
Requirements for Automatically Generating Multi-Modal Interfaces
for Complex Appliances

Jeffrey Nichols, Brad Myers, Thomas K. Harris,
Roni Rosenfeld, Stefanie Shriver

School of Computer Science
Carnegie Mellon University

Pittsburgh, PA 15213
jeffreyn@cs.cmu.edu

http://www.cs.cmu.edu/~pebbles/puc/

Michael Higgins, Joseph Hughes
MAYA Design, Inc.

Suite 702
2100 Wharton Street
Pittsburgh, PA 15203
higgins@maya.com

Abstract
Several industrial and academic research groups are
working to simplify the control of appliances and services
by creating a truly universal remote control. Unlike the
preprogrammed remote controls available today, these
new controllers download a specification from the appli-
ance or service and use it to automatically generate a
remote control interface. This promises to be a useful
approach because the specification can be made detailed
enough to generate both speech and graphical interfaces.
Unfortunately, generating good user interfaces can be
difficult. Based on user studies and prototype implemen-
tations, this paper presents a set of requirements that we
have found are needed for automatic interface generation
systems to create high-quality user interfaces.

Keywords: Multi-modal interfaces, speech recognition,
handheld computers, remote controls, appliances, personal
digital assistants (PDAs), Universal Speech Interface
(USI), Pebbles, Personal Universal Controller (PUC)

1. Introduction

Home and office appliances are becoming more com-
plex as embedded computers enable new kinds of func-
tions. As complexity increases, appliance user interfaces
usually get harder to use [2]. Many of these interfaces also
have no accessibility options for helping impaired users,
such as the blind, make use of the appliance.

Several groups, including our own [8], suggest that
separating the interface from the appliance might solve
these problems. Each user would carry a personal univer-
sal controller (PUC), a device that allows the user to in-
teract with all the appliances and services in her environ-
ment. A PUC could take many forms: an unimpaired user
might have a handheld computer with a graphical user
interface (GUI), whereas a blind user might have an inter-
active Braille surface or small headset that supports
speech recognition and speech output. When the user
wants to control an appliance, the PUC would communi-
cate with the appliance, download a specification of the

appliance’s functions, and then automatically generate a
remote control interface suited to the PUC device and the
user. The PUC and the appliance would continue to ex-
change messages as the user manipulates the interface and
as the state of the appliance changes.

This approach has several benefits because it separates
the interface from the appliance. Each PUC device creates
an interface customized to the attributes of that device.
Impaired users could get controller devices that are spe-
cifically customized to their particular impairment. Unim-
paired users benefit from controller devices with technol-
ogy that would be too expensive to put in every appliance.
For example, an unimpaired user could get a handheld
controller with a color LCD touch-screen, or a special
headset that made speech interfaces possible in noisy en-
vironments. Another benefit is that the user could always
receive a consistent interface, even across appliances. For
example, the same user interface could always be pre-
sented for setting the time on every appliance.

The benefits of separating the interface from the appli-
ance may be reduced if the generated interface is not of
sufficient quality. In order to ensure that interfaces gener-
ated by a PUC do not suffer from this problem, we started
by investigating what is required for generating high-
quality user interfaces from a specification language. We
began by designing high-quality controller interfaces by
hand, just as we would like the PUC to do automatically.
We created graphical interfaces for an Aiwa shelf stereo
and an AT&T telephone/answering machine, and speech
interfaces for an Audiophase stereo and a phone-based
movie database [14]. After many design iterations, when
we felt that the interfaces were as good as we could make
them, we conducted several user studies that showed, for
example, that users were twice as fast and made half as
many errors with our hand-designed interfaces as with the
original appliance interfaces [9]. Besides confirming our
designs, the user studies also helped us identify additional
issues and determine the key properties that made the in-
terfaces work well.

The main goal of first designing our own high-quality
user interfaces was to discover what functional informa-
tion about the appliance is required to design a good inter-



Requirements for Automatically Generating Interfaces for Complex Appliances submitted for publication - 2

face. We found, for example, that disabling the compo-
nents for functions that were not available helped users
tremendously. While this is consistent with user interface
guidelines, it has never been followed for today’s remote
controls. Furthermore, we were surprised to discover that
knowing when a function will be disabled based upon the
rest of the appliance state is also very helpful for making
layout decisions. For example, a set of components that
are never active at the same time as another set could be
placed on overlapping panels to minimize user confusion
and make effective use of space in a graphical interface.

