
IMPROVING TRIGRAM LANGUAGE MODELING WITH THE WORLD WIDE WEB

Xiaojin Zhu and Ronald Rosenfeld

School of Computer Science, Carnegie Mellon University
5000 Forbes Avenue, Pittsburgh, PA 15213, USA

{zhuxj, roni} @cs.cmu.edu

ABSTRACT

We propose a novel method for using the World Wide Web to ac-
quire trigram estimates for statistical language modeling. We sub-
mit an N-gram as aphrase query to web search engines. The search
engines retum the number of web pages containing the phrase,
from which the N-gram count is estimated. The N-gram counts
are then used to form web-based trigram probability estimates. We
discuss the properties of such estimates, and methods to interpo-
late them with traditional corpus based trigram estimates. We show
that the interpolated models improve speech recognition word er-
ror rate significantly over a small test set.

1. INTRODUCTION

A language model (LM) is a critical component for many appli-
cations, including speech recognition. Enormous effort has been
spent on building and improving language models. Broadly speak-
ing, this effort develops along two orthogonal directions: The first
direction is to apply increasingly sophisticated estimation methods
to a fixed training data set (corpus) to achieve better estimation.
Examples include various interpolation and backoff schemes for
smoothing, variable length N-grams, vocabulary clustering, deci-
sion trees, probabilistic context free grammar, maximum entropy
models, etc [l]. We can view these methods as trying to “squeeze
out” more benefit from a fixed corpus. The second direction is
to acquire more training data. However, automatically collecting
and incorporating new training data is non-trivial, and there has
been relatively little research in this direction. An example is a
cache LM, which uses recent utterances as additional training data
to create better N-gram estimates. The recent rapid development
of the World Wide Web (WWW) makes it an extremely large and
valuable data source. Just-in-time language modeling [2] submits
previous user utterances as queries to WWW search engines, and
uses the retrieved web pages as unigram adaptation data. In this
paper, we propose a novel method for using the WWW and its
search engines to derive additional training data for N-gram lan-
guage modeling, and show significant improvements in terms of
speech recognition word error rate. An extended version of this
paper can be found in [3].

The authors are grateful to Stanley Chen, Matthew Siegler, Chris Pa-
ciorek and Kevin Lenzo for their help. The first author was supported in
part by NSF LIS under grant REC-9720374 and Microsoft Research Grad-
uate Fellowship.

0-7803-7041 -4/0 1/$10.00 02001 IEEE

2. THE WWW AS TRIGRAM TRAINING DATA

The main idea of our method is to obtain the counts of ” ~ 1 ~ 2 ~ 3 ”

and ”w1 w2” as they appear on the WWW, to estimate

Cweb(W l W 2 W 3)

c w e b (W l w 2)
$ w e b (W 3 (W l 7 w2) =

and combine $web with the estimates from a traditional corpus
(here and elsewhere, when cweb(w1tu2) = 0, we regard $web as
unavailable). Essentially, we are using the searchable web as ad-
ditional training data for trigram language modeling. There are
several questions to be addressed: How to obtain the counts from
the web? What is the quality of these web estimates? How could
they be used to improve language modeling? We will examine
these questions in the following sections, in the context of N-best
list rescoring for speech recognition.

2.1. Obtaining N-gram counts from the WWW

To obtain the count of an N-gram ”201 . . . wn” from the web, we
send it as a single quoted phrase query to a search engine. We want
the search engine to perform exact phrase search (i.e. don’t use a
stopword list or stemming), and retum phrase counts or web page
counts (from which we can estimate phrase counts, see below).
We experimented with a dozen popular search engines, and found
three that meet our criteria: AltaVista [4] advanced search mode,
Lycos 151, and FAST [6] I . They all report web page counts.

