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ABSTRACT 

We propose a novel method for using the World Wide Web to ac- 
quire trigram estimates for statistical language modeling. We sub- 
mit an N-gram as aphrase query to web search engines. The search 
engines retum the number of web pages containing the phrase, 
from which the N-gram count is estimated. The N-gram counts 
are then used to form web-based trigram probability estimates. We 
discuss the properties of such estimates, and methods to interpo- 
late them with traditional corpus based trigram estimates. We show 
that the interpolated models improve speech recognition word er- 
ror rate significantly over a small test set. 

1. INTRODUCTION 

A language model (LM) is a critical component for many appli- 
cations, including speech recognition. Enormous effort has been 
spent on building and improving language models. Broadly speak- 
ing, this effort develops along two orthogonal directions: The first 
direction is to apply increasingly sophisticated estimation methods 
to a fixed training data set (corpus) to achieve better estimation. 
Examples include various interpolation and backoff schemes for 
smoothing, variable length N-grams, vocabulary clustering, deci- 
sion trees, probabilistic context free grammar, maximum entropy 
models, etc [l]. We can view these methods as trying to “squeeze 
out” more benefit from a fixed corpus. The second direction is 
to acquire more training data. However, automatically collecting 
and incorporating new training data is non-trivial, and there has 
been relatively little research in this direction. An example is a 
cache LM, which uses recent utterances as additional training data 
to create better N-gram estimates. The recent rapid development 
of the World Wide Web (WWW) makes it an extremely large and 
valuable data source. Just-in-time language modeling [2] submits 
previous user utterances as queries to WWW search engines, and 
uses the retrieved web pages as unigram adaptation data. In this 
paper, we propose a novel method for using the WWW and its 
search engines to derive additional training data for N-gram lan- 
guage modeling, and show significant improvements in terms of 
speech recognition word error rate. An extended version of this 
paper can be found in [3]. 
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2. THE WWW AS TRIGRAM TRAINING DATA 

The main idea of our method is to obtain the counts of ” ~ 1 ~ 2 ~ 3 ”  

and ”w1 w2” as they appear on the WWW, to estimate 

Cweb(  W l W 2 W 3 )  

c w e b ( W l w 2 )  
$ w e b ( W 3 ( W l 7  w2) = 

and combine $web with the estimates from a traditional corpus 
(here and elsewhere, when cweb(w1tu2)  = 0, we regard $web as 
unavailable). Essentially, we are using the searchable web as ad- 
ditional training data for trigram language modeling. There are 
several questions to be addressed: How to obtain the counts from 
the web? What is the quality of these web estimates? How could 
they be used to improve language modeling? We will examine 
these questions in the following sections, in the context of N-best 
list rescoring for speech recognition. 

2.1. Obtaining N-gram counts from the WWW 

To obtain the count of an N-gram ”201 . . . wn” from the web, we 
send it as a single quoted phrase query to a search engine. We want 
the search engine to perform exact phrase search (i.e. don’t use a 
stopword list or stemming), and retum phrase counts or web page 
counts (from which we can estimate phrase counts, see below). 
We experimented with a dozen popular search engines, and found 
three that meet our criteria: AltaVista [4] advanced search mode, 
Lycos 151, and FAST [6] I .  They all report web page counts. 

One brute force method to get the phrase counts is to actu- 
ally download all the web pages the search engine finds. However, 
queries of common words typically result in tens of thousands of 
web pages, and this method is clearly infeasible. Fortunately at 
the time of our experiment AltaVista had a simple search mode, 
which reported both the phrase count and the web page count for a 
query. Figure l(a) shows the phrase count vs. web page count for 
430 bigram queries (phrases consisting of two consecutive words). 
Trigram queries and unigram queries have similar behavior. There 
are horizontal branches in the bigram and trigram plots that don’t 
make sense (more web pages than total phrase counts). We re- 
gard these as outliers due to idiosyncrasies of the search engine, 
and exclude them from further consideration. Since the plots are 
largely log-linear, we perform log-linear regression c = a0 * p g f f  
separately for trigrams, bigrams, and unigrams, where c is the 
phrase count, and p g  the web page count. We found for unigram 
a0 = 2.427, a 1  = 1.019; for bigram a0 = 1.209, a1 = 1 . 0 1 4 ;  

‘Our selection is admittedly incomplete. In addition, since search en- 
gines develop and change rapidly, all our comments are only valid during 
the period of this experiment 
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and for trigram a0 = 1.174, (11 = 1.025. The bigram regression 
function is also plotted in Figure I(a). We assume these functions 
apply to other search engines as well. In the rest of the paper, all 
web N-gram counts are estimated by applying the corresponding 
regression function to the web page counts reported by search en- 
gines. 