The most surprising discovery after developing our list
of requirements is that no current specification system we
are aware of fulfills each and every requirement. Some
requirements, such as grouping components in a tree, are
found universally, while others are always missing. This is
discussed further in the requirements section.

2. Related Work

There are many industrial and academic groups that are
working on similar problems. Some of these groups [3, 7,
16] have decided to download pre-built interfaces to the
controller device instead of making the device automati-
cally generate user interfaces. This approach has the ad-
vantage of being easy to implement, but it requires that
each appliance be pre-programmed with a set of hard-
coded interfaces for every controller device that the appli-
ance will encounter. Even if you allow for the possibility
that the appliance can connect to the Internet and
download interfaces for new controllers, it seems unlikely
that manufacturers would continue to absorb the cost of
creating a new interface for every new controller that be-
comes available. After all, most appliances are expected
to last for many years whereas new handheld devices be-
come obsolete within 6–12 months.

Several other projects have included some aspects of
automatically generating interfaces. The ICrafter project
[12] has support for both downloadable and automatically
generated user interfaces. The interface generation system
was not the focus of ICrafter however, and it can only
generate very simple graphical interfaces. Work by Ho-
des, et al. speaks of a “universal interactor” [4] that adapts
to control different devices. The primary focus of that
research seems to be on the system and infrastructure is-
sues, rather than the problems of creating high-quality
user interfaces.

UIML [1] is an XML language that claims to provide a
highly device- and modality-independent method for user
interface design. Software generators are currently avail-

able that can convert UIML source into concrete interface
code such as Java Swing, HTML, VoiceXML, and several
others. Unfortunately, UIML seems to rely on explicit
mappings between its own elements and the concrete form
it will be translated into, negating most of its claimed de-
vice independence. Current UIML research is attempting
to solve this problem [5, 11].

The INCITS V2 [18] standardization effort, which is
creating the Alternative Interface Access Protocol (AIAP)
[19], and XWeb [10] are two projects that automatically
generate interfaces for multiple modalities. Both are capa-
ble of generating graphical and speech interfaces, and
AIAP has also been implemented on an interactive Braille
surface for blind users. Both of these systems also define
an intermediate language for specifying the functions of
the interface that will be generated. We will further dis-
cuss the strengths and weaknesses of these systems later in
the requirements section.

3. Human Designed Interfaces

This section describes our observations from building
and testing the interfaces we designed by hand. This work
was performed separately for the graphical and speech
interfaces.

3.1. Graphical Designs

We hand-designed graphical interfaces on the Compaq
iPaq for two appliances (see Figure 1): an Aiwa CX-
NMT70 shelf stereo and an AT&T 1825 tele-
phone/answering machine. Since we could not control the
actual stereo or telephone, we simulated control with a
laptop that responded to signals from the iPaq by playing
sounds that closely matched the responses expected of the
actual appliances. The interfaces for both appliances were
designed iteratively using heuristic analysis. We also con-
ducted think-aloud studies with users to find problems that
our own analysis had missed.

Once we were confident that the interfaces were of
high quality, we conducted a study to compare our hand-
designed interfaces with the actual appliances [9]. The
purpose of this study was two-fold: to ensure that our de-
signs were better than the actual interfaces and to find any
additional problems that the analysis and think-aloud stud-
ies had missed. The study showed that users of our hand-
designed interfaces completed tasks in half the time and
with half the errors compared with users completing the
same tasks on the actual appliance interfaces.



Requirements for Automatically Generating Interfaces for Complex Appliances submitted for publication - 3

Most of the problems users had with the actual appli-
ance interfaces could be traced to poor button labels or
inadequate feedback. Both appliances had buttons associ-
ated with multiple functions, so that pressing a button
quickly might invoke one function while pressing and
holding a button invoked something else. Feedback was
often ambiguous; the phone would beep once to indicate
an error and twice to signal a positive result.

We noticed many features of our hand-designed inter-
faces that seemed to make them easy to use. Good organi-
zation was important for making the interface easy to un-
derstand. Commonly used functions were placed at the top
and to the left. Related functions were placed next to each
other on the screen. We were able to use the extra space
that the iPaq screen afforded us to put good labels on each
control. Sometimes we added additional help text when
the interface needed to be explained.

The flexibility of the iPaq’s LCD screen also allowed
us to disable or hide controls that were not currently ac-
tive (see Figure 1b). On the actual appliances there were
more than fifty buttons, many of which were not active.
Interfaces for appliances with several modes, such as our
stereo, seem to particularly benefit from the technique of
hiding inactive controls, because each mode has a set of
controls that are not active in other modes. The controls
for each mode can be placed on overlapping panels (as in
Figure 1c-d), hiding many unusable controls that the user
might find confusing.