One brute force method to get the phrase counts is to actu-
ally download all the web pages the search engine finds. However,
queries of common words typically result in tens of thousands of
web pages, and this method is clearly infeasible. Fortunately at
the time of our experiment AltaVista had a simple search mode,
which reported both the phrase count and the web page count for a
query. Figure l(a) shows the phrase count vs. web page count for
430 bigram queries (phrases consisting of two consecutive words).
Trigram queries and unigram queries have similar behavior. There
are horizontal branches in the bigram and trigram plots that don’t
make sense (more web pages than total phrase counts). We re-
gard these as outliers due to idiosyncrasies of the search engine,
and exclude them from further consideration. Since the plots are
largely log-linear, we perform log-linear regression c = a0 * p g f f
separately for trigrams, bigrams, and unigrams, where c is the
phrase count, and p g the web page count. We found for unigram
a0 = 2.427, a 1 = 1.019; for bigram a0 = 1.209, a1 = 1 . 0 1 4 ;

‘Our selection is admittedly incomplete. In addition, since search en-
gines develop and change rapidly, all our comments are only valid during
the period of this experiment

533

mailto:cs.cmu.edu

and for trigram a0 = 1.174, (11 = 1.025. The bigram regression
function is also plotted in Figure I(a). We assume these functions
apply to other search engines as well. In the rest of the paper, all
web N-gram counts are estimated by applying the corresponding
regression function to the web page counts reported by search en-
gines.

2;
3g

2.2. The quality of web estimates

To investigate the quality of web estimates, we needed a baseline
corpus for comparison. The baseline we used is a 103 million word
Broadcast News corpus.

Web N-gram coverage on unseen test text: We show that the
web covers many more N-grams than the baseline corpus. Note
that by ‘the web’ we mean the searchable portion of the web as
indexed by the search engines we chose. A test text consisted of 24
randomly chosen sentences from 4 web news sources (CNN, ABC,
Fox, BBC) and 6 categories (world, domestic, technology, health,
entertainment, politics) was created from the day’s news stories,
on the day the experiment was carried out. This was to make sure
that the search engines hadn’t had the time to index the web pages
containing these sentences. After the experiment was completed,
we checked each sentence, and indeed none of them were found
by the search engines yet. Therefore the test text is truly unseen to
both the web search engines and the baseline corpus. (The test text
is of written news style though, which might be slightly different
from the broadcast news style in the baseline corpus.)

462 4 5 5 68
453 46 46 46 189

I I unioue I Not Covered Bv I I typks 1 AltaVista I Lycos I FAST I Corpus
l z I 327 I 0 1 0 1 0 1 8

Table 1. Novel N-gram types in 24 news sentences

There are 327 unigram types (i.e. unique words), 462 bigram
types and 453 trigram types in the test text. Table 1 lists the num-
ber of N-gram types not covered by the different search engines
and the baseline corpus, respectively. Clearly, the web’s cover-
age, under any of the search engines, is much better than that of
the baseline corpus. It is also worth noting that for this test text,
any N-gram not covered by the web was also not covered by the
baseline corpus.

Next we asked the question “if one randomly picks a trigram
from the test text, what’s the chance the trigram has appeared
c times in the training data?’ Figure l(b) shows the compari-
son, with the training data being the baseline corpus and the web
through the different search engines respectively. This figure is
also known as a “frequency-of-frequency” plot. According to this
figure, a trigram from the test text has more than 40% chance of
being absent in the baseline corpus, but the chance goes down to
about 10% on the web regardless of the search engine. This is
consistent with Table I . Moreover, the trigram has a much larger
chance in having a small count in the baseline corpus than on the
web. Since small counts usually mean unreliable estimates, resort-
ing to the web could be beneficial.

The effective size of the web: The web is large, and we would
like to estimate the effective size of the web as if it were a LM
training corpus. Let’s assume that the web and the baseline corpus

Fig. 1. (a) Web page count vs. phrase count for bigrams (b) Em-
pirical frequency-of-frequency plot

are homogeneous (which is patently false, but we will ignore this
for the time being), i.e. pcorpus (N-gram) = pw,b(N-gram). Ap-
proximating the probabilities by their respective frequencies, we
can estimate the size of the web in words. Each N-gram with a
large count in the test text will gave us an estimate, and we took
the median of all estimates for robustness. We found for AltaVista,
Lycos and FAST, the effective size is 108,79 and 83 billion words
respectively. Note these are very rough estimates defined relative
to the specific baseline corpus and specific test set we happened
to choose. They should not be used to rank the performance of
individual search engines.

