores from all the models, while others 
receive bad scores. There is very significant correlation between 
the various scores given to the same string. In fact, we found 
the pairwise comelation coefficients to lie in the range 0.93-0.99, 
regardless of the distribution from which the strings came, or the 
pair of models used for evaluation. This global correlation among 
the Yi’s of the same string means that some strings are ‘‘better 
acoustic segments” than others. This may be because some speech 
frames are further away from the codeword centers, resulting in 
weak matches with all models alike. 

To get rid of most of this global correlation, we normalize 
the scores by subtracting, from each Yi(s), the average Y(s) of 
Yl(s), Y&), . . . , YN(s). The normalized results are listed in the 
secondrow of table 2. The improvement is indeed very significant. 

4.3 Estimating the Scores 
To avoid computing all NJcores Yl(s), Yz(s), . . . , YN(s), we esti- 
mate logPi(Y(s)lMj) and Y(s) using only a subset of the Yi values. 

Performance degradation will depend on the sample size. The last 
part of table 2 shows the performance of the estimated normal- 
ized classifier, for different sample sizes. All samples were drawn 
randomly and independently for every test string. 

4.4 Using the New Classifier 
To quickly obtain short lists of candidate words, we use the fol- 
lowing algorithm: compute Yi(s) for a small random subset of the 
models, and output the models ranked highest by this estimated 
classi6er. 

To reduce the effort in searching for the top ML model, we use 
the following probabilistic algorithm: if we desire, say, a 96% 
confidence in the classification, we compute Yi(s) for 10 randomly 
selectedmodels, restrict our attention to the models that wereranked 
1-15 by the estimated classifier, and choose the one with the highest 
Yi among them. We only need to compute a total of 22 match scores 
on average, and no more than 25. 

The two algorithms above save us some work over computing all 
N = 48 score values. For our small test system the savings are not 
dramatic, but they should increase considerably when the classifier 
is applied to real-world, large vocabulary systems: 

1. For a given level of accuracy and confidence, the necessary 
sample size does not depend on the size of the population - 
it is only a function of the variance of the data, which is fixed. 
A sample of size 20 is large relative to our test vocabulary of 
48 models, but represents significant savings for a vocabulary 
of, say, 1,000 items. 

2. longer models (i.e. words as opposed to phonemes) are 
less confusable. Their between-model variance is therefore 
greater, resulting in better classification rate. 

On the other hand, it is yet to be seen whether our approach 
will work on real speech and large vocabularies. Some possible 
problems are: 

1. Real speech is different from the synthetic frames we gen- 
erated for the experiment above. The distributions Di are 
different from the Df ’s, and may be more difficult to charac- 
terize or to separate. 

2. In a large vocabulary, a given entry is on the average confus- 
able with more other entries than in our small test system. 
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P1 Ranking 
Normalized PI  Ranking 

24% 37% 46% 54% 70% 79% 88% 94% 
66% 80% 87% 91% 96% 98% 99.5% 99.8% 

We plan to test these assertions when we implement this approach 
on a large vocabulary system, such as RM or WSJ. 

Estimated PI Ranking 
samplesize= 16 
samplesize= 10 

samplesize=8 

4.5 Potential Improvements 

54% 71% 79% 84% 92% 96% 98.6% 99.5% 
43% 59% 69% 75% 86% 91% 96% 98.0% 
37% 53% 62% 69% 81% 88% 94% 97% 

The results discussed above are preliminary. The following can be 
used to try to achieve further improvement: 

Judicious choice of the sample: In the experiments described 
above, we chose a new sample randomly for every string. Un- 
doubtedly this is not optimal. We can use statistical analysis (e.g. 
multiple regression) to choose the subset that best predicts PI and 
Y. This has the added advantage of allowing us to keep in memory 
only those columns of the [E, a] table that correspond to that sub- 
set. For large vocabularies, this represents a significant saving in 
memory requirements. 

Using higher-order statistics: So far we discussed and exploited 
only the first-order behavior of the distributions D,(Y). Higher- 
order statistics can also be employed. Much more information can 
be gleaned from even the second-order behavior alone. If two 
models are similar, than a string scoring well (badly) on one is 
likely to score well (badly) on the other. For two very different 
models, a good score on one implies a bad score on the other. 
These deductions are based on a generalized form of the Triangle 
Inequality, although they do not require that the distance between 
the models be a metric. An elimination algorithm similar to that 
reported in [12] can then be used to implement Fast Search. 

Better normalization: The normalization we used in order to 
reduce the global correlation is an ad-hoc subtraction of the string’s 
average score. Better methods may be possible, leading to lower 
within-string variance, and hence to better performance2. 

Better modeling of the D,(Y)’s: This may be particularly use- 
ful when the distributions are estimated from real speech samples 
(01, Dz, . . . , DN) and not from strings generated by the models 
(DT, D;, . . . ,Di). We expect the former to match the Gaussian 
curve less well than the latter do. 

Other statistics of s: We can view Y(s) as a set of statistics of the 
acoustic string s. which reduce its dimensionality to a reasonable 
level. There is no reason why Y shouldnot include other statistics of 
s as well. One plausible candidate is the string’s length. namely the 
number of speech frames it has. Other statistics can be suggested. 
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