2; 
3g 

2.2. The quality of web estimates 

To investigate the quality of web estimates, we needed a baseline 
corpus for comparison. The baseline we used is a 103 million word 
Broadcast News corpus. 

Web N-gram coverage on unseen test text: We show that the 
web covers many more N-grams than the baseline corpus. Note 
that by ‘the web’ we mean the searchable portion of the web as 
indexed by the search engines we chose. A test text consisted of 24 
randomly chosen sentences from 4 web news sources (CNN, ABC, 
Fox, BBC) and 6 categories (world, domestic, technology, health, 
entertainment, politics) was created from the day’s news stories, 
on the day the experiment was carried out. This was to make sure 
that the search engines hadn’t had the time to index the web pages 
containing these sentences. After the experiment was completed, 
we checked each sentence, and indeed none of them were found 
by the search engines yet. Therefore the test text is truly unseen to 
both the web search engines and the baseline corpus. (The test text 
is of written news style though, which might be slightly different 
from the broadcast news style in the baseline corpus.) 

462 4 5 5 68 
453 46 46 46 189 

I I unioue I Not Covered Bv I I typks 1 AltaVista I Lycos I FAST I Corpus 
l z  I 327 I 0 1 0 1  0 1  8 

Table 1. Novel N-gram types in 24 news sentences 

There are 327 unigram types (i.e. unique words), 462 bigram 
types and 453 trigram types in the test text. Table 1 lists the num- 
ber of N-gram types not covered by the different search engines 
and the baseline corpus, respectively. Clearly, the web’s cover- 
age, under any of the search engines, is much better than that of 
the baseline corpus. It is also worth noting that for this test text, 
any N-gram not covered by the web was also not covered by the 
baseline corpus. 

Next we asked the question “if one randomly picks a trigram 
from the test text, what’s the chance the trigram has appeared 
c times in the training data?’ Figure l(b) shows the compari- 
son, with the training data being the baseline corpus and the web 
through the different search engines respectively. This figure is 
also known as a “frequency-of-frequency” plot. According to this 
figure, a trigram from the test text has more than 40% chance of 
being absent in the baseline corpus, but the chance goes down to 
about 10% on the web regardless of the search engine. This is 
consistent with Table I .  Moreover, the trigram has a much larger 
chance in having a small count in the baseline corpus than on the 
web. Since small counts usually mean unreliable estimates, resort- 
ing to the web could be beneficial. 

The effective size of the web: The web is large, and we would 
like to estimate the effective size of the web as if it were a LM 
training corpus. Let’s assume that the web and the baseline corpus 

Fig. 1. (a) Web page count vs. phrase count for bigrams (b) Em- 
pirical frequency-of-frequency plot 

are homogeneous (which is patently false, but we will ignore this 
for the time being), i.e. pcorpus (N-gram) = pw,b(N-gram). Ap- 
proximating the probabilities by their respective frequencies, we 
can estimate the size of the web in words. Each N-gram with a 
large count in the test text will gave us an estimate, and we took 
the median of all estimates for robustness. We found for AltaVista, 
Lycos and FAST, the effective size is 108,79 and 83 billion words 
respectively. Note these are very rough estimates defined relative 
to the specific baseline corpus and specific test set we happened 
to choose. They should not be used to rank the performance of 
individual search engines. 

Normalization of the web counts: A sanity check is to see 
if C w e b ( W l W 2 )  = EwJEv cweb(w1w2w3) holds for any bigram 
0 w 1 ~ 2 n .  If true, &,eb(w31~1, w2) would already be normalized. 
We randomly selected six ” w1 w2*’ pairs and performed the check. 
The right hand side ranges between 0.45 to 1.17 times the left hand 
side. Therefore the web counts are not perfectly normalized, and 
they should be used with caution. 

Web trigram estimates compared to a traditional LM: We cre- 
ated a baseline trigram language model LMo from the 103 million 
word baseline corpus. We used modified Kneser-Ney smoothing 
[7] [8] which, according to [8], is one of the best smoothing meth- 
ods available. In building LMo, we discarded all singleton tri- 
grams in the baseline corpus, a common practice to reduce lan- 
guage model size. We denote LMo’s probability estimates by 
po. We comparefjweb(w)j[wl, w2) withpO(w3[wlr w2)for the tri- 
grams in the test text. We found that the two agree in most cases, 
while the web estimates tend to be larger for small count trigrams. 
This is of course good news, as it suggests that this is where the 
web estimates tend to improve on the corpus estimates. 