We also observed that our hand-designed interfaces
could be improved in some situations by using standard
component configurations that people are familiar with.

For example, every telephone has a standard number pad
arrangement (see Figure 1a). PUCs must have some built-
in knowledge of these standard arrangements.

3.2. Speech Designs

Our hand-designed speech interfaces were developed
as Universal Speech Interface (USI) applications [13].
Each USI application uses a standard set of strategies for
exploration and invoking functions that help users interact
with any USI application. The core features are a small set
of keywords and a standard syntax for input and output
across all applications. We have hand-designed USI ap-
plications for controlling a stereo and for querying tele-
phone-based databases providing movie times, apartment
availability, and airline flight information. We conducted
a user study on the movie database interface to find out
what problems users encountered with USI applications
[14].

Building the stereo application taught us that the two
biggest problems for a PUC speech interface are explora-
tion and disambiguation. Exploration is problematic be-
cause most USIs have a tree structure that the user must
navigate to find the function they want to use. Each node
in the tree must have a label, and the number of children
at each node must be limited so that the user is not over-
whelmed when trying to remember a long list of options.
The navigation problem can be partially overcome by
allowing shortcuts. The user can say the name of any func-
tion and the system will try to match it to a function
somewhere in the tree. This creates a problem of disam-
biguation because it is possible for multiple functions to
have the same name. Fortunately, it seems that multiple
functions with the same name are rarely active at the same
time, so dependency information can be used to determine
which function the user intended.

We also conducted a user study comparing the phone-
based movie database application built on USI principles
with a natural language interface to the same database. All
of the subjects in the USI case were able to adapt easily to
the syntactic structure of the USI, typically forming a cor-
rect USI phrase within their first three utterances. Subjects
did have problems with the lack of explicit feedback for
each action. This feature has since been added to the sys-
tem to help users identify and correct recognition errors,
and help users identify the context of the current dialog.
Of the subjects who used both the USI and natural lan-
guage interfaces, 80% preferred the USI interface. We
believe this was because the capabilities of the USI system
were readily apparent at each step, while the natural lan-
guage system was more ambiguous about its available
functionality.

Figure 1. Hand-designed graphical interfaces for an
AT&T telephone (a-b) and an Aiwa shelf stereo (c-d).



Requirements for Automatically Generating Interfaces for Complex Appliances submitted for publication - 4

4. Requirements

Our hand-design work with both speech and graphical
interfaces led us to develop a list of requirements that our
PUC system must fulfill in order to generate high-quality
interfaces. This section describes those requirements and
discusses how they are fulfilled (or not) by the PUC and
other systems.

4.1. Two-Way Communication
One of the most important requirements for any PUC-

type system is two-way communication between the con-
troller and the appliance. This is an obvious requirement
for any system where the controller downloads an appli-
ance specification before constructing an interface that
issues commands back to the appliance. It is important
that this two-way communication be maintained through-
out the entire session however, so that the controller and
appliance can keep their state synchronized.

State synchronization allows graphical interfaces to
display information about the current state of the interface
that might not be visible on the actual appliance. Graphi-
cal interfaces can also use the current state coupled with
dependency information (discussed below) to disable
components that are not currently active. Knowledge of
the current state is also very important for speech inter-
faces, which must be able to respond to user queries about
the current state even if the information is available visu-
ally on the appliance. This is especially helpful for blind
users or when the user is not near the appliance.

4.2. Simultaneous Multiple Controllers

It is also important that multiple controllers can com-
municate with the same appliance simultaneously. Users
will expect this feature, and it has the added benefit of
allowing different interface modalities to be freely mixed
together by using several different controller devices in
tandem. For example, a user might combine a handheld
controller with a headset to create a multi-modal graphical
and speech interface. Most current systems seem to fulfill
this requirement.

4.3. No Specific Layout Information

The appliance specification should include information
about the functions of that appliance, but it should not
include specific information about how controls should be
positioned on the screen. We share this philosophy with
the AIAP and XWeb projects but not with UIML, which
can include concrete information in its description about
layout. This requirement enforces modality independence
by limiting how detailed a designer can specify the func-
tions of an appliance. If it were possible to describe con-
crete interfaces within an appliance specification lan-

guage, designers would be tempted to include too many
details about how each interface should be implemented.
This has several disadvantages:

• Appliance specifications will get much longer be-
cause each one may turn into a complete description
for several different types of concrete interfaces.

• Appliance specifications might lose their forward
compatibility to PUC devices of the future. It seems
likely that variety will increase in the devices of the
future as non-rectangular screens and different inter-
action styles become more common. For example,
specific information for a dialog box-style interface
would probably not be useful for a new watch with a
circular screen and several nested dials for interac-
tion.

• Some of the other advantages of automatic genera-
tion might be lost. For example, a PUC can ensure
interface consistency by making certain interactions
the same across multiple appliances. This is not pos-
sible if the PUC does not have the freedom to
choose the interaction style and positioning for rep-
resenting given functions.

4.4. Hierarchical Grouping

A fundamental requirement of any user interface is
good organization, because users must be able to intui-
tively find a particular function. An appliance specifica-
tion can easily define organization using a tree to group
similar functions. This makes the interface generation
process easier, because most concrete interfaces can also
be represented as a tree. The utility of trees for grouping
seems to be universally accepted; all current systems use
some kind of tree for grouping functions.

4.5. Actions as State Variables and Commands

Each action the user can take must be represented in
the appliance specification. We found, as have many oth-
ers, that state variables and commands are a succinct way
to represent the manipulable elements of an appliance.
Some systems, such as AIAP and Microsoft’s UPnP [17],
separate the state variables from the commands that act
upon them. This means that a specification for a radio
might include a station variable, and also tune up, tune
down, seek up, and seek down commands associated with
the variable. Our PUC system infers as many functions
from the state variable as possible, but still uses com-
mands for those functions that cannot be inferred, such as
seek up and seek down.

Not every command can be associated with a state
variable however, and specification languages must sup-
port unassociated commands. Unassociated commands are
required for representing functions where there is no no-
tion of state, such as pressing the “flash” button on a tele-



Requirements for Automatically Generating Interfaces for Complex Appliances submitted for publication - 5

phone. Commands are also useful for situations in which
state is not available, perhaps by manufacturer choice or
an inherent limitation of the appliance hardware.

4.6. Dependency Information

In most graphical interfaces there is a visual indicator
when a control is disabled, such as the typical “grayed
out” appearance. We have found that information about
when a function is active can be specified concisely in
terms of the values of state variables. Not only does this
allow graphical interfaces to display an indicator of
whether the function is available, but it can also be useful
for inferring information about the panel structure and
layout of the interface. Appliances with modes especially
benefit from this approach, because each mode is typically
associated with several functions that are active only in
that mode. If the dependency information is in a form that
can be analyzed, the interface generator can search for
sets of controls that are never enabled at the same time,
and then create a graphical interface that saves space and
prevents user confusion by displaying only the controls
for the active mode. This knowledge can also be used by
USI applications to solve the problem of disambiguation.

Dependency information may also be useful for gener-
ating help information, as in the UIDE system [15]. UIDE
used built-in pre- and post-condition information to de-
termine why a particular function is not available and to
generate instructions for making the function available. In
our comparison study with the graphical interfaces we
observed that users most often sought help when they
wanted to use a function that was currently inactive. De-
pendency information is similar to pre- and post-condition
information and could be used to generate the same kind
of help as UIDE.

As mentioned above, it is important that dependency
information be in a form that can be analyzed by the inter-
face generators. AIAP includes dependency information,
but the dependencies are defined as arbitrary ECMAScript
expressions which are difficult, if not impossible, to ana-
lyze. This would preclude the dependency information
from being used for graphical layout, speech generation or
command help. The PUC avoids this problem by specify-
ing dependency information as a concise set of equals,
greater-than, and less-than relations joined by logical
AND and OR operations. The PUC is the only system we
are aware of that uses dependency information as an input
to its automatic interface generator.

4.7. Sufficient Labels

Our comparison study of the hand-designed interfaces
with the actual appliance interfaces showed that good la-
bels are an important part of creating a high quality user
interface. Labels are an even more important part of

speech interfaces, because there are no graphical hints to
assist the user’s understanding of the interface. To give
flexibility to the interface generator, a label in an appli-
ance specification should not be a single text string but
instead a collection of text strings, pronunciation keys,
and text-to-speech recordings. Pronunciation keys and
text-to-speech recordings help improve the quality of the
speech interface. Multiple text strings give a graphical
interface generator the flexibility to select the label with
the most information that can be fit in the allotted space.
The PUC is the only current system that provides more
than just single string text labels.

4.8. Shared High Level Semantic Knowledge

Despite all of the previous requirements, we must con-
cede that it is impossible to encode all the information
into an appliance specification that a human would use to
design an interface. In addition to functional information
about the appliance, a human designer will also use her
knowledge of conventions when creating an interface.
There are many such conventions, such as the arrange-
ment of buttons on a telephone number pad or the coun-
try-specific format for specifying dates. Defining every
such convention in an appliance specification is simply
not possible.

