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ABSTRACT

This paper describes the 1997 Hub-4 Broadcast News Sphinx- 1
3 speech recognition system. This year's system includis fu
bandwidth acoustic models trained on Broadcast News andl Wal

Street Journal acoustic training data, an expanded voagabahd a
4-gram language model for N-best list rescoring. The systent-

ture, acoustic and language models, and adaptation com{sosre
described in detail, and results are presented to establshon-
tributions of multiple recognition passes. Additionakperimen-
tal results are presented for several different acousticlanguage
model configurations.

1. INTRODUCTION

This year's Hub-4 task consisted of transcribing broado&sts
showsin a completely unpartitoned manner, meaning ttegtitbad-

These steps are summarized in the following list:

Automatic data segmentation, classification, and dlingte

2. Pass1

a. Viterbi decoding using beam search
b. Best path search of Viterbi word lattice

w

Acoustic adaptation
Pass 2

a. Viterbi decoding using beam search
b. Best path search of Viterbi word lattice
c. N-best generation and rescoring

o

Acoustic adaptation
Pass 3

a. Viterbi decoding using beam search
b. Best path search of Viterbi word lattice
c. N-best generation and rescoring

cast news audio was not accompanied by any types of markers in

dicating speaker or show changes. Recognition systemohatyt
on completely automatic methods of segmenting the audianiran-
ageable pieces. Additionally, no information was provigdmbut
channel conditions, speaker gender or accent, the presénoése
or music, or speaking style, as was done in 1996. Therefbig, t
year's recognition task represented a more realistic sazimavhich

a speech recognizer needed to intelligently and autoniigticape
with a variety of acoustic and linguistic conditions.

In the following sections, we present an overview of the 8pt8
evaluation system. In Section 2, the stages of the recogrsiistem
are introduced. The details of the specific evaluation comditon
chosen are discussed in Section 3. A variety of experimeasaits
on acoustic model and language model variations are prxémt
Section 4. Evaluation results for each stage of processengigen
in Section 5.

2. SYSTEM OVERVIEW

The Sphinx-3 system is a fully-continuous Hidden Markov Mbd
based speech recognizer that uses senonically-tied §thteSach
state is a mixture of a number of diagonal-covariance Gausign-
sities. The 1997 Sphinx-3 configuration is similar in manyysa
to the 1996 system [5]. The recognition process consists@fis
tic segmentation, classification and clustering [8], fakal by three
recognition passes. Each pass consists of a Viterbi degadiimg
beam search and a best path search of the Viterbi word laffice
final two passes include N-best list generation and resgorBe-
tween each pass, acoustic adaptation using a transfonratihe
mean vectors based on linear regression (MLLR) [4] is peréd.

2.1. Front End Processing

Before recognition, the unannotated broadcast news asdiatb-
matically segmented at acoustic boundaries. Each segmelas-
sified as either full-bandwidth or narrow-bandwidth in artieat the
correct acoustic models may be applied. Segments are thsn
tered together into acoustically-similar groups, whictuseful for
acoustic adaptation. Finally, all segments that encompass than
30 seconds of data are subsegmented into smaller utterahtvese
techniques are summarized below; details are availab®]in [

Automatic Segmentation: The goal of automatic segmentation
to break the audio stream into acoustically homogeneou®asc
Ideally, segment boundaries should occur in silence reggmthat
a word is not split in two. To accomplish this, a symmetriatise
cross entropy distance metric compares the statistics @frabnes
(2.5 sec) of cepstra before and after each frame. When ttendis
is ata local maximum and is also greater than a predefinesttble,
an acoustic boundary is hypothesized. Instead of the boybéang

placed right at the location of the local maximum, two sesnd

of audio before and after the hypothesized break are sedifohe
silences. A silence is located at framavhen the following criteria
are met (1 frame equals 10 ms):

cl

S

1. The average power over the frames [x-7,x+7] is more than 8

dB lower than the power over the frames [x-200,x+200].

2. The range of the power over the frames [x-7,x+7] is lesa tha

10 dB.

If a silence is found within the search window, an acoustiaritary
is placed atthat location. If no silence is found, no acauxiundary
is assigned.



Classification: Each segment is then classified as either full-
bandwidth (non-telephone) or narrow-bandwidth (telep)arsing
Gaussian mixture models. The full-bandwidth Gaussian uméxt
model contains 16 Gaussian densities and was trained fremiata
labelled as FO, F1, F3, and F4 in the Hub-4 1996 acoustidnigain
corpus. The narrow-bandwidth Gaussian mixture model éasita
8 densities and was trained using hand-labeled teleph@meesds
from the 1995 Hub-4 training data.

3. EVALUATION SYSTEM
3.1. Acoustic Models

The acoustic models used in the evaluation system are fully-
continuous, diagonal-covariance mixture Gaussian mosiigtsap-
proximately 6000 senonically-tied [1] states. A five-stakis
model topology is used throughout.

o sets of acoustic models are used: non-telephone (full-

Clustering: Segments are clustered into aCO”Stica”y'Sim”arbandwidth)modelsandtelephone(narrow-bandwidth) modihe

groups using the same symmetric relative cross entropwrist
metric mentioned for acoustic segmentation. First, theimam

likelihood estimation of single density Gaussian paramsdte each
utterance is obtained. Then, utterances are clusteredhigi

the symmetric relative cross entropy between them is smidién

an empirically-derived threshold. Full- and narrow-baidtv seg-
ments are not clustered together.

Sub-segmentation: To reduce the length of the automatically gen-
erated segments to 30 seconds, additional silences in egaofrest
are located, and the segments are broken at those pointsediie
ing subsegments are given to the decoder for recognition.

2.2. Recognition Stages

Viterbi Decoding Using Beam Search: The first stage of recogni-
tion consists of a straight-forward Viterbi beam searchgsiontinu-
ous density acoustic models. This search produces a wiine|&r
each subsegment, as well as a best-scoring hypothesisrifios.

Best Path Search: A word graph is constructed from the Viterbi
word lattice and then searched for the global best path dioupr
to a trigram language model and an empirically determineuireb
language weight using a shortest path graph search algoféh
The only acoustic scores used in this search are the onexistor
the lattice from the Viterbi recognition. As a result, thisasch is
much quickerthan the Viterbi search. A new best-scoringtiypsis
transcription is produced.

N-best Generation and Rescoring: N-best lists are generated for
each subsegment using an A* search on the word lattices pealdu
by the Viterbi beam search. For this evaluatidh,= 500. The
N-best rescorer takes as input the N-best lists, which ageneated
with the single best hypothesis generated by the Viterbddecand
the single best hypothesis generated by the best path se@heh
N-best lists are rescored using the acoustic scores prb\gehe
Viterbi decoder, a new language model score, and a wordtioser
penalty. Given the rescoring, the new highest scoring Hygsis
is output for the subsequent adaptation step or for the fiystem
output.

2.3. Acoustic Adaptation

Unsupervised adaptation of Gaussian density means in thesc

model is performed, given the output of the best path or N-bes

search. In order to obtain larger sample sizes, the test skistered
as described in Section 2.1.

The maximum likelihood linear regression (MLLR) [4] appobeto
mean adaptation is used. A 1-class MLLR transform is obthine
for each cluster using the baseline acoustic models andetheted
hypotheses. The means of the baseline acoustic modelsase tr
formed for each cluster and the adapted models are usedydhen
next recognition pass.

non-telephone models are trained over the Wall Street db$h
284 corpus concatenated with the Hub-4 Broadcast Newsrtgain
corpus. Mixture splitting is used to obtain an initial seta@bustic
models. Further exploration of the acoustic parameteresfgaper-
formed using the state labels generated from a forced abgof
the initial models. These labels are used to classify theitrg data
for K-means followed by an E-M reestimation of the output-den
sity parameters. One or more passes of Baum-Welch reeitimat
is then performed to correct the Viterbi assumption undegythe
state classification. A final configuration of 6000 tied ssatad 20
mixture components per state is obtained using this approac

The telephone models are trained on WSJ SI-321 with redumed-b
width. This acoustic model is structured as 6000 senonyidtit
states mapped into triphones, plus 52 context independemtgs
and 3 noise phones (including silence). Each tied state istaim
of 16 densities.

3.2. Dictionary

The recognizer's vocabulary consists of the most frequeri4D
words of the Broadcast News language model training cogus,
plemented with the 8,309 words from the 1995 Hub-4 Markegpla
training data and 355 names from the Broadcast News acdrastic
ing data speaker database. The final number of unique wottis in
vocabulary is 62,927, which results in a dictionary size 8623
pronunciations. We refer to this vocabulary as our 64k votaly.

3.3. Language Models

The language model used in the recognizer is a Good-Turisg di
counted trigram backoff language model. It is trained orBlead-
cast News language model training data and the 1995 Hub-Kdwar
place training data. The model is built using a 64k vocalyukamd
excludes all singleton trigrams. The out-of-vocabulang i@ 0OV)
and perplexity (PP) of this model on the development andiegi@in
data is shown in Table 1.

oov | PP
DEV 0.63% | 170
EVAL | 0.54% | 171

Table 1: Out-of-vocabulary rate and perplexity of the eatibn
language model on the development and evaluation test sets.

A 4-gram language model smoothed with a variation of Knésy-
smoothing is used for N-best rescoring. This model usesdhees
training data and 64k vocabulary as the Good-Turing distemlin
model, but does not exclude anygrams. The smoothing param-
eters, language weight, and word insertion penalty aremipid
using Powell's algorithm on the entire developmenttest set

Filled pauses are predicted with unigram probabilitieg Hra esti-
mated from the acoustic training data [7]. This year, adousbdels



were built from scratch for each filled pause event. constant. The word error rate results from both the Vitedxiabler
stage (vit) and the best path search of the word lattices) (digy

3.4. Improvements shown in Table 3. Since only the full-bandwidth models wesedy

This year's evaluation system incorporates several imgrents the F2 results are not optimal. However, we see that acrdss al

over last years system. The acoustic models are trainednon aconditions, the models with 20 mixture-components peegtaivide

improved lexicon, and the filler word set introduced lastryisa ~ SUPerior results.

trained from scratch. The acoustic models are also traineu f

scratch, on both the SI-284 Wall Street Journal data andribedgast 16 20
News acoustic training data. The language model is builinfro vit dag | vit dag
an enlarged vocabulary, and does not exclude singletoratoigr All | 30.4] 29.1| 29.4 | 28.0
as was done last year. This year, phrases and acronyms are not FO | 18.4| 16.7 | 18.4 | 155
included in the vocabulary, since their inclusion did ngisficantly F1 | 275 | 25.9 | 26.3 | 25.3
improve recognition performance in development experisésee F2 | 45.7| 43.7| 45.1 | 436
Section 4.4). Also, a 4-gram language model is used for N{sts F3 | 326|314 | 304 | 304
rescoring, instead of the trigram model from last year. F4 | 27.3| 28.1| 25.9 | 27.8
F5 | 345| 33.6 | 33.4| 30.2
4. EXPERIMENTS FX | 47.3| 46.7 | 45.9 | 435

The 1997 development test set consists of four hours of loastd

speech representative of the different acoustic conditaord styles )

typical of the broadcast news domain. In order to speed uprexp Table 3: Word error rate (%) oSET1 for different numbers of
iment turn-around time, two shortened development testwete ~ Gaussian densities per state.

defined as sub_sets of the c_omplete 4-hour SBET1 represents 4.2. Vocabulary Optimization

a 1-hour selection of acoustic segments taken from lastsy@&
segmentation of different F-conditions. Segments werecsedl so  Three Good-Turing discounted trigram backoff language a®d
that the test set is acoustically balanced, containing filam all were built with 40k, 51k and 64k vocabularies. In each cdse, t
F-conditions in the same proportion that these conditicc@ipin vocabulary was chosen from the most frequently occurringdem
the entire 4-hour development set. The selected segmemtilpr  the Broadcast News language model training data, as well aé a
adequate speech from a number of speakers for speaker tgiapta the words from the 1995 Marketplace training data and 355esam
experiments, and cover each development set show. The rthoséom the acoustic training data speaker database. The S{ltie-
segments are not necessarily adjacent in time and are baskeé o coderwas run o8ET1 with each language model, holding all other
original PE segmentations. All segments are further subseged  parameters constant. Word error rate results are shownlite #a
automatically so that they are not longer than 30 seconds. Overall, the 64k language model provided a slightly be#suit than

The second test SGET?2, is representative of completely automatic (e 51k or 40k language models.

segmentation. It is also 1 hour in length, but is not acoabyic

balanced. Instead, entire portions of shows were selectdtsthe 40k | 51k | 64k
segments would be time adjacent and so that the referemsetipt All | 295 29.3] 29.2
could be easily assembled. This test set was used to quickly r FO | 18.5| 18.5| 18.7
experiments on automatic segmentation. Table 2 shows haw ma F1 | 26.3| 26.5| 26.3
words occur for each acoustic condition in each of the slesttdets. F2 | 41.7| 41.2| 40.9
F3 | 30.3| 30.0| 29.3

SET1 | SET2 F4 | 28.5| 27.2| 27.3

All | 11408 | 10520 F5 | 36.1| 35.7| 354

FO 2875 | 2976 FX | 46.8 | 46.2 | 46.5

F1 | 3133 | 3559
F2 | 1363 961

E3 904 527 Table 4: Word error rate (%) o8ET1 for different language model
F4 | 1358 | 1195 vocabularies.
FS | 443 | 299 4.3. Language Model Smoothing

FX | 1332 | 1003

Two language models were built using different smoothirghie
niques. The first model was a 51k Good-Turing discounted tri-
Table 2: Number of words per acoustic condition for shortedep- gram backoff language model[2], and the second a 51k Kriéegr-

ment test sets. smoothed trigram language model[3]. The Sphinx-3 decoder w
. L. run onSET1 with eachlanguage model, holding all other parameters
4.1. Mixture Variation constant. Word error rate results are shown in Table 5. ThedGo

The evaluation system uses fully-continuous acoustic fisogigh ~ 1uring discounted backoff model provided superior perfance on
approximately 6000 senonically-tied states. Each staemixture  tHis test set.

of a number of diagonal-covariance Gaussian densitiesnih@er

of Gaussian components was varied from 16 to 20 per statééor t 4.4. Compound words

full-bandwidth acoustic models. The Sphinx-3 decoder wzsan In an effort to establish how the modeling of compound words,
SET1 with each set of acoustic models, holding all other pararaete which are phrases and acronyms considered as one unittsaffec



within a sentence, or occasionally within a word. Likewise,

G-T | K-N utterance may contain a sentence boundary internally.
ég igg igg In order to investigate the effects of automatic segmeoriagind
F1 | 265 | 27.2 language model sentence-boundary modeling on word erter ra
2 | 4121 415 three different 51k-vocabulary language models were destith
F3 | 300! 31.0 and without hypothesized context. The first language mougéd
Fa | 2721 27.4 by S, is a trigram backoff language model trained on languageahod
F5 | 357 | 36.8 training text annotated with sentence-boundary tokeng. stond
EX | 462 | 46.2 language modekB, contains the sentence-boundary tokens as well

as cross-boundary trigrams [7], which are meant to help rtbee
case where sentence boundaries occur inside of an utterdinee

Table 5: Word error rate (%) 08ET1 for different language model third model,NS, is built from the training text without sentence-
smoothing strategies. boundary tokens.

Each modelis usedto deco8ET2 using an automatically generated
segmentation. In the standard case, the beginning of eserhmute
is assumed to transition out of the begin-of-sentence teien
and transition into the end-of-sentence tokéis> at the end of the
utterance. In theontexicase, noted byC, the last two hypothesized
words of a preceding utterance are given as trigram contettie

recognition performance, four different compound wordrer@s
were investigated. First, the decoder was run with no comgdou
words in the dictionary or language model (NO). Next, thecdksr
was run with a list of 355 phrases and acronyms in the dictiopna
only (DT). The decoder was altered to retrieve the necessagylage

model scores for each word in the compound word phrase, byt on ) . .
one acoustic score was applied. Then, the decoder was rarnheit current utterance .'f t_he preceding utteran_ce oceurs Juiirbahe
current utterance in time. If no utterance immediately pos the

list of compound words in the dictionary and in the languagelat o L
(LM). In thFi)s case, the compound worg/s were modele% ag?)rte umcurrent utterance in time, then ths> token is given as the context.

throughout the entire recognition process. Finally, theodier was In either case, no end-of-sentence transition is assumed.

run with a shortened list of compoundwords (DT2) in the diciry ~ The word error rate results of decodiSgT2 with these different
only. This short list was made up of 30 phrases that were\mslie configurations are shown in Table 7. Overall, the standafuigue
to be the most acoustically different when occurring togethan  of modeling the begin-of-sentence token and assuming tdeoén
when occurring in separate, different contexts. sentence token provided the lowest word error rate. Intcodptwo

words of contextinstead of transitioning out of the begirsentence

Word error rate results for two different tests are shownabl€ 6. . A
token did not significantly affect word error rate.

The first test was run on the full 4-hour development test st &v
40k language model. The second test was run with a 51k lamrguag

model onSET1 with a different set of acoustic models than the S | S+C| XB | XB+C | NS | NS+C
first test. Therefore, the results are not directly complaralsross All 1320|321 326| 327 | 323| 323
tests. Additionally, in some cases narrowband acousticaisoslere FO | 246 | 24.7| 255 | 257 | 245| 244
used for the automatically-labeled telephone utteranexdie in F1 | 292|291|293| 293 | 299 | 2938
other cases the full-bandwidth models were used. As a resuilt F2 | 359| 355| 349| 345 | 35.7| 355
F2 results are reported, and tidl row does not include the F2 F3 | 543| 573 | 575| 583 | 57.9| 579
condition. Overall, it does not appear that modeling thelsat of F4 | 282 286|285 29.2 | 275 | 277
phrases inthe dictionary orin the language model helpesiyrition. F5 | 365 | 37.5| 365 | 37.1 | 385 | 381
Having the short list of phrases present in the dictionary imaip FX [ 514|512]536| 534 |514] 515

recognition slightly. No compound words were used in thelfina
evaluation system.
Table 7: Word error rate (%) for different sentence-bougaaod-

eling techniques.

Testl Test2

NO | DT | DT2 | DT | LM 4.6. N-best Rescoring
All,bnoF2 | 33.1| 33.2| 329 30.7| 30.6
FO 21.2| 21.3| 21.2 || 19.9| 19.2 The N-best rescoring stage of the recognition processwesgojen-
F1 305| 30.3| 30.1|| 286 | 29.4 erating the 500 most-likely hypotheses for each utterarara the
F3 403 1| 41.2| 403 | 35.0| 34.7 Viterbi word lattice. The hypotheses are rescored usin@twistic
F4 345| 34.4| 346 | 30.7| 30.8 score from the lattice, a new language model score, and a werd
F5 38.7| 38.7| 386 | 38.6| 38.8 sertion penalty. A series of experiments was conductedtteraiéne
FX 65.7 | 66.6 | 65.8 | 53.0| 52.2 the best language model to use during rescoring.

Good-Turing discounted trigram and 4-gram models, and Enes
Ney smoothedtrigram and 4-gram models were built from theaBr
cast News training data and the Marketplace training datdyding
all bigrams and trigrams. All four models were used to rescor
4.5. Segmentation and Context 500-best lists from the 1-ho8ET1 and the entire 4-houbEVI7
test sets. The word error rate results after rescoring aogvshn
Automatic segmentation of the broadcast news audio dogguesest ~ Table 9. The first line of the table shows the rescoring resust
antee that break points will be chosen at linguistic bouiedar ing the language model scores present in the lattices, whérke
An automatically-segmented utterance may begin or end hesav  generated from a Good-Turing discounted trigram languagéeah

Table 6: Word error rate (%) for different compound word miirep
strategies.



Pass All FO F1 F2 F3 F4 F5 FX
passl, vit 26.8| 165| 253 | 349 | 358 | 314 | 351 | 541
passl, dag 25.7|158| 23.8| 33.0| 35.3| 30.5| 34.7| 52.8
pass2, vit 256 | 158| 24.7| 328 | 355 29.7| 31.1| 51.6
pass2, dag 247 148| 23.7| 31.7| 356 | 29.1| 324 | 50.4
N-bestrescore | 24.0 | 14.4| 228 | 31.1 | 33.7 | 27.8| 314 | 495
pass3, vit 253| 15.7| 246 | 328 | 345 29.1| 30.9| 49.9
pass3, dag 245|148| 239|311 | 347 | 284 | 321 | 491
N-bestrescoreZ 23.8 | 14.4| 228 | 31.0 | 33.9| 27.3| 31.1| 48.2

Table 8: Summary of evaluation word error rates (%) by stage.

that excluded singleton trigrams. For both test sets, theskirnNey
smoothed 4-gram model performs the best.
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Model SET1 | DEV9Y
Original score| 29.7 35.1
G-T 3-gram 29.7 34.9
G-T 4-gram 29.0 34.5
K-N 3-gram 294 34.8
K-N 4-gram 28.6 34.2

Table 9: N-best rescoring word error rates (%) for differfamguage
models.

Individual Kneser-Ney trigram and 4-gram language modedsew

then built from language model training data from a variefy o
sources: 130 MW of Broadcast News, 1MW of Broadcast News o

acoustic training data, 3MW of Switchboard data, 115MW obkFu

AP data, 100MW of Hub-3 Wall Street Journal data and 30MW of

1995-only data from Hub-3 excluding Wall Street JournalctEaf
these models was interpolated either at the word or sentenek
and the new language scores were used to rescore the 50@tsest
Interpolation weights were chosento optimize the perpfefiheld-
out data. Results are shown in Table 10. In this case, woerl-le
interpolation slightly outperforms sentence-level ip@ation. A
comparison of these results with the Kneser-Ney resulis fi@-
ble 9 shows that using multiple language models does imgreve
formance when rescoring with trigrams, but there is littifetlence
between using just the Broadcast News 4-gram and inteipgltite
scores from the six different 4-gram language models.

Model SET1 | DEV97
3-gram, word| 29.0 34.4
4-gram, word| 28.5 34.0
3-gram, sent | 29.1 34.6
4-gram, sent | 28.6 34.2

Table 10: N-best rescoring word error rates (%) when intiarrey
language models from different sources.

5. EVALUATION RESULTS SUMMARY

The Sphinx-3 evaluation results at each stage of proceasrghown
in Table 8. The final system word error rate was 23.8%.
intermediate word error rates were 25.7% at the end of thiepiarss
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