3. COMBINING WEB ESTIMATES WITH EXISTING 
LANGUAGE MODEL 

In the previous section we saw the potential of the web: it is huge, 
it has better trigram coverage, and its trigram estimates are largely 
consistent with the corpus-based estimates. But to query each and 
every N-gram on the web is infeasible; web estimates are not well 
normalized; and the content of the web is heterogeneous and usu- 
ally doesn’t coincide with our domain of interest. Based on these 
considerations, we decided not to build a full fledged LM from the 
web. Instead we will start from a traditional language model LMo, 
and interpolate its least reliable trigram estimates with the appro- 
priate estimates from the web, since unreliable trigram estimates, 
especially those involving backing off to lower order N-grams, 
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have been shown to be correlated with increased speech recogni- 
tion errors [9] [lo]. We define a trigram estimatepo(w31wl, wg) 
unreliable if Ccorpus(wlWZw3) 5 T, where T is the reliability 
threshold. 

Even so there are still too many unreliable trigrams to query 
the web for. Since we were interested in N-best list rescoring, we 
further restricted our attention to those unreliable trigrams that ap- 
peared in the particular N-best list being processed. This greatly 
reduces the number of web queries at the price of some further 
bias. Let Uw,,, be the set of wog's in the current N-best list that 
form unreliable trigrams with history " ~ 1 ~ 2 " .  We would aquire 
f iweb(UIW1,  WZ), U E U,,,, from the web, and interpolate them 
with po ( U  I w1, w2) to form the final interpolated estimates, de- 
noted as p * ( u I w ~ ,  w ~ ) .  We would like to have a tunable inter- 
polation parameter so that on one extreme p*(u(w1, w2) goes to 
PO ( ~ 1 ~ 1 ,  wz), while on the other extreme it goes to&eb(U)wl, W Z ) .  

We now present three different methods for doing this. 

binary functions, or 'features', as follows: 
In exponential models with Gaussian priors we define a set of 

1 i f w 3 = ~  
f W l , W 2 , U ( W 3 )  = { 0 otherwise 

for all w1, w2, U E 
tional exponential model [ 1 11 [12] pE with these features: 

in the N-best list. We define a condi- 

p * E ( ~ I w i ,  w2) = (1) 

&PO (W3 lWl ? w2) exp(Cu~~, ,  w z  xu f w l  , W 2  ,U (w3)) 

Let 12 denote the set of parameters. The likelihood with respect to 
the web counts is: 

L(11) = n p>(W31W1, W2)c"eb(w1w2w3) 
w1 .W,.WJ 

We introduce a Gaussian prior with mean 0 and variance u2 over 
11 : 

and seek the maximum a posteriori (MAP) solution that maximizes 
L ( A )  * p(12) .  This can be done by slightly modifying the Gener- 
alized Iterative Scaling algorithm [13], as described in [14]. 

We can control the degree of interpolation by choosing the 
prior variance u2 E (0,  +CO). If u2 + $00, the Gaussian prior is 
flat and has virtually no restriction on the values of the A's. Thus 
the A'S can reach their ME/MDI solutions that satisfies the follow- 
ing constraints: 

pL(UIwltW2) =fiweb(Ulwlr wZ),vU E u w , w ,  (2) 

On the other hand if u2 -+ 0, the Gaussian prior forces A's to 
be close 0. From (1) we know in this case p& + PO, the other 
extreme of the interpolation. A u2 between 0 and +00 results in 
an intermediate PE distribution. 

In linear interpolation, we have 

Pt(w31wrWZ) = ( 3 )  
(1 -a)pO(w31wl,wZ) +Qiweb(w31wlrw2) 

, if w3 E U,,,, 
1--c"Eu,lw2 P;(ulwl,wz) 

1 -E , E ,, po ( u  Iw1. w2 
YO ( ~ 3  1 ~ 1 3  202) 

, otherwise 

In this case, a E [0, 13 is the tuning parameter. If Q = 0, p:  = 
PO. If Q = 1, p l  satisfies (2). An Q in between results in an 
intermediate p z .  

In geometric interpolation, we have 

(4) 

I , otherwise 

Note that here we have to smooth the web estimates to avoid zeros 
(which is not a problem in the previous two methods). We add 
a small positive value e to every web count, a method known as 
additive smoothing [SI. e is determined by minimizing perplexity 
when ,B = 1. ,B E [0,1] is the interpolation parameter. If ,B = 0, 
p> = PO. If p = 1, p >  satisfies the smoothed web estimates. A ,B 
in between results in an intermediate p > .  

4. EXPERIMENTAL RESULT 

We randomly selected 200 utterance segments from the TREC-7 
Spoken Document Retrieval track data [ 151 as our test set for this 
experiment. For each utterance we have its correct transcript and 
an N-best list with N = 1000, i.e. 1000 decoding hypotheses. 
We performed N-best list rescoring to measure the word error rate 
(WER) improvement. If we rescore the N-best lists with LMo and 
pick the top hypotheses, the WER is 33.45%. This is our baseline 
WER. For each N-best list, we queried the unreliable trigrams (and 
associated bigrams) in it, and computedp' with the three different 
interpolation methods. For geometric interpolation we chose e = 
0.01 because this minimized perplexity when ,B = 1. We then 
used p* to rescore the N-best list and calculated the WER of the 
top hypothesis after rescoring respectively. 

Figure 2(a)(b)(c) show the WER with exponential models, lin- 
ear interpolation, and geometric interpolation respectively, with 
reliability threshold T = 0. The three curves stand for different 
search engines, which turn out to be very similar. The horizontal 
dashed line is the baseline WER. As the interpolation parameters 
take some intermediate values, all three models reach their mini- 
mum WER respectively. The exponential model reaches minimum 
WER 32.53% with AltaVista around U* = 1, the linear interpo- 
lation model reaches 32.56% with AltaVista at a = 0.4, and the 
geometric interpolation model reaches 32.69% with FAST when 

Figure 2(d) shows the effect of reliability threshold T on WER. 
The interpolation method used here is the exponential model with 
Gaussian prior and uZ = 1. We varied T from 0 to 5. With larger 
threshold, more trigrams are regarded as unreliable, and hence 
more web queries had to be issued. There is a slight but signifi- 
cant improvement when we increase 'T from 0 to 1. For example, 
The WER with AltaVista at T = 1 is 32.45%. Note that LMo, 
the language model we are incorporating web estimate into, was 
built after excluding all singleton trigrams in the corpus. This may 
explain why T = 1 is better since trigrams with counts 0 or 1 in 
the corpus are indeed unreliable: in LMo they must backoff to bi- 
gram or unigram. Further increase in T doesn't bring as significant 
improvement. 

/3 = 0.3. 
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Fig. 2. Word Error Rates of web-improved LMs as function of the 
smoothing parameter for several different interpolation schemes, 
based on N-best rescoring 

More analysis of the WER improvement can be found in [3]. 
Perplexity cannot be computed because the models are not prop- 
erly normalized. 

5. DISCUSSIONS 

We demonstrated that estimates obtained from the web can im- 
prove WER. We believe the improvement largely comes from bet- 
ter trigram coverage due to the sheer size of the web, which acts 
as a ‘general English’ knowledge source. Interestingly the choice 
of particular search engine or interpolation method doesn’t seem 
to matter much. Our method has certain advantages. Besides 
having better N-gram coverage, the content of the web is con- 
stantly changing, enabling automatic up-to-date language model- 
ing. However there are also disadvantages. The most severe one 
is the large number of web queries: We needed 340 queries on 
average for each utterance. This results in heavy web traffic and 
load on the search engines, and hence slow rescoring. Another 
concem is privacy: one may be sending fragments of potentially 
sensitive utterances to the web. Both problems, however, can be 
partly solved by using a web-in-a-box setting, i.e. if we have a 
snapshot of the text content of the whole WWW on local storage. 
Yet another problem is the lack of focus on specific domains. This 
might be solved by querying specific domain hosts instead of the 
whole web, although by doing so the N-gram coverage may dete- 
riorate. 

The method proposed in this paper is only one crude way of 
exploiting the web as a knowledge source for language modeling. 
One could also look for more complex phenomena, e.g. semantic 
coherence [ 161 among content words in a hypothesis. Intuitively, if 
a hypothesis has content words that ‘go with each other’, it is more 
likely than one whose content words seldom appear together in a 
large training text set. The web search engine approach seems well 
suited for this purpose. We are currently pursing this direction. 
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