We can work around the problem by storing this in-
formation in each interface generator and creating a stan-
dard set of high-level elements in the specification lan-
guage. If the interface generator understands the high-
level element, then it can apply that knowledge to create a
better user interface. If not, the generator must be able to
ask the appliance for detailed functional information that
will allow the generator to create an interface using the
normal controls. This approach has the side benefit of
making the initial transfer of a specification to the control-
ler shorter, because only the high-level elements are trans-
ferred.

Current systems do not seem to address the problem of
conventional layouts, although they do make exceptions
for handling the most common cases, such as dates and
times. The PUC currently implements high-level elements
in its specification language, but has no protocol support
for generators requesting detailed function information.

5. Requirements in the PUC System

We have created a specification language and imple-
mented two PUC interface generators based upon this list
of requirements. Our graphical interface generator is writ-
ten in Java and runs on a Compaq iPaq handheld com-
puter. Figure 2 shows some example interfaces created by
this generator, and further details are available elsewhere
[8]. We have also built a preliminary speech interface
generator that creates USI controller interfaces. Unfortu-



Requirements for Automatically Generating Interfaces for Complex Appliances submitted for publication - 6

nately, our system does not yet fulfill all of the require-
ments listed in this paper. For example, we have not com-
pletely implemented the tagging approach described in
section 4.8. Our interfaces also have no facility for gener-
ating help text at this time. Despite this, we feel that our
generated interfaces are better than can be achieved by
any other system, and user studies are in progress to con-
firm this.

6. Conclusion

In this paper we have described a list of requirements
for automatically generating speech and graphical inter-
faces for complex appliances. These requirements were
generated through a human-centered process; we designed
interfaces by hand, evaluated them with users for quality,
and analyzed them to determine what was required for
building a high-quality interface. We are currently using
these requirements as the basis for building an automatic
generation system for remote control interfaces and we
feel that other systems will also need to incorporate these
requirements if they want to generate high-quality user
interfaces.

Acknowledgements

This work was conducted as a part of the Pebbles project [6].
The speech interface was also conducted as part of the Universal
Speech Interfaces project [13]. Marc Khadpe did a portion of
the work on the prototype phone interface as a part of a summer
independent study project. This work was funded in part by
grants from NSF, Microsoft and the Pittsburgh Digital Green-
house, and equipment grants from Symbol Technologies, Hew-
lett-Packard, and Lucent. The National Science Foundation
funded this work through a Graduate Research Fellowship for
the first author, and under Grant No. IIS-0117658. Any opin-
ions, findings, and conclusions or recommendations expressed
in this material are those of the authors and do not necessarily
reflect those of the National Science Foundation.

References
[1] Abrams, M., et al. “UIML: An Appliance-Independent

XML User Interface Language,” in The Eighth Interna-
tional WWW Conference. 1999. Toronto, Canada

[2] Brouwer-Janse, M.D., et al. “Interfaces for consumer prod-
ucts: how to camouflage the computer?” in CHI'1992.
1992. Monterey, CA: pp. 287-290.

[3] HAVi, “Home Audio/Video Interoperability,” 2002.
http://www.havi.org.

[4] Hodes, T.D., et al. “Composable ad-hoc mobile services for
universal interaction,” in Proceedings of ACM Mobi-
com'97. 1997. Budapest Hungary: pp. 1-12.

[5] Mir Farooq, A., Abrams, M. “Simplifying Construction of
Multi-Platform User Interfaces using UIML,” in European
Conference UIML 2001. 2001. Paris.

[6] Myers, B.A., “Using Hand-Held Devices and PCs To-
gether.” Communications of the ACM, 2001. 44(11): pp.
34-41.

[7] Newman, M., Hong, J., Sedivy, J., Izadi, S., Neuwirth, C.,
Marcelo, K., Edwards, K.W., Smith, T. “Designing for Ser-
endipity: Supporting End-User Configuration of Ubiqui-
tous Computing Environments,” in Designing Interactive
Systems. 2002. London, UK

[8] Nichols, J., Myers, B.A., Higgins, M., Hughes, J., Harris,
T.K., Rosenfeld, R., Pignol, M. “Generating Remote Con-
trol Interfaces for Complex Appliances,” in Submitted for
Publication. 2002.
http://www.pebbles.cs.cmu.edu/papers/PebblesPