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ABSTRACT

Motivation: In the study of many systems, cells are first syn-
chronized so that a large population of cells exhibit similar
behavior. While synchronization can usually be achieved for
a short duration, after a while cells begin to lose their synchro-
nization. Synchronization loss is a continuous process and so
the observed value in a population of cells for a gene at time
t is actually a convolution of its values in an interval around
t. Deconvolving the observed values from a mixed population
will allow us to obtain better models for these systems and to
accurately detect the genes that participate in these systems.
Results: We present an algorithm which combines budding
index and gene expression data to deconvolve expression pro-
files. Using the budding index data we first fit a synchronization
loss model for the cell cycle system. Our deconvolution algo-
rithm uses this loss model and can also use information from
co-expressed genes, making it more robust against noise and
missing values. Using expression and budding data for yeast
we show that our algorithm is able to reconstruct a more accu-
rate representation when compared with the observed values.
In addition, using the deconvolved profiles we are able to cor-
rectly identify 15% more cycling genes when compared to a
set identified using the observed values.

Availability: Matlab implementation can be downloaded from
the supporting website:
http://www.cs.cmu.edu/~zivbj/decon/decon.html.

Contact: zivbj@cs.cmu.edu

INTRODUCTION

Cyclic systems, such as the the cell cycle (Spellratal.,
1998) and circadian clock (Pane# al., 2002) play a key

role in many biological processes, including developmadta

cancer. Due to our inability to profile single cells, express

Even with the best synchronization method cells do not
remain synchronized forever. For yeast, cells seem to remai
relatively synchronized for two cycles (Spellmeatral., 1998;
Shedderet al., 2002B) while wild type human cells lose their
synchronization very early (Sheddetral., 2002A) or halfway
through the first cycle (Whitfile@t al., 2002) depending on
the arrest method. Synchronization loss is a continuous pro
cess. Even for yeast, cells are much less synchronizedgdurin
the second cycle when compared with the first cycle. This
causes the peak expression value to be lower in the second
cycle and the lowest expression value to be higher for most
cycling genes (see Figure 1). Thus, the expression value mea
sured for a gengat timet is actually a convolution of the true
expression values gf at an interval arounél Deconvolving
the measured expression values to more accurately represen
single-cell behavior will allow us to improve the results of
algorithms that generate models for the cell cycle systam. |
addition, the deconvolved profiles improve our ability terd
tify cycling genes in yeast, and may lead to the discovery of
a similar set of cycling genes in humans.

While we can indirectly detect loss of synchronization gsin
expression data, there are two other methods that are mere su
table for this task: FACS analysis and budding index. FACS
(Fluorescence-Activated Cell Sorting) is a method for dete
mining the DNA content of individual cells. Cells are ingatt
into a narrow tube, and at the end of the tube the DNA content
of each cell is measured using a laser reader. Budding isdex i
the process in which cells are counted under the microscope
to determine the presence and size (small or large) of buds
for each cell. While these methods have been used to vali-
date synchronization experiments, both can only assida cel
into one of three cell cycle phases: G1, S and G2Mhile
this data is useful for determining the rate of synchroniza-
tion loss, it cannot be directly used to reconstruct exjpoess

experiments that study these systems are usually carried ou

by synchronizing a population of cells. Synchronization is

aChIeV_ed by flrs'arrestlng cells at a SpeCIfIC p0|nt_ an_d then 1 FACS can actually determine a distribution for cells in theh&se as well,
releasing cells from the arrest so that at the beginning®f thpgwever, this data is relatively noisy and many researdmznly the total

experiment all cells are at the same point.

amount of cells in S. See for example (Whitfiletal., 2002)
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(a) Observed values (b) Deconvolved values.

Fig. 1. Agreement between first and second cycle for Smc3, one ofiheygling yeast genes. Using the observed values, thetiffs@nce
between the peak and lowest expression value when compherfiyst and second cycle. These differences are drastieuced when
deconvolving the measured expression data using the tigodiscussed in this paper. See also the Results section.

profiles. The main problem is that this data is too coarse, paWhitfiled et al., 2002 used FACS data to show that unlike wild
titioning cells into only three phases while expressiorfifge  type cells, human cancer cells remain relatively well syaeh
are continuous in nature. nized for two cycles. However, in all previous work on gene

In this paper we present a method for deconvolving popuexpression data, these methods were not used to determine
lation effects by combining budding index or FACS data with a synchronization loss model, as we do in this paper. We are
gene expression data. We assume that following release fronot aware of papers that used these data sources to decenvolv
arrest, each cell proceeds according to its own internakclo expression data.

Clock speeds for all cells are assumed to be normally distri- Determining the rate of synchronization loss was addres-
buted with mean 1 (the real time) and an unknown variancesed previously in the biological literature, though notlie t
The biological basis for this model is the observationtielisc  context of expression data. Creamtral,, 1994 presented a
are growing at (slightly) different rates which in turn affe  heuristic method which relies on cell division time to deter
their entrance into S phase and progression through the restine this rate. Unlike their method, our algorithm can also
of the cell cycle. In order to test the validity of our model use the rate in which cells progress from G1 to S and from S
we generated new budding index data for yeast. As we shotwo G2/M, leading to a more accurate model. Further, unlike
in Results, our model fits the observed data very well, everur algorithm, their method is not model based and requires
though it contains far fewer parameters than data points. manual adjustments.

In order to deconvolve the measured expression data we Shedden and Cooper (2002B) used a Fourier analysis algo-
need to assign a continuous representation to each gent Dueithm to test the synchronizations of different arrest roeth
noise and missing values, interpolating individual gereesd  Wichertet al.,, 2004 presented methods for identifying periodi-
not work very well. Instead, a method that uses co-expressethlly expressed genes using statistical methods. Whikethe
genes to constrain spline assignment to individual genss wanethods can be used to detect synchronization loss, they can
presented in Bar-Josept al, 2002. Here we modify this not be directly used to deconvolve expression profiles as we
method to deconvolve expression values as well. The ragulti do in this paper.
profiles are the single-cell expression values for each,gerke Lu et al, 2003 presented a method for deconvolvstetic
these profiles allow us to correctly identify cycling gerfestt  expression data in yeast. Their goal is to model the expres-
cannot be identified when relying on the measured values, @ion values of genes in steady state as a linear combindtion o
an interpolated version of these values. different cell cycle phases. Unlike our method, their metho

assumes a set of perfectly synchronized expression valugs,
cannot be directly used to deconvolve time series expnessio
Related work data. In addition, their method relies solely on the expoess
FACS and budding index were used in the past to validate syrdata, and thus cannot be used in organisms in which cells
chronization in gene expression experiments. For exampleannot be synchronized beyond one cycle (such as humans).
Spellmaret al,, 1998 used both methods to validate that yeast
cells can be synchronized using a variety of arrest methods.
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Perhaps the work that is most related to ours is a paper
by Zhaoet al., 2001 which assigned pre-determined curves v~N(uo) 05<v<15
(sinusoids) to yeast expression profiles. By relying on the
accuracy of the first cycle they were able to reconstructtabet
representation for the total expression profile of each gene’. . -
and detect a better set of cycling genes. While their metho&\"th a single parametew, for characterizing cell cycle rate
is useful, unlike our method it cannot be extended to otheyanation.

organisms since it relies on the presence of a synchronizedfté';nest b= 0, all tcl:ells Itlranstlsllcr)]p :On.] tthe a:restet(jﬂ;ate
first cycle. In addition, since it only relies on expressiaia] Into©5.1. subsequently, cells with higher internal speediare

this method needs to makes a very strong assumption about t ESt to transition into the next phase. L&, ds, da denote

shape of the curve. In contrast, by using additional infaroma the dur_at|0n ofthe G1, S a_r(d2/M phas_es, respectively, in
(FACS and budding index) our algorithm works for any type cells withw = 1. For notational convenience, létyc =
of curve. dg +ds + dy-

