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1 Introdu
tionOne great 
hallenge in mole
ular biology is to understand the regulation of gene expression- the pro
ess by whi
h a segment of DNA is de
oded to form a protein. Two main stepsfor gene expression are trans
ription and translation. During the trans
ription pro
ess, anmRNA mole
ule is formed by 
opying a gene from the DNA. During the translation pro
ess,the mRNA is de
oded to produ
e a protein.To start the trans
ription pro
ess for a parti
ular gene, one or more 
orresponding pro-teins, 
alled trans
ription fa
tors, have to bind to several spe
i�
 regions, 
alled binding sites,in the promoter region of the gene. A trans
ription fa
tor 
an bind to multiple binding sites,but these sites typi
ally have similar length (usually about 8 to 20 bp) and a 
ommon DNAsequen
e pattern. For most trans
ription fa
tors, the 
ommon patterns for their 
orrespond-ing binding sites, simply referred to as the motifs, are still unknown. Many laboratory-basedmethods for motif identi�
ation have been developed, however, these experimental methodsare both expensive and time-
onsuming.A re
ent trend in motif-�nding is to make use of 
omputational methods based on mi-
roarray data. Most existing 
omputational methods [Bailey 1994, Bailey 1995, Buhler 2002,Chin 2005b, Hughes 2000, Lawren
e 1993, Liu 1995, Pevzner 2000, Roth 1998℄ are based onhaving a set of sequen
es that are known to 
ontain binding sites with very similar pattern(i.e. the strong-signal model) as input. These approa
hes assume that a suÆ
ient numberof su
h strong-signal sequen
es are available. However, this assumption may not be valid forsome trans
ription fa
tors, and the number of strong-signal sequen
es may be too small tosu

essfully �nd the motif using existing methods. Some motif-�nding algorithms also 
on-sider sequen
es that are known not to 
ontain any binding sites, in addition to strong-signalsequen
es [Barash 2001, Jakt 2001, Sinha 2003℄. However, for these algorithms, the numberof weak-signal sequen
es (sequen
es that should not 
ontain substring similar to the motif)with plausible binding sites is used in the hyper-geometri
 analysis in order to 
ompute theprobability of su
h o

urren
es under the null-hypothesis. The lower the probability, themore 
on�dent we have on the dis
overed motif. No attempt is made to exploit the patternsof sequen
es without binding sites in order to �nd the motifs more e�e
tively. Weak-signalsequen
es should not 
ontain any patterns similar to the motif, and this 
an be a useful formof information. In fa
t, all sequen
es, strong-signal or weak-signal, with multiple o

urren
es2



of binding sites or without binding sites, 
ontain di�erent information about the motifs invarious forms and 
an be useful for motif-�nding. Some resear
hers [Segal 2002, Segal 2004℄adopted this information by assigning probabilities to ea
h input sequen
e si whi
h representsthe probability that si 
ontains at least one binding sites. However, these probabilities areassigned arti�
ially by human and the value of these probabilities are usually either 0 or 1.In this paper, we fo
us on �nding motifs for data sets that 
ontain insuÆ
ient numberof sequen
es with strong signals. We �rst study the limitations of existing methods thatare based on the strong-signal model, i.e. the minimum required information in the inputsequen
es in order to identify the motif. Then we introdu
e a more general and realisti
energy-based model for dealing with data sets 
ontaining insuÆ
ient number of sequen
eswith strong signals. The approa
h we use is di�erent from that in [Barash 2001, Jakt 2001,Sinha 2003℄ in the sense that our model 
an handle sequen
es 
ontaining a varying amountof signal, i.e. varying from sequen
es 
ontain multiple binding sites to sequen
es without anybinding sites. It is also di�erent from [Segal 2002, Segal 2004℄ in the sense that no arti�
ialassignment of probabilities is needed. Last, we show how our algorithm �nds the 
orre
tmotif under those situations that algorithms based on strong-signal model fail to do so.1.1 Better Chara
terization for Strong-Signal ModelBuhler and Tompa [Buhler 2002℄ have studied the limitations of 
omputational approa
hesbased on the strong-signal model. They proposed a method to 
al
ulate the minimum numberof input sequen
es required and showed that, if the number of input sequen
es is less thanthe minimum requirement, it is unlikely that there exists a 
omputational approa
h that 
anidentify the motif.One important assumption in their study is that ea
h input sequen
e 
ontains exa
tly onebinding site. In real situations, there 
an be multiple o

urren
es of binding sites, or multi-ple binding sites, for the same trans
ription fa
tor in one sequen
e [Bram 1984, Bram 1986,Magdolen 1990℄. In other words, even if the number of strong-signal sequen
es in the inputdata set is small, there may still be enough binding sites or signals to enable the dis
overyof the motif. This observation is supported by an experiment using only three very spe
ialsequen
es with strong signal as input to identify the motif for GAL4, where ea
h of the threesequen
es 
ontained multiple binding sites (see Se
tion 2 for more details). A

ording to theresults by Buhler and Tompa [Buhler 2002℄, these sequen
es are mu
h less than the minimum3



number of input sequen
e required, whi
h is 4, and it should be theoreti
ally impossible to�nd the motif for this input set (We set n = 787, t = 3, l = 13 and d = 2). However, we testedthis input set on two 
ommon motif-�nding programs, AlignACE [Hughes 2000, Roth 1998℄and MEME [Bailey 1994℄, whi
h are based on the strong-signal model. We found that bothprograms 
ould su

essfully identify the motif. Some natural questions to ask are then: howdo we de
ide whether an input data set has enough signals for motif re
overy, and what arethe limitations of strong-signal model, i.e. minimum information, if we allow multiple bindingsites in ea
h sequen
e?Our �rst 
ontribution is to improve Buhler and Tompa's results by allowing multiplebinding sites in ea
h sequen
e. We 
hara
terize the limitations of the strong-signal model interms of the minimum total number of binding sites, rather than the minimum number ofstrong-signal sequen
es, required to be in the input data set. Buhler and Tompa represent amotif of length l by a length-l string. A more general representation, whi
h is used by mostexisting approa
hes, makes use of a probability matrix. The probability matrix is a 4 � lmatrix where the rows are indexed by the nu
leotides \A",\C",\G",\T" and ea
h entry inthe j-th 
olumn of the matrix represents the probability of the nu
leotide's o

urren
e atposition j of the binding site. So we represent a motif by a matrix instead of a string. Our
hara
terization on the limitation of the strong-signal model is 
on�rmed by some data setson programs AlignACE and MEME.1.2 Energy-Based ModelExisting algorithms are not e�e
tive to identify motif for input data sets that 
ontain insuf-�
ient number of strong-signal sequen
es (see Se
tion 2 for experimental results). Our main
ontribution is a novel approa
h to solving this problem.Existing algorithms have the following problems. They assume that ea
h binding site inthe strong-signal model 
ontains the same amount of signals. However, in reality, di�erentbinding sites have di�erent binding strengths with the trans
ription fa
tor, thus 
ontaindi�erent amounts of signals. Also, sequen
es having 
omparatively weak signals (in
ludingsequen
es with a weak binding to the trans
ription fa
tor and sequen
es without bindingsites) are not used. In fa
t, these ignored weak-signal sequen
es also 
arry useful informationfor identifying the motif.In our model, we introdu
e a more general and realisti
 energy-based model to 
apture4



previously-ignored information. We make use of the additional information from experimentsand 
onsider the binding strength (as measured experimentally) of ea
h available sequen
e.Intuitively the binding strength should relate to the degree of similarity between the motifand the binding site in ea
h sequen
e. Based on the binding strength, our model 
onsiders theamount of signals that a sequen
e a
tually 
ontains. This allows us to make use of sequen
eswith not so strong or even weak signals.We then formulate the motif-�nding problem in a way that allows multiple o

urren
es ofbinding sites in ea
h sequen
e. We develop a heuristi
 algorithm 
all EBMF (Energy-BasedMotif Finding algorithm) to solve the problem. We 
ompare the performan
e of EBMF withthose of AlignACE and MEME. EBMF is shown to be e�e
tive on both simulated and realdata when the data sets 
ontain insuÆ
ient number of sequen
es with strong signals. Inparti
ular, in our test 
ases, EBMF is able to identify the motif while both AlignACE andMEME fail to do so.Our paper is organized as follows. Se
tion 2 dis
usses the limitations of the strong-signalmodel when given input sequen
es with multiple binding sites. Se
tion 3 presents the energy-based model. We also show how to 
onvert existing experimental data to �t our model.A heuristi
 algorithm EBMF is given in Se
tion 4. Se
tion 5 
ompares the performan
e ofEBMF with AlignACE and MEME. A 
on
lusion is given in Se
tion 6.2 The Limitation of the Strong-Signal Model with MultipleBinding SitesWith the assumption that ea
h sequen
e 
ontains exa
tly one binding site (a substring whi
his 
lose to the motif in Hamming distan
e), Buhler and Tompa [Buhler 2002℄ have studiedthe minimum number of input sequen
es required for �nding the motif based on strong-signalmodel. In this se
tion, we use a probability matrix to represent a motif and improve theirresults by allowing multiple binding sites in a sequen
e.Let a motif of length l be represented by a 4� l probability matrixM whereM(
; j) repre-sents the o

urren
e probability of the nu
leotide 
 in the j-th position of a binding site. Givent input sequen
es ea
h of length n, those algorithms based on strong-signal model want to�nd a probability matrixM and a ba
kground probability P0 = fP0(A); P0(C); P0(G); P0(T )g(whi
h represents the o

urren
e probabilities of \A", \C", \G", \T" in the non-binding re-5



gions), whi
h maximize the log likelihood (see [Bailey 1994℄) of the t sequen
es generateda

ording to the ba
kground probability P0 with implanted binding sites generated a

ordingto matrix M . Formally, the log likelihood of a binding site b generated a

ording to matrixM is L(b;M) = lXi=1 logM(b[i℄; i)The log likelihood of the non-binding regions generated a

ording to the ba
kground proba-bility P0 = fP0(A); P0(C); P0(G); P0(T )g isLB = nA logP0(A) + nC logP0(C) + nG logP0(G) + nT logP0(T )where nA; nC ; nG and nT are the number of \A", \C", \G" and \T" in the non-bindingregions respe
tively. Sin
e the length (tn � Bl) of non-binding regions is usually quite long(over several thousand), it is expe
ted that nA = P0(A)(tn � Bl), nC = P0(C)(tn � Bl),nG = P0(G)(tn�Bl), nT = P0(G)(tn�Bl) andLB = (tn�Bl)En0where En0 = P0(A) logP0(A)+P0(C) logP0(C) +P0(G) logP0(G) +P0(T ) log P0(T ) whi
h isnegative of the entropy of a nu
leotide in non-binding regions. The log likelihood of t length-ninput sequen
es generated a

ording to M and P0 isLtotal(M) = max( BXk=1L(bk;M) + (tn�Bl)En0)among all possible values of B and sets of B non-overlap binding sites fbkg in the t sequen
es.Suppose the input sequen
es are generated based on this model, that is, we generate trandom sequen
es of length n based on the probability distribution P0 and plant in themB� instan
es of a motif randomly generated a

ording to an arbitrary pro�le matrix M�.Intuitively, ifB� is small orM� looks too mu
h like the ba
kground distribution, no algorithms
an possibly pi
k out the B� instan
es from the sequen
es without knowingM�. It is be
ausethere exist many matri
es M di�erent from M� (in the sense that the most probable stringsgenerated a

ording to M are quite di�erent from those generated a

ording to M�), whi
hhave a log likelihood no less than Ltotal(M�). Therefore, the expe
ted number of matri
es6



with di�erent 
onsensus patterns, whose log likelihood are no less than Ltotal(M�), gives usan idea if it is possible to �nd the motifM� from the input sequen
es. If the expe
ted numberof matri
es is large, then �nding the motif is impossible, otherwise it is highly probable.Given a stringQ of length l and a Hamming distan
e d, we de�ne a probability matrixMQ;dsu
h that for any j-th 
olumn of the matrix, the entry 
orresponding to the j-th 
hara
terin Q is (l � d)=l while the other entries in the same 
olumn are d=3l. We want to �nd theexpe
ted number of matri
es in this format whi
h have log likelihood no less than Ltotal(M�).If the expe
ted number of matri
es even in this restri
ted format and with log likelihood noless than Ltotal(M�) is large, it is impossible to �nd the motif M� without extra information.Assume the 
orre
t matrix is M� and the expe
ted log likelihood of a binding site bgenerated a

ording to the matrix M� is LE . If the t sequen
es 
ontain exa
tly B� bindingsites with respe
t to M�, we 
an 
al
ulate the log likelihood of the t sequen
es generateda

ording toM� as Ltotal(M�) = B�LE+(nt�B�l)En0. Now let us 
onsider the log likelihoodof a probability matrix MQ;d. If the Hamming distan
e between a binding site b and Q iswithin d for d � 3l=4, then we 
an show that L(b;MQ;d) � (l � d) log[(l � d)=l℄ + d log(d=3l).The log likelihood of the t sequen
es generated a

ording to MQ;d is Ltotal(MQ;d) whi
h is noless than BL(b;MQ;d)+(nt�Bl)En0 if the input sequen
es 
ontain B non-overlap substringswhose Hamming distan
es from Q are within d (B 
an be di�erent from B�). Any MQ;dmay be 
onsidered as a possible solution for the motif-�nding algorithm if Ltotal(MQ;d) �Ltotal(M�).Given a length-l random string Q with equal o

urren
e probabilities for \A", \C", \G",\T" and a length-l random substring b generated a

ording to the ba
kground probabilitiesP0, we show in the Appendix that the probability that the Hamming distan
e between Q andb is at most d where 0 � d � l ispd = dXi=0 li !�34�i �14�l�iLet X be the sequen
e formed by 
on
atenating the t input sequen
es (the length of X is nt)and bi be the i-th substring in X su
h that the Hamming distan
e between bi and Q is atmost d.We want to partition the sequen
e X into several non-overlap segments X[ki�1 + 1 : : : ki℄su
h that at the end of ea
h segment, there exists exa
tly one substring bi = X[ki� l+1 : : : ki℄7



whose Hamming distan
e with a �xed string Q is at most d. Let Bpos(p; q) be the probabilityfor the substring X[p : : : q℄ su
h that the Hamming distan
e between Q and X[j : : : j + l �1℄, where p � j � q � l, is larger than d while the Hamming distan
e between Q and bi =X[q� l+1 : : : q℄ is at most d. Using the same assumption in [Buhler 2002℄ that the Hammingdistan
e between Q and X[j : : : j + l � 1℄ is independent for ea
h substring in X, we haveBpos(p; q) = (1� pd)q�p+1�lpd.Consider the probability PQ;B that X 
ontains exa
tly B non-overlap substrings bi at thepositions X[ki � l + 1 : : : ki℄ su
h that the Hamming distan
e between bi and Q is no morethan d while all other length-l substrings in X are of Hamming distan
e more than d fromQ. Depending on the position of the last substring bB , there are two 
ases to be 
onsidered.Case I: kB > nt� l (the substring in X after the last binding site has length less than l, soit is impossible to have a binding site after kB)PQ;B = BYi=1Bpos(ki�1 + 1; ki) = (1� pd)kB�BlpBdCase II: kB � nt� lPQ;B = (1� pd)nt�kB�l+1 BYi=1Bpos(ki�1 + 1; ki)= (1� pd)nt�kB�l+1(1� pd)kB�BlpBdNote that the probability PQ;B is independent of the positions of the substrings bi but dependson the ending position of the last binding site kB . The probability PQ;B 
an then be expressedin term of the position of the last binding site j, the Hamming distan
e d and the number ofbinding sites B, as follow,PB(j; d;B) = 8><>: (1� pd)j�BlpBd j > nt� l(1� pd)nt�j�l+1(1� pd)j�BlpBd otherwiseThe probability of X that 
ontains exa
tly B non-overlap substrings bi (without 
onsideringthe positions of the substrings) su
h that the Hamming distan
e between bi and Q � d is the
8



sum of probabilities PQ;B for all possible positions for the set of substrings fbigntXj=Bl2640B� j �Bl +B � 1B � 1 1CAPB(j; d;B)375AssumeX 
ontains exa
tly B non-overlap substrings fbig su
h that the Hamming distan
ebetween bi and Q is no more than d. For ea
h substring bi, L(bi;MQ;d) � (l � d) log[(l �d)=l℄ + d log(d=3l). Thus the log likelihoodLtotal(MQ;d) � B[(l � d) log[(l � d)=l℄ + d log(d=3l)℄ + (nt�Bl)En0:The probability of X su
h that Ltotal(MQ;d) � Ltotal(M�) isbnt=l
Xk=B0 8><>: ntXj=kl2640B� j � kl + k � 1k � 1 1CAPB(j; d; k)3759>=>;where B0 is the smallest number of binding sites for a matrixMQ;d su
h that the log likelihoodof the t sequen
es generated a

ording to MQ;d is no less than Ltotal(M�), i.e.B0 �(l � d) log l � dl + d log d3l�+ (nt�B0l)En0 � B�LE + (nt�B�l)En0 (1)By 
onsidering all possible substrings Q of length l and Hamming distan
e d, the expe
tednumber of matri
es MQ;d su
h that Ltotal(MQ;d) � Ltotal(M�) is approximatelyE(LE ; B�)= 4l b3l=4
Xd=0 8><>:bnt=l
Xk=B0 8><>: ntXj=kl2640B� j � kl + k � 1k � 1 1CAPB(j; d; k)3759>=>;9>=>;A

ording to Equation (1), B0 is a fun
tion of LE and B�. (This is an approximation be
ausethe log likelihood of a given motif MQ;d, Ltotal(MQ;d) � Ltotal(M�) does not o

ur indepen-dently. For example, if Ltotal(MQ;d) � Ltotal(M�) when Q = \AAAAAA", it is likely thatLtotal(MQ;d) is also greater than or equal to Ltotal(M�) when Q = \AAAAAC")[Figure 1 about here.℄[Figure 2 about here.℄9



[Figure 3 about here.℄Figure 1 shows the expe
ted number E(LE ; B�) of matri
es MQ;d with a log likelihoodLtotal(MQ;d) � Ltotal(M�) for 10 input sequen
es when P0 = f0:25; 0:25; 0:25; 0:25g. Thelength of ea
h sequen
e is 700 and the length of the motif is 17. It shows that the minimumrequired number of binding sites in the input sequen
es should be 7, 8, 9 (when the expe
tednumber of matri
es E(LE ; B�) � 1) for En = -0.5, - 0.6, - 0.7 and LE = -8.5, -10.2, -11.9respe
tively, where LE is the expe
ted log likelihood of a binding site and En = LE=l isthe expe
ted log likelihood of a nu
leotide in a binding site (note that it is negative of theentropy of a 
olumn in M�). If the value of En in
reases, it means that ea
h binding site
ontains more signal and less binding sites are required for �nding motif. In other words,if the input sequen
es do not 
ontain the least amount of binding sites, it is unlikely thatany motif-�nding algorithms based on strong-signal model 
an identify the real motif withoutextra information. Figure 2 shows the minimum required length of the motif for 10 inputsequen
es of length 700 with 10 binding sites in total when P0 = f0:25; 0:25; 0:25; 0:25g. Asindi
ated in Figure 2, the shorter the motif, the less likely that the motif 
an be identi�ed.For En = -0.5, -0.6, -0.7, the minimum lengths of the motif are 11, 13 and 15 respe
tively.Figure 3 shows the tenden
y of the values of E(LE ; B�) for di�erent numbers of sequen
es oflength 700 when P0 = f0:25; 0:25; 0:25; 0:25g, the length of the motif is 17 and there are 10binding sites in total. As indi
ated in Figure 3, if the total number of binding sites is �xed,the more the number of sequen
es in the input, the more noise in the data and the morediÆ
ult to �nd the motif. [Table 1 about here.℄We 
an also 
on�rm our analysis by experiments whi
h illustrate the limitations of existingprograms, su
h as AlignACE and MEME. Gal4 is a well-studied trans
ription fa
tor whi
ha
tivates genes ne
essary for gala
tose metabolism. Bing Ren et al.[Ren 1993℄ found 10 genesto be bound by Gal4 and indu
ed in gala
tose. The exa
t binding sites for most of thesegenes 
an be found in [Bram 1984, Bram 1986, Magdolen 1990℄. Given the 9 sequen
es ofthe intergeni
 regions (the gene Gal1 and Gal10 share one intergeni
 region), we want to testwhether MEME and AlignACE 
an �nd the published motif pattern CGGN11CCG of Gal4in di�erent input sequen
es with di�erent values of B�. From the published binding sites, we
al
ulate the expe
ted log likelihood LE of a binding site whi
h is -11.47 (En = �0:67). Table10



1 
on�rms our analysis that motif 
an be found in the �rst three 
ases and de�nitely not inthe last 
ase. In the �rst three 
ases, the values of E(LE ; B�) are very small and the numbersof binding sites in the input data are more than the minimum number required. On the otherhand, in the last 
ase, E(LE ; B�) is mu
h larger than 1 and the number of binding sites isless than the minimum number required, so it is diÆ
ult to �nd the 
orre
t motif pattern.Although the intergeni
 regions may not be randomly generated, our 
al
ulations 
an still beapplied as both AlignACE and MEME assuming ea
h nu
leotide in the non-binding regionsis generated a

ording the ba
kground probabilities independently.3 Our Energy-Based Model and Problem De�nitionIn order to make use of the information 
ontained in weak-signal sequen
es for motif �nding,we propose a more general energy-based model in this se
tion. In the next subse
tion, weshow an example how to estimate the binding energy between a sequen
e and a trans
riptionfa
tor from a real experiment.3.1 Applying the Model to a Real CaseConsider the s
enario that multiple 
opies of a parti
ular DNA fragment si are mixed withmultiple 
opes of a parti
ular trans
ription fa
tor of interest. At the equilibrium state, some
opies of DNA fragment si are bound by trans
ription fa
tors while some 
opies are free. Letei be the average binding energy between the trans
ription fa
tor TF and DNA fragmentsi, then ei = �ln(Keq) where the binding 
onstant Keq = [TF � si℄=[TF ℄[si℄ (ratio of thenumber of bounded 
opies over the number of free 
opies) with the binding rea
tion modeledby TF + si () TF � si [Klotz 1986℄. Note that the unit of ei is in (RT ) where T is the
onstant temperature throughout the experiment in degree Kelvin and R is the gas 
onstant0.001987 k
al/mol K.In the genome-wide lo
ation analysis [Ren 1993℄, 
ells were �xed with formaldehyde, har-vested and disrupted by soni
ation. The DNA fragments 
ross-linked to the trans
riptionfa
tor of interest were labeled with a 
uores
ent dye (Cy5) with the use of ligation-mediated-polymerase 
hain rea
tion (LM-PCR) while the rest DNA fragments were subje
ted to LM-PCR in the presen
e of a di�erent 
uorophore (Cy3). Both pools of labeled DNA werehybridized to a single DNA mi
roarray 
ontaining all yeast intergeni
 sequen
es. For ea
h11



sequen
e si, we get an average 
olor ratio of red intensity (Cy5) and green intensity (Cy3)whi
h represents the number of 
opies of si bound by the trans
ription fa
tor over the num-ber of 
opies of si that are not bound by the trans
ription fa
tor. However, errors su
h asba
kground subtra
tion, hybridization non-uniformities, 
u
tuations in the dye in
orporationeÆ
ien
y, s
anner gain 
u
tuations, et
. may introdu
e ina

ura
y in the value of 
olor ratio.With the appli
ation of the single array error model [Roberts 2000℄, a p-value is 
al
ulated torepresent the 
on�den
e level of the 
olor ratio for ea
h sequen
e. A small p-value means thatwe are 
on�dent with the 
olor ratio. Those DNA fragments with small p-values are 
hosenas the input sequen
es for the EBMF algorithm and their 
orresponding 
olor ratios are usedas the values of Ke, whi
h estimate the binding energy between the trans
ription fa
tor andea
h input sequen
e si.3.2 Energy-Based ModelIn our model, we do not treat the input sequen
es equally. Ea
h sequen
e is asso
iated with avalue ei whi
h represents the binding energy between the trans
ription fa
tor and its bindingsites (whi
h 
an be multiple). Let sequen
e si 
ontain Bi binding sites and E(bij ;M) be thebinding energy between the trans
ription fa
tor and the j-th binding site bij in sequen
e si.The probability that the trans
ription fa
tor binds to bij [Klotz 1986℄ isPij = e�E(bij ;M)PBik=1 e�E(bik;M) (2)We use a 4� l energy matrixM to represent the motif where the row of this matrix is indexedby \A",\C",\G",\T". M(
; j) represents the binding energy of the trans
ription fa
tor andthe nu
leotide 
 at the j-th position of the binding site. The total binding energy betweenbinding site b and the trans
ription fa
tor 
an be approximated by E(b;M) =Plj=1M(b[j℄; j)where b[j℄ is the j-th 
hara
ter of b.The set of substrings in a sequen
e si, whi
h are likely to be bound by the trans
riptionfa
tor, is said to be the binding sites of si. For a sequen
e si, the binding sites bij are thosesubstrings with E(bij ;M) � � where � is a determined threshold. If si does not 
ontainany substring b su
h that E(b;M) � �, the substring b with the lowest E(b;M) will be
hosen as its binding site. As for those binding sites that are too 
lose to ea
h other, i.e.,the distan
e between ea
h of two binding sites is less than some determined value dmin, we12



assume that there will not be two or more trans
ription fa
tors bound to these binding sitessimultaneously. While for those binding sites whose distan
es are larger than dmin, ea
h ofthem 
an be bound by a trans
ription fa
tor at the same time. We de�ne Etotal(si;M) to bethe expe
ted binding energy between the trans
ription fa
tor and sequen
e si given that atleast one binding site in si is bound by the trans
ription fa
tor.3.3 Problem De�nitionGiven the length of binding sites l, an energy threshold �, a distan
e threshold dmin, tsequen
es S = fsig in whi
h ea
h sequen
e si has a 
orresponding binding energy ei, we wantto �nd a 4� l energy matrix M to minimize the predi
tion errortXi=1(Etotal(si;M)� ei)2Note that we try to minimize the mean square error be
ause we assume the binding energyfollow the normal distribution. Fa
tors like 
on
entration of trans
ription fa
tor and tem-perature are not taken into a

ount as we assume the binding energies feig are getting fromexperiments in the same 
ondition. Although these fa
tors may a�e
t the values of ea
hentries in the energy matrix M , they have a linear e�e
t on all entries and will not a�e
t thepattern of the motif.4 Energy-Based Motif Finding AlgorithmEBMF tries to predi
t the 4�l energy matrixM from the input sequen
es using two steps. Inthe �rst step, we identify a set of 
andidate matri
es based on the strings that o

ur frequentlyin the input sequen
es of strong signal. In the se
ond step, we re�ne ea
h 
andidate matrixusing an EM-like iteration, whi
h 
an be des
ribed as follows. Based on the 
andidate matrix,�nd the best possible binding sites for ea
h sequen
e (see Se
tion 4.2). These binding sitestogether with the given binding energy for ea
h sequen
e are used to 
al
ulate another energymatrix so as to minimize the predi
tion error. The iteration pro
ess is repeated until thereis no further de
rease in the predi
tion error or the number of iterations rea
hes a 
ertainvalue. After pro
essing all 
andidate matri
es, the top 10 matri
es that give the smallestpredi
tion errors are 
onsidered as the a
tual energy matri
es. We �rst des
ribe the detailsof an EM-like step in re�ning the 
andidate matrix.13



4.1 Re�ne the Candidate MotifLet the Bi best possible binding sites be bi1; : : : ; biBi for ea
h sequen
e si with respe
t to
andidate matrixM . Based on the user input dmin, we estimate the expe
ted binding energyEtotal(si;M 0) for an arbitrary matrix M 0 as follows. We group the Bi binding sites bij into psubsets BSi1; : : : ; BSip where BSi1[ : : :[BSip = fbi1; : : : ; biBig. For any two binding sites inthe same group BSik, the distan
e between them is within dmin (i.e. if bim; bin 2 BSik thenthe distan
e between bim and bin � dmin) while the distan
e between any two binding sites indi�erent groups is larger than dmin. Note that BSi1; : : : ; BSip are disjoint and ea
h 
ontainsonly one binding site in pra
ti
e. The expe
ted binding energy of a trans
ription fa
tor boundto a binding site in BSik is Pbij2BSik PijE(bij ;M 0) where Pij is given in Equation (2). Giventhat at least one binding site is bound by the trans
ription fa
tor, the expe
ted binding energybetween the trans
ription fa
tor and sequen
e si 
an be 
al
ulated as follows:Etotal(si;M 0) = Xall BSik 26666664 Xbij2BSik PijE(bij ;M 0)1� Yall BSik0�1� Xbij2BSjk Pij1A37777775= Xj2f1;:::;BigPijE(bij ;M 0)1� Yall BSik0�1� Xbij2BSik Pij1AThe expe
ted binding energy Etotal(si;M 0) is the sum of the expe
ted binding energy betweenthe trans
ription fa
tor and ea
h group of binding sites given that the trans
ription fa
tor hasbound to at least one binding site in the sequen
e. Pbij2BSik PijE(bij ;M 0) is the expe
tedbinding energy between the trans
ription fa
tor and a binding site in group BSik and 1 �Qall BSik(1 �Pbij2BSjk Pij) is the probability that the trans
ription fa
tor has bound to atleast one binding site in the sequen
e.We then formulate an equation by setting this expe
ted binding energy equal to the givenbinding energy of that sequen
e, that is, Etotal(si;M 0) = ei. With t input sequen
es, we havea system of t equations. We use QR de
omposition to solve this system of equations to obtainall 4l entries of the new energy matrix M 0 that minimizes the predi
ation error.Te
hni
ally, we 
onvert ea
h 
hara
ter in bij for any j in BSik to a 4-dimensional ve
torby using (1,0,0,0), (0,1,0,0), (0,0,1,0) and (0,0,0,1) to represent \A", \C", \G" and \T"respe
tively. The resultant 4l-dimensional ve
tor vij is used to represent the binding site bij14



of length l. For example, we 
onvert \ATC" to a 12-dimensional ve
tor (1,0,0,0,0,0,0,1,0,1,0,0). Then, the equation for sequen
e si 
an be represented as follows,8>>>>><>>>>>: BiXj=1 2666664 Pij1� Yall BSik 1� Xbim2BSik Pim! � vij37777759>>>>>=>>>>>;� V (M 0)T = ei
where Pij is the probability that the trans
ription fa
tor is bound to bij with respe
t toM(see Se
tion 2.2) and V (M 0) = (M 0(1; 1); M 0(2; 1); M 0(3; 1); M 0(4; 1); M 0(1; 2) ; : : : ;M 0(4; l))represents the ve
tor formed by 
on
atenating the 
olumn entries of M 0.4.2 Finding Candidate Matri
esWhen the algorithm based on the energy model is applied to �nd the motif, not all the initialmatri
es 
an 
onverge to the 
orre
t matrix M�. The su

ess of the algorithm depends verymu
h on the set of 
andidate matri
es 
hosen as \seed". For example, if we use a randomstring Q of length l to 
onstru
t a 4 � l matrix M as the seed where M(Q[i℄; i) = �1 for1 � i � l and 0 for all other entries, it 
an be 
on�rmed from experiments that the su

essrate is very low at about 0:3%. In the following, we show a better method of �nding theseeds.4.2.1 Improved Method for Finding SeedOur approa
h to �nd a seed matrix is to sele
t the most likely length-l string Q among the4l possible strings by voting. Ea
h � of length l appearing in the input sequen
es will give as
ore to every string Q with similar pattern (that is, the Hamming distan
e between � and Qis within a given threshold). The set of strings re
eived the highest s
ores will be 
hosen for
onverting to seed matri
es. However, the votes should 
arry di�erent weights depending onthe binding energy ei of the sequen
e from where � is derived. In our experiment, we havede�ned the s
ore fun
tion as follows.

S
ore(si; �;Q) = 8>>>>>>>><>>>>>>>>:
�ei=Ql=2k=1 P0(Q[k℄)if 9 a substring � in si s.t. H(�;Q) � bl=8
0 otherwise15



where H(�;Q) de�nes the Hamming distan
e between � and Q and P0(
) the o

urren
eprobability of 
 in the input sequen
es where 
 is \A", \C", \G", or \T". The s
ore of alength-l string Q is Xi X� S
ore(si; �;Q)In general, it is very time-
onsuming to �nd the highest s
oring Q among the 4l (= 234 ifl = 17) possible strings. In order to redu
e the number of tests, we need to redu
e the lengthof the \seed". One way to do this is the following. Given a string Q of length l, we proje
tthe l=2 
hara
ters at the odd positions of Q to form a representative string of length l=2.For example, when l = 8, we will use \ACAC" to represent \ATCGATCG". We modifythe s
oring fun
tion su
h that H(�;Q) is the Hamming distan
e between the representativestring of � and Q, and we 
al
ulate the produ
t of P0(Q[k℄) for odd number k only. Insteadof �nding the s
ores of all the 4l possible strings of length l, we �nd the s
ores for the 4l=2representative strings of length l=2 and use those representative strings with high s
ores topredi
t the 
andidate matri
es. Similarly, we 
an get another set of 
andidate matri
es if weproje
t the even positions of a string to form the representative string. In pra
ti
e, we 
anstill �nd the seed even if we peform the above proje
tion.5 Experimental ResultsWe have implemented EBMF in C++ and tested it on both real data and simulated data. We
ompared EBMF with 
ommon motif-�nding programs AlignACE and MEME. The resultsshowed that EBMF is e�e
tive and 
ompares favorably with these programs.[Table 2 about here.℄[Table 3 about here.℄5.1 Simulated DataLet m be the total number of sequen
es, n be the length of ea
h sequen
e, t be the numberof sequen
es with binding sites and B� be the number of binding sites in the t sequen
es, wegenerated the simulated data as follow. A 4�l energy matrix E� was generated randomly anda 
orresponding probability matrixM� was 
onstru
ted su
h that for ea
h 
olumn j inM�, theprobability of the o

urren
e of a nu
leotide 
 was dire
tly proportional to e�E�(
;j). Then we16



generated m sequen
es of length n where ea
h nu
leotide o

urred with equal probability, andplanted B� binding sites (generated a

ording to the probability matrix) in these t sequen
esat random positions. Finally, we used the energy matrix E� to 
al
ulate the energy levelei = Etotal(si; E�) of ea
h sequen
e si. As many other resear
h in motif �nding [Buhler 2002,Segal 2002℄, we have used a relatively large n when generating input sequen
es. It is be
ausein real biologi
al data, we usually do not know the a

urate positions of the binding regionsas the 
ost for getting more a

urate result is high and error may o

ur in the experiments.Tables 2 and 3 show the results of AlignACE, MEME and EBMF on the simulated data.We arranged the m sequen
es a

ording to their energy level ei in in
reasing order. The tsequen
es with planted binding sites should have the lowest energy level. We used the msequen
es and the 
orresponding energy levels ei as input for EBMF. For AlignACE andMEME, we used the k (k = t; t + 1; : : : ;m) sequen
es with the lowest energy level as input.There are situations in whi
h EBMF �nds the motif while AlignACE and MEME fail to do sofor all k in the range [t;m℄. This is be
ause when the number of binding sites in the sequen
esis small, there exist many matri
es whose log likelihoods are no smaller than that of matrixM�. In fa
t, there is an in�nite number of su
h matri
es. When these matri
es in turnrepresent many di�erent strings, AlignACE and MEME will fail. The EBMF algorithm 
anhelp in these situations by using weak-signal sequen
es to eliminate the number of matri
esand, more importantly, the number of di�erent strings they represent, to the extent that themotif 
an be found. [Table 4 about here.℄5.2 Real DataUsing Gal4 as an example, we know from Se
tion 2 that on
e we remove several sequen
es
ontaining multiple binding sites, both MEME and AlignACE 
annot �nd the motif patternCGGN11CCG. [Bram 1984, Bram 1986, Magdolen 1990℄. In this se
tion, we test whether ouralgorithm 
an dis
over the 
orre
t pattern in similar situation.From the mir
oarray experiment (data from [Ren 1993℄), we obtained 6000 intergeni
regions (the length of the sequen
es is in the range [100; 1000℄), ea
h with a 
olor ratio. Aftersorting the sequen
es a

ording to their 
olor intensities in de
reasing order, we removed the2,3,4 and 6 sequen
es from the data set, whi
h 
ontain multiple binding sites with strongsignal. We tried to �nd the motif using this weak data set.17



For AlignACE and MEME, no matter how we set the threshold for sele
ting the topstrong-signal sequen
es, the motif 
annot be found. However, sin
e the EBMF algorithmtakes advantage of weak-signal sequen
es, we 
an �nd the CGGN11CCG pattern using thetop 100 sequen
es(Table 4).6 Con
lusionIn this paper, we have 
hara
terized data sets for whi
h existing motif-�nding algorithms,whi
h are based on the strong-signal model, su

eed to �nd the motif in terms of the minimumnumber of binding sites the data set (instead of the minimum number of sequen
es withbinding sites) must have. This 
hara
terization provides a better des
ription of the data setfor whi
h we 
an expe
t su

ess.Commonly-used motif-�nding programs, su
h as AlignACE and MEME, are based onstrong-signal model, where the patterns of weak-signal sequen
es are ignored. Clearly, weak-signal sequen
es, su
h as sequen
es without binding sites, also 
ontain information about motifin the negative sense, although possibly less than information from strong-signal sequen
es.For data sets whi
h do not have the minimum number of binding sites, we have proposeda new EMBF algorithm for �nding motifs, whi
h makes use the information of weak-signalsequen
es in order to outperform AlignACE and MEME. However, our EBMF algorithm inits present state has two short
omings whi
h require attention and will be addressed in ourfuture papers.1. Comparatively, our EBMF algorithm is rather slow and takes a mu
h longer time toidentify the motif than other motif-�nding algorithms. We believe, however, time im-provement 
an be realized through a more eÆ
ient way of �nding \seed" matri
es (Se
-tion 4.2.1).2. For most data sets, exa
t information about ea
h sequen
e's binding energy is notavailable. It is then desirable to devise another approa
h to address data sets with onlytwo groups of sequen
es - those with and those without binding sites [Chin 2005a℄.
18



Referen
es[Bailey 1994℄ Bailey, T.L., and Elkan C. 1994. Fitting a mixture model by expe
tation maxi-mization to dis
over motifs in biopolymers. Pro
eedings of Se
ond International Confer-en
e on Intelligent Systems for Mole
ular Biology. 2, 28-36.[Bailey 1995℄ Bailey, T.L., and Elkan 
. 1995. Unsupervised learning of multiple motifs inbiopolymers Using expe
tation maximization. Ma
hine Learning Journal. 21, 51-83.[Barash 2001℄ Barash, Y. Bejerano, G., and Friedman, N. 2001. A simple hyper-geometri
approa
h for dis
overing putative trans
ription fa
tor binding sites. Pro
eedings of WABI.1, 278-293.[Bram 1984℄ Bram, R.J., and Kornberg, R.D. 1984. Spe
i�
 protein binding to far upstreama
tivating sequen
es in polymerase II promoters. Pro
eedings of the National A
ademyof S
ien
es. 82, 43-47.[Bram 1986℄ Bram, R.J., Lue, N.F., and Kornberg, R.D. 1986. A GAL family of upstreama
tivating sequen
es in yeast: roles in both indu
tion and repression of trans
ription.The EMBO Journal. 5, 603-608.[Buhler 2002℄ Buhler, J., and Tompa, M. 2002. Finding Motifs using random proje
tions.Journal of Computional Biology. 9, 225-242.[Chin 2005a℄ Chin, F.Y.L., and Leung, H.C.M. 2005. Finding motifs from all sequen
es withand without binding sites. submitted to CSB.[Chin 2005b℄ Chin, F.Y.L., and Leung, H.C.M. 2005. Voting algorithms for dis
overing longmotifs. Pro
eedings of APBC. 3, 261-271.[Hughes 2000℄ Hughes, J.D., Estep, P.W., Tavazoie, S., and Chur
h, G.M. 2000. Computa-tional identi�
ation of 
is-regulatory elements asso
iated with groups. Journal of Mole
-ular Biology. 296(5), 1205-14.[Jakt 2001℄ Jakt, L.M., Cao, L., Cheah, K.S.E., and Smith, D.K. 2001. Assessing 
lustersand motifs from gene expression data. Genome Resear
h. 11, 112-123.[Klotz 1986℄ Klotz, I. 1986. Introdu
tion to biomole
ular energeti
s. A
ademi
 Press In
, Lon-don, UK. 19



[Lawren
e 1993℄ Lawren
e, C., Alts
hul, S., Boguski, M., Liu, J., Neuwald A., and Wootton,J. 1993. Dete
ting subtle sequen
e signals: a gibbs sampling strategy. S
ien
e. 262, 208-214.[Liu 1995℄ Liu, J.S. Neuwald, A.F., and Lawren
e, C.E. 1995. Bayesian motifs for multiple lo-
al sequen
e alignment and gibbs sampling strategies. Journal of the Ameri
an Statisti
alAsso
iation. 90(432), 1156-1170.[Magdolen 1990℄ Magdolen, V., O

hsner, U. Trommler P., and Bandlow, W. 1990. Trans
rip-tional 
ontrol by gala
tose of a yeast gene en
oding a protein homologous to mammalianaldo/keto redu
tases. Gene. 90, 105-114.[Pevzner 2000℄ Pevzner P.A., and Sze, S.H. 2000. Combinatorial approa
hes to �nding sub-tle signals in DNA sequen
es. Pro
eedings of the Eighth International Conferen
e onIntelligent Systems for Mole
ular Biology. 8, 269-278.[Ren 1993℄ Ren, B., Robert, F. Wyri
k, J.J., Apari
io, O., Jennings, E.G., Simon, I.,Zeitlinger, J., S
hreiber, J., Hannett, N., Kanin, E., Volkert, T.L., Wilson, C.J., Bell,S.P., and Young, R.A. 1993. Genome-wide lo
ation and fun
tion of DNA binding pro-teins. S
ien
e. 290, 2306-2309.[Roberts 2000℄ Roberts, C.J., Nelson, B., Marton, M.J., Stoughton, R., Meyer1, M.R., Ben-nett, H.A., He, Y., Dai, H. Walker, W.L., Hughes, T.R., Tyers, M., Boone, C., andFriend, S.H. 2000. Signaling and 
ir
uitry of multiple MAPK pathways revealed by amatrix of global gene expression pro�les. S
ien
e. 287, 873-880.[Roth 1998℄ Roth, F.P., Hughes, J.D., Estep, P.W., and Chur
h, G.M. 1998. Finding DNAregulatory motifs within unaligned non-
oding sequen
es 
lustered by whole-genomemRNA quantitation. Nature Biote
hnology. 16(10), 939-945.[Segal 2002℄ Segal, E., Barash, Y., Simon, I., Friedman, N., and Koller, D. 2002. From pro-moter sequen
es to expression: a probabilisti
 framework. Pro
eedings of RECOMB. 6,263-272.[Segal 2004℄ Segal E., and Sharan, R. 2004. A dis
riminative model for identifying spatial
is-regulatory modules. Pro
eedings of RECOMB. 8, 141-149.20



[Sinha 2003℄ Sinha, S. 2003. Dis
riminative motifs. Journal of Computational Biology. 10,599-616.

21



AppendixIn this se
tion, we prove by indu
tion that the probability that the Hamming distan
e be-tween a randomly 
hosen string Q and a string b generated a

ording to some ba
kgroundprobabilities P0 is smaller than or equal to d 
an be represented bydXi=0 li !�34�i �14�l�iwhere l is the length of Q and b.Denote H(x; y) as the Hamming distan
e between two string x and y of the same length.Given a length-l random string Q with equal o

urren
e probabilities for \A", \C", \G",\T" and a length-l random substring b generated a

ording to the ba
kground probabilitiesP0 = fP0(A); P0(C); P0(G); P0(T )g, let S(l) be the proposition that for any d, 0 � d � l, theprobability that H(Q; b) = b is  ld !�34�d �14�l�dWhen l = 1Case I: d = 0P (H(Q; b) = 0)= P (Q = \A" ^ b = \A")+P (Q = \C" ^ b = \C")+P (Q = \G" ^ b = \G")+P (Q = \T" ^ b = \T")= 14 � P0(A) + 14 � P0(C) + 14 � P0(G) + 14 � P0(T )= 14(P0(A) + P0(C) + P0(G) + P0(T ))= 14= � 10 ��34�0 �14�1�0
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Case II: d = 1P (H(Q; b) = 1)= P (Q 6= \A" ^ b = \A"+P (Q 6= \C" ^ b = \C")+P (Q 6= \G" ^ b = \G")+P (Q 6= \T" ^ b = \T")= 34 � P0(A) + 34 � P0(C) + 34 � P0(G) + 34 � P0(T )= 34(P0(A) + P0(C) + P0(G) + P0(T ))= 34= � 11 ��34�1 �14�1�1S(1) is trueAssume S(k) is true, 
onsider S(k + 1)Case I: 1 � d � kP (H(Q; b) = d)= P (H(Q[1:::k℄; b[1:::k℄) = d)P (H(Q[k + 1℄; b[k + 1℄) = 0)+P (H(Q[1:::k℄; b[1:::k℄) = d� 1)P (H(Q[k + 1℄; b[k + 1℄) = 1)= � kd ��34�d �14�k�d � � 10 ��34�0 �14�1+� kd� 1 ��34�d�1 �14�k�(d�1) � � 11 ��34�1 �14�0= �� kd �+ � kd� 1 �� �34�d �14�(k+1)�d= � k + 1d ��34�d �14�(k+1)�dCase II: d = 0P (H(Q; b) = d)= P (H(Q[1:::k℄; b[1:::k℄) = 0)P (H(Q[k + 1℄; b[k + 1℄) = 0)= � k0 ��34�0 �14�k � � 10 ��34�0 �14�1= �14�k+1= � k + 10 ��34�0 �14�k+1Case III: d = k + 1P (H(Q; b) = d)= P (H(Q[1:::k℄; b[1:::k℄) = k)P (H(Q[k + 1℄; b[k + 1℄) = 1)= � kk ��34�k �14�0 � � 11 ��34�1 �14�0= �34�k+1= � k + 1k + 1 ��34�k+1 �14�0Therefore S(k + 1) is true. 23



By indu
tion, S(l) is true for all positive integer l > 0.Sin
e the probability that H(Q; b) = d is ld !�34�d �14�l�dthe probability that the H(Q; b) � d isdXi=0 li !�34�i �14�l�i
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Expected numbers of matrices for different numbers of binding sites
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Figure 1: E(LE ; B�) for di�erent values of B� and En where LE = En� l, t = 10, n = 700,l = 17, P0 = f0:25; 0:25; 0:25; 0:25g
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Expected numbers of matrices for different lengths of the motif
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Figure 2: E(LE ; B�) for di�erent values of l and En where LE = En � l, t = 10, n = 700,B� = 10, P0 = f0:25; 0:25; 0:25; 0:25g
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Expected numbers of matrices for different numbers of input sequences
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Figure 3: E(LE ; B�) for di�erent values of t and En where LE = En � l, n = 700, l = 17,B� = 10, P0 = f0:25; 0:25; 0:25; 0:25g
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Table 1: Results of AlignACE and MEME on Gal4n B� Min B E(LE ; B�) AlignACE MEMEFind? rank Find? rank9 seq. 762 18 9 3:055 � 10�52 yes 1 yes 13 seq. 787 11 7 1:491 � 10�23 yes 1 yes 18 seq. 736 13 9 8:925 � 10�25 yes 1 yes 17 seq. 746 9 9 2:298 � 10�7 yes 1 no -6 seq. 749 7 9 2534 no - no -Min B is the minimum value of B su
h that E(LE ; B) � 1. The ba
kground probabilities P0 are f0:2; 0:3; 0:3; 0:2gwhi
h are 
al
ulated a

ording to the number of \A", \C", \G" and \T" o

urren
es in the intergeni
 regions of yeast.
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Table 2: Results on simulated dataE(LE ; B) EBMF AlignACE MEMEFind? rank Find? rank Find? rankB = 7 149475 yes 1 no - no -B = 8 0.000439 yes 1 no - yes 1B = 9 7:70349 � 10�7 yes 1 yes 1 yes 1We generated 200 length-700 sequen
es. Then we planted B length-17 binding sites with expe
ted likelihood -10 in thesesequen
es. EBMF, AlignACE and MEME were used to dis
over the motif.
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Table 3: Results on simulated dataE(LE ; B) EBMF AlignACE MEMEFind? rank Find? rank Find? rankB = 6 619609 yes 1 no - no -B = 7 0.000439 yes 1 no - yes 1B = 8 7:70353 � 10�7 yes 1 yes 1 no -We generated 200 length-700 sequen
es. Then we planted B length-17 binding sites with expe
ted likelihood -8.8 inthese sequen
es. EBMF, AlignACE and MEME were used to dis
over the motif.
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Table 4: Results of the algorithms on Gal4EBMF AlignACE MEMEFind? rank Find? rank Find? rankUsing the top 100 sequen
es yes 2 yes 1 yes 1in the original dataUsing the top 100 sequen
es yes 1 no - no -ex
ept sequen
es 2,3,4 and 6Using the top 100 sequen
es yes 10 no - no -ex
ept sequen
es 1 to 6Using the top 100 sequen
es yes 5 no - no -ex
ept sequen
es 1 to 8We set the numbers of input sequen
es be di�erent values for AlignACE and MEME. We say AlignACE and MEME
an �nd the motif if they 
an �nd the CGGN11CCG pattern in at least one setting.
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