Normalization of the web counts: A sanity check is to see
if C w e b (W l W 2) = EwJEv cweb(w1w2w3) holds for any bigram
0 w 1 ~ 2 n . If true, &,eb(w31~1, w2) would already be normalized.
We randomly selected six ” w1 w2*’ pairs and performed the check.
The right hand side ranges between 0.45 to 1.17 times the left hand
side. Therefore the web counts are not perfectly normalized, and
they should be used with caution.

Web trigram estimates compared to a traditional LM: We cre-
ated a baseline trigram language model LMo from the 103 million
word baseline corpus. We used modified Kneser-Ney smoothing
[7] [8] which, according to [8], is one of the best smoothing meth-
ods available. In building LMo, we discarded all singleton tri-
grams in the baseline corpus, a common practice to reduce lan-
guage model size. We denote LMo’s probability estimates by
po. We comparefjweb(w)j[wl, w2) withpO(w3[wlr w2)for the tri-
grams in the test text. We found that the two agree in most cases,
while the web estimates tend to be larger for small count trigrams.
This is of course good news, as it suggests that this is where the
web estimates tend to improve on the corpus estimates.

3. COMBINING WEB ESTIMATES WITH EXISTING
LANGUAGE MODEL

In the previous section we saw the potential of the web: it is huge,
it has better trigram coverage, and its trigram estimates are largely
consistent with the corpus-based estimates. But to query each and
every N-gram on the web is infeasible; web estimates are not well
normalized; and the content of the web is heterogeneous and usu-
ally doesn’t coincide with our domain of interest. Based on these
considerations, we decided not to build a full fledged LM from the
web. Instead we will start from a traditional language model LMo,
and interpolate its least reliable trigram estimates with the appro-
priate estimates from the web, since unreliable trigram estimates,
especially those involving backing off to lower order N-grams,

534

have been shown to be correlated with increased speech recogni-
tion errors [9] [lo]. We define a trigram estimatepo(w31wl, wg)
unreliable if Ccorpus(wlWZw3) 5 T, where T is the reliability
threshold.

Even so there are still too many unreliable trigrams to query
the web for. Since we were interested in N-best list rescoring, we
further restricted our attention to those unreliable trigrams that ap-
peared in the particular N-best list being processed. This greatly
reduces the number of web queries at the price of some further
bias. Let Uw,,, be the set of wog's in the current N-best list that
form unreliable trigrams with history " ~ 1 ~ 2 " . We would aquire
f iweb(UIW1, WZ), U E U,,,, from the web, and interpolate them
with po (U I w1, w2) to form the final interpolated estimates, de-
noted as p * (u I w ~ , w ~) . We would like to have a tunable inter-
polation parameter so that on one extreme p*(u(w1, w2) goes to
PO (~ 1 ~ 1 , wz), while on the other extreme it goes to&eb(U)wl, W Z) .

We now present three different methods for doing this.

binary functions, or 'features', as follows:
In exponential models with Gaussian priors we define a set of

1 i f w 3 = ~
f W l , W 2 , U (W 3) = { 0 otherwise

for all w1, w2, U E
tional exponential model [1 11 [12] pE with these features:

in the N-best list. We define a condi-

p * E (~ I w i , w2) = (1)

&PO (W3 lWl ? w2) exp(Cu~~, , w z xu f w l , W 2 ,U (w3))

Let 12 denote the set of parameters. The likelihood with respect to
the web counts is:

L(11) = n p>(W31W1, W2)c"eb(w1w2w3)
w1 .W,.WJ

We introduce a Gaussian prior with mean 0 and variance u2 over
11 :

and seek the maximum a posteriori (MAP) solution that maximizes
L (A) * p(12) . This can be done by slightly modifying the Gener-
alized Iterative Scaling algorithm [13], as described in [14].

We can control the degree of interpolation by choosing the
prior variance u2 E (0, +CO). If u2 + $00, the Gaussian prior is
flat and has virtually no restriction on the values of the A's. Thus
the A'S can reach their ME/MDI solutions that satisfies the follow-
ing constraints:

pL(UIwltW2) =fiweb(Ulwlr wZ),vU E u w , w , (2)

On the other hand if u2 -+ 0, the Gaussian prior forces A's to
be close 0. From (1) we know in this case p& + PO, the other
extreme of the interpolation. A u2 between 0 and +00 results in
an intermediate PE distribution.

In linear interpolation, we have

Pt(w31wrWZ) = (3)
(1 -a)pO(w31wl,wZ) +Qiweb(w31wlrw2)

, if w3 E U,,,,
1--c"Eu,lw2 P;(ulwl,wz)

1 -E , E ,, po (u Iw1. w2
YO (~ 3 1 ~ 1 3 202)

, otherwise

In this case, a E [0, 13 is the tuning parameter. If Q = 0, p: =
PO. If Q = 1, p l satisfies (2). An Q in between results in an
intermediate p z .

In geometric interpolation, we have

(4)

I , otherwise

Note that here we have to smooth the web estimates to avoid zeros
(which is not a problem in the previous two methods). We add
a small positive value e to every web count, a method known as
additive smoothing [SI. e is determined by minimizing perplexity
when ,B = 1. ,B E [0,1] is the interpolation parameter. If ,B = 0,
p> = PO. If p = 1, p > satisfies the smoothed web estimates. A ,B
in between results in an intermediate p > .

4. EXPERIMENTAL RESULT

We randomly selected 200 utterance segments from the TREC-7
Spoken Document Retrieval track data [151 as our test set for this
experiment. For each utterance we have its correct transcript and
an N-best list with N = 1000, i.e. 1000 decoding hypotheses.
We performed N-best list rescoring to measure the word error rate
(WER) improvement. If we rescore the N-best lists with LMo and
pick the top hypotheses, the WER is 33.45%. This is our baseline
WER. For each N-best list, we queried the unreliable trigrams (and
associated bigrams) in it, and computedp' with the three different
interpolation methods. For geometric interpolation we chose e =
0.01 because this minimized perplexity when ,B = 1. We then
used p* to rescore the N-best list and calculated the WER of the
top hypothesis after rescoring respectively.

Figure 2(a)(b)(c) show the WER with exponential models, lin-
ear interpolation, and geometric interpolation respectively, with
reliability threshold T = 0. The three curves stand for different
search engines, which turn out to be very similar. The horizontal
dashed line is the baseline WER. As the interpolation parameters
take some intermediate values, all three models reach their mini-
mum WER respectively. The exponential model reaches minimum
WER 32.53% with AltaVista around U* = 1, the linear interpo-
lation model reaches 32.56% with AltaVista at a = 0.4, and the
geometric interpolation model reaches 32.69% with FAST when

Figure 2(d) shows the effect of reliability threshold T on WER.
The interpolation method used here is the exponential model with
Gaussian prior and uZ = 1. We varied T from 0 to 5. With larger
threshold, more trigrams are regarded as unreliable, and hence
more web queries had to be issued. There is a slight but signifi-
cant improvement when we increase 'T from 0 to 1. For example,
The WER with AltaVista at T = 1 is 32.45%. Note that LMo,
the language model we are incorporating web estimate into, was
built after excluding all singleton trigrams in the corpus. This may
explain why T = 1 is better since trigrams with counts 0 or 1 in
the corpus are indeed unreliable: in LMo they must backoff to bi-
gram or unigram. Further increase in T doesn't bring as significant
improvement.

/3 = 0.3.

535

._, , , , , , ,
I 6. REFERENCES

: - 1 _ - 1 B
(c) Geometric Interpolation

(b) Linear Interpolation

(d) Reliability Threshold

Fig. 2. Word Error Rates of web-improved LMs as function of the
smoothing parameter for several different interpolation schemes,
based on N-best rescoring

More analysis of the WER improvement can be found in [3].
Perplexity cannot be computed because the models are not prop-
erly normalized.

5. DISCUSSIONS

We demonstrated that estimates obtained from the web can im-
prove WER. We believe the improvement largely comes from bet-
ter trigram coverage due to the sheer size of the web, which acts
as a ‘general English’ knowledge source. Interestingly the choice
of particular search engine or interpolation method doesn’t seem
to matter much. Our method has certain advantages. Besides
having better N-gram coverage, the content of the web is con-
stantly changing, enabling automatic up-to-date language model-
ing. However there are also disadvantages. The most severe one
is the large number of web queries: We needed 340 queries on
average for each utterance. This results in heavy web traffic and
load on the search engines, and hence slow rescoring. Another
concem is privacy: one may be sending fragments of potentially
sensitive utterances to the web. Both problems, however, can be
partly solved by using a web-in-a-box setting, i.e. if we have a
snapshot of the text content of the whole WWW on local storage.
Yet another problem is the lack of focus on specific domains. This
might be solved by querying specific domain hosts instead of the
whole web, although by doing so the N-gram coverage may dete-
riorate.