Let mg(t) denote the fraction of cells that are @il at
time ¢, and similarly definengs andm s for cells in S and
1 METHODS G2/M. Under our model, the cells found in tifél phase
Budding index data at timet are those whose speedbeys) < vt < dg (first
While (Spellmaret al., 1998) performed budding index ana- cycle) ordcyc < vt < dcyc + dg (second cycle). This is
lysis in conjunction with their expression profiling, thiatd ~ true as long as no cell was able to start the third cycle, i.e.
was reportedly lost (Spellmagt al., 2003). We have thus per- t < 2- (dcyc)/vmas Which is the case for the data analyzed
formed additional budding index analysis. Yeast cells (8/30 in this paper. Therefore, the fractiong (t) of cells in phase
strain Z1321) were grown to OD600 of 0.2 in YPD. The cellsG1 is:
were synchronized by adding alpha factor (5ug/ml) to the
growth medium. After 2 hours incubation the culture were tv=de o tv—doy otde .
completely arrested in G1 (all the cell were without buds). ma(t) / e%ﬁ)_du +/ e%)—dv
The synchronization was released by washing out the alpha 0 t
factor from the medium (by pelleting the cells and changing

to a fresh medium) and the cells were grown for additional And similarly forms(t) andmuy (t). Note that we have

90 minutes. Samples were taken every 15 minutes, fixed (ﬂwnored the normalization constants because they can be

formaldehyde) and observed under a light microscope. Fojgcomputed by requiringig + ms +my = 1.0 for all

each time point 200 cells were counted and the fraction of' .
cells with no bud, a small bud (smaller than one half of the Let Vi (t), Vs(t), Vu(t) be the empirical measurements

yeast cell) or a large bud was documented. In Figure 2 Wée'g' FACS or budding index) of phase proportions at tigne

present the results of one of these experiments. In thaEfigwﬁnd let(tl’tzf’.&'r'] > tr) be thte t'mis at whlcr;;hecyl/ wcelre tgken.
we annotated the no bud fraction as G1, small bud as S ang . c2h oW Titthe parameters o ourmolieldc, ds, dar) by

large bud as G2/M. See supporting website minimizing the sum squared difference between the predlicte

(http://www.cs.cmu.edwszivbj/decon/decon.html) for com- and observed values, namely:
plete results.

We define the average speed tqbe 1 (so that clocks are
istributed around the real observed time). We are thus left

v=doyc

k

Modeling synchronization loss ERR(0,dg,ds,du) = 3 [(ma(t:) — Vo(t:))*+

Let ¢ denote universal or external time. We will assume that P
each cell has its own “internal clock” which controls its pro
gression through the cell cycle. Each cell has an intrinsed (ms(t;) — Vs(t:))? + (mar(t:) — Var(t:))?]

v, and therefore its own “internal timed. . . _ . .
. . Since the error function to be minimized is not obviously

We will further assume that the speeds of the internal clocks . .

. . . o convex, more than one local minimum may exist. Nonet-

in the cell population follow a Gaussian (Normal) distrilout . ) L .

5 C L eless, we can efficiently find a good local minimum using
. Based on the observed budding index data, it is clear tha L LS : ;
. . . L . a successive line minimization algorithm such as Powell’s

this speed is restricted to a limited range (see Figure . Th

X . . 7. Method (Pres®t al, 1992, p. 412), which starts from an
following describes our assumption and observed regiristi : o
for - arbitrary pointin parameter space and cycles through ttee pa

meters, finding a minimum along one dimension at a time.

2 , , , — This algorithm is guaranteed to converge (albeit to a local
An alternative assumption would have been a Poisson disiibof phase . di i ft idlv. A

lengths. Biologically our model is more reasonable, atlfEass1, because it mlmmum)’ and In practice olien converges rapidly. As we

says that cells exit G1 after going through a stochastic rprocess, rather - Showin the results section, for budding index data the tiespl
than by some random spontaneous event. parameters fit the measured data very well.
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The method described above can be modified to fit a moréhese splines at a set of control points, one can generate the
general model of synchronization loss, in which a differententire set of polynomials from these basis functions. Due to
Gaussian (a distinet) is used for each phase. This will incre- noise and missing values, fitting splines to individual gene
ase the number of variables to six (two additional variancdeads to overfitting of the expression data. Instead, we use
terms are required). Interestingly, even though this madel mixed effects models, which combine gene specific and class
more complex, for the budding index and expression data an@formation to constrain spline assignment using co-esgeéd
lyzed in this paper the model discussed above (using the sangenes. Using such a mode}, can be written as:

o for all phases) seems to give the best results.

Deconvolving time series expression data ui(t) = s(8) (s + %) )

We present a method for deconvolving gene expression datgere, ;, is the mean spline control point for clagg (the
using the synchronization loss model discussed above. Noiglass to whichi belongs) andy; is the gene specific spline
that such a deconvolution cannot be performed WithOUt-intercontro| point_ The parameters of this model are determined
polating the observed values. Even if we knew the phasgsing an EM algorithm. In the E step we determine class
distribution of cells at time, because of the relatively low membership for each gene and the other parameters of the
sampling rates, we cannot obtain the values for the intervahodel are maximized w.r.t. the class assignment in the M
around withouta continuous representation for the measuredtep. See (Bar-Joseghal., 2002) for complete details.

data. We now use our continuous spline representatiomifor

Several methods have been suggested to interpolate timg deconvolve the measured expression values. Subsgjitutin
series gene expression data. In prior work (Bar-Josejah, equation 2 into equation 1 we get:

2002) (Bar-Joseplet al,, 2003) we have shown that cubic
spline interpolation, where spline assignment to indigidu o0

gene is constrained by co-expressed genes, outperforers oth Yi(t) = /S(x)(uk +v)g(z,t)dr + € = 3)
interpolation methods for such data. Here we present anexte rd

sion to this method allowing it to deconvolve expressioradat
for individual genes while still relying on co-expresseags Z
to counter noise and missing value.

(tk,j + Yij) / sj(x)g(x,t)dx + € (4)
J 0

Deconvolving expression data using splineShe observed
value for gené at timet is actually a convolution afs expres-
sion values at an interval around Let u;(t) represent the
underlying expression value foat timet, and set:

wherepy ; and+y; ; are thejth entry in the class mean and
gene specific control points respectively, an() is thejth
entry of the spline coefficients evaluated at timeSet

1 @e=1)? 7
g(z,t) = e 22 b;(t) = /sj(x)g(x,t)dm
0

2no

whereo? is the variance determined for the synchronizatio
loss.g(z, t) represents the fraction of cells that are at time

when the real time is. Let Y;(t) be the observed value for _
at timet. Then we can write: Yi(t) = b(®) (ur +7i) + € (5)

nWe can then write:

o0 where thejth entry inb(¢) is b;(¢).
Yi(t) = /ui(m)g(w, t)dx + € (1) Equation 5 replaces the spline coefficientg) from
o Equation 2 with a weighted spline coefficierttg), where
the weighting is determined using our synchronization loss
That is, Y;(t) is a convolution ofis expression values.) model. However, apart for this difference (and the noise we
where the weighting is based on the percentage of cells thatssume for measurement error), the two equations are the
are at timer when the real (experiment) timetise is a noise ~ same. Note that sinee? has been fixedy(t) does not contain
term which is assumed to be normally distributed with mearany parameters, and can be computed using numerical inte-
0. gration. Thus, we can use the same EM algorithm mentioned
We use cubic splines to represent Cubic splines are a above to fit the parameters of the mixed effects models, and
set of piecewise cubic polynomials, and are frequently usedeconvolve the measured expression data by replacing every
for fitting time-series and other noisy data. Specificallg w occurrence ok(t) with the corresponding(¢). Due to lack
use B-splines, which can be described as a linear combin@f space we do not repeat the details of this algorithm. The
tion of a set of basis polynomials. By knowing the value ofreader is referred to (Bar-Josegtral., 2002) for more details.
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RESULTS Table 1: Expression differences
We have tested our algorithm using budding index and gen Diff. Peak Diff Low
expression data from yeast cells. The main reason we ha e/ALUES 0.14 0.25
used yeast is because unlike other organisms, yeast is relfMEFFECTS 0.09 0.20
tively synchronized for two cycles. This, and the fact that a. DPECON 0.09 0.11

lot is known about cycling genes in yeast allows us to vadidat Table 1. Global comparison between peak and low expression diffeen
.for the three datasets. For DECON, both differences arel amélare within

the results of our algonthm, as we discuss below. In addl'the measured noise range (0.11). This indicates that theheymization loss

tion, the fact Fhat so many researchers have used yeast Cglbdel we inferred from the budding index data agrees well thi¢ measured
cycle expression data to model networks in the cell makes thexpression data.

reconstruction of the true underlying single-cell profites
important goal.

Modeling synchronization loss

— . . [ I . N h -
We have repeated the budding index analysis three times, ar\%gnes determined by Spelimanal. Note that our decon

h d the algorithm di din th thod " lution method does not rely on the relationship between
ave used the aigorithm discussed In th€ methods section {Re first and second cycle, and so even though our algorithm
determine the rate of synchronization loss. Overall, oud@ho

fitted the dat I Fi 2 sh the ob d %ses a more complex model this test is valid. First, we have
ed the data very well. Figure 2 shows the observec an ompared the difference between the peak and bottom points
reconstructed values when fitting our model to one of the

. of the first cycle and the corresponding points in the second
experiments and to all three. Note that, although our algo y P gp

. . X cycle for these genes. Table 1 presents the average square
rithm uses only 4 parametc_ers to fit 2.1.(for one expgrlment) Olifference between these points for VALUES, MEFFECTS
63 (for three) observed points, the f'.t IS very goqd, '_”d”@“ .and DECON. For both peak and bottom, DECON and MEF-
that our model can be used to explain synchronization loss IRECTS did better than VALUES, because of their ability to
yeast cells. . . _gvercome noise and missing values. For peak points, both

Using the complet.e set of experiments we have d_etermlneBECON and MEFFECTS performed well, and the differences
thqt the mean duration of the cell Cy.cwc&")’ Is 84 ”."”‘%“?S were within the range of the measured noise variance (0.11).
(this v_alue ran_ge(_j frqm 80 to 88 minutes for the IndlV'du"’llHowever, for the bottom point, DECON did much better than
experiments, indicating a good agreement hetween repe JEFFECTS. While the difference using DECON was within
ted measurements). The G1 phase was determined to be f

) . i range of the measured variance, the MEFFECTS result
minutes, S phase 17 minutes and G2/M 26 minutes. g

o X was almost twice that much. The reason for the difference
The standard deviation of the internal clock¥ianged bet- between peak and bottom values for MEFFECTS might be
ween 0.07 to 0.11 for the individual experiments. Combining

_ L because a large proportion of the cycling genes are in G1. G1
the three repeats r_esultedan: .0'09 which is the value we genes peak early, and reach their bottom values toward the
used for deconvolving expression data.

end of the cycle. Thus, these genes are more synchronized in
. . their second peak compared to their second bottom. We have
Deconvolving yeast cell cycle expression data also performed a more global test, by aligning the two cycles
We have used alpha synchronized expression data (Spellmaging MEFFECTS and DECON and computing the resulting
etal, 1998) to test our algorithm. This data contained 18 timealignment error for all genes. These results too confirmat th
points sampled uniformly every 7 minutes between 0 and 11%he reconstructed curve achieves better agreement between
The duration of the cell cycle was shorter (65 minutes) fer th the two cycles (results are omitted due to lack of space, see
expression data, perhaps because of differences in the timgipporting website
of arrest between the budding and expression experimentaitp://www.cs.cmu.eda/zivbj/decon/decon.html)for details).
(Spellmanet al., 2003). Since cells progress quicker in the In Figure 3 we present plots of the average expression psofile
expression experimentwe2 have slightly scaled our estimati for genes in two of the cell cycle phases. Note that in both
of o accordingly, and se%gz = % =0=0.1 cases, the reconstructed curves result in a better agréemen
Below we present a comparison of the results of ourbetween the first and second cycldentifying cell cycle
deconvolution algorithm (DECON) with the observed valuesgenes:We have tested whether our deconvolution results can
(VALUES) and with an interpolated version of these valueshelp in identifying cell cycle genes that cannot be iderdifie
based on mixed effects models (MEFFECTS). using the observed values alone. To this end we have a used
the Fourier Proportion of VariancE (PVE) method developed
Comparing first and second cycles:In order to test the by Shedden and Cooper (2002B) which compares the ability
resulting deconvolution, we have looked at the ability of ou of periodic and a-periodic curves to explain the expression
algorithm to improve the agreement between the first angbrofile. Note that for identifying cycling genes we canndyre
second cycle. For this, we have used the 800 cycling yeasin the 800 cell cycle genes from Spellmarul since this set
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Fig. 2. Comparison between observed budding index values (sak) &nd reconstructed values (dashed lines). (a) Comparéagured
and fitted values based on one experiment. (b) Comparing fittRies determined using the three repeats to measurees\aflthe same
experiment shown in (a). In both cases the agreement is goiité, despite the fact that budding data is noisy and the fittedel has many
fewer parameters than the number of observed points. Tdlisates that the synchronization loss model we assume casdakto explain
synchronization loss in cell cycle experiments.

= Observed values = Observed values
== Spline interpolation == Spline interpolation
ol G 1 == Deconvolved values 06 S == Deconvolved values

(a) G1 genes (b) S genes

Fig. 3. Comparison between first and second cycle for yeast geneandab) Observed, spline interpolated and deconvolvedessjon
values for genes in G1 and S phases. Note that in both casesdbrd peak is correctly higher in the deconvolved profilesylting in a
better agreement between the first and second cycle.

was determined using the alpha values. Instead, we first conas well. For each set of profiles (VALUES, MEFFECTS and
plied a list of the top 800 cycling genes using two other cel DECON) we determined the PVE threshold that detected only
cycle expression datasets: Cdc15 (24 time points) and Cdc2B»% (60) of the genes in the random set, and used it to select all
(17). The complete list is available from the supporting web genes (from the 6000 yeast genes) that were above this thres-

site hold when using the original data. The MEFFECTS result did
(http://www.cs.cmu.edaézivbj/decon/decon.html). We denotenot distinguish well between the randomized and real data,
this list by CYC. detecting only 141 genes above the noise level. The main rea-

In order to determine a cutoff for cycling genes, we ran-son MEFFECTS did not perform well for this task is because
domized the expression values for each gene, and applietf the tendency of spline approximation (without deconvolu
the interpolation and deconvolution algorithms to thisadat tion) to smooth the observed measurements. While this helps
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modeling the cell cycle system in yeast and humans.
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Fig. 4. Observed (solid black line), interpolated (dotted red) dacbnvolved (dashed blue) values for three cycling gersgsiére correctly
identified when using the deconvolved profiles, but were detiified by Spellmart al using the measured alpha values. Note that our
deconvolution results overcome noise in the data and aelietter agreement between the first and second cycle.