The method proposed in this paper is only one crude way of
exploiting the web as a knowledge source for language modeling.
One could also look for more complex phenomena, e.g. semantic
coherence [161 among content words in a hypothesis. Intuitively, if
a hypothesis has content words that ‘go with each other’, it is more
likely than one whose content words seldom appear together in a
large training text set. The web search engine approach seems well
suited for this purpose. We are currently pursing this direction.

[I] Ronald Rosenfeld, “Two decades of statistical language
modeling: Where do we go from here?,” Proceedings of
the IEEE, vol. 8 8 , no. 8,2000.

[2] Adam Berger and Robert Miller, “Just-in-time language
modeling,” in Proceedings of the IEEE International Con-
ference on Acoustics, Speech and Signal Processing, Seattle,
Washington, 1998, vol. 11, pp. 705-708.

[3] Xiaojin Zhu and Ronald Rosenfeld, “Improving trigram lan-
gauge modeling with the world wide web,” Tech. Rep. CMU-
CS-00- 17 1, School of Computer Science, Camegie Mellon
University, Pittsburgh, PA, 2000.

[4] AltaVista. http://www.altavista.com/.
[5] Lycos. http://www.lycos.com/.
[6] FAST Search. http://www.alltheweb.com/.
[7] Reinhard Kneser and Hermann Ney, “Improved backing-off

for m-gram language modeling,” in Proceedings of the ZEEE
International Conference on Acoustics, Speech and Signal
Processing, Detroit, Michigan, May 1995, vol. I, pp. 181-
184.

[8] Stanley E Chen and Joshua Goodman, “An empirical study
of smoothing techniques for language modeling,” Tech.
Rep. TR- 10-98, Harvard University, 1998, Available from
ftp://ftp.das.harvard.edu/techreports/
tr-10-98 .ps .gz.

[9] Lin Chase, Ronald Rosenfeld, and Wayne Ward, “Error-
responsive modifications to speech recognizers: Negative N-
grams,” in Proceedings of the ICSLP, 1994.

[lo] Stanley E Chen, Douglas Beeferman, and Ronald Rosenfeld,
“Evaluation metrics for language models,” in Proceedings of
the DARPA Broadcast News Transcription and Understand-
ing Workshop, 1998, pp. 275-280.

[111 S. Della Pietra, V. Della Pietra, R.L. Mercer, and S. Roukos,
“Adaptive language modeling using minimum discriminant
estimation,” in Proceedings of the Speech and Natural Lan-
guage DARPA Workshop, February 1992.

[121 Adam Berger, Stephen Della Pietra, and Vincent Della Pietra,
“A maximum entropy approach to natural language process-
ing,” Computational Linguistics, vol. 22, no. 1, pp. 39-71,
1996.

[13] J.N. Darroch and D. Ratcliff, “Generalized iterative scaling
for log-linear models,” The Annals of Mathematical Statis-
tics, vol. 43, pp. 1470-1480, 1972.

[14] Stanley E Chen and Ronald Rosenfeld, “A Gaussian prior for
smoothing maximum entropy models,” Tech. Rep. CMU-
CS-99- 108, Computer Science Department, Camegie Mel-
lon University, Pittsburgh, PA, 1999.

[15] John S . Garofolo, Ellen M. Voorhees, Cedric G. P. Auzanne,
Vincent M. Stanford, and Bruce A. Lund, “1998 TREC-7
spoken document retrieval track overview and results,” in
Proceedings of TREC-7: The Seventh Text Retrieval Confer-
ence, 1998.

[161 Can Cai, Larry Wasserman, and Roni Rosenfeld, “Exponen-
tial language models, logistic regression, and semantic co-
herence,” in Proceedings of rhe NIST/DARPA Speech Tran-
scription Workshop, May 2000.

536

http://www.altavista.com
http://www.lycos.com
http://www.alltheweb.com
ftp://ftp.das.harvard.edu/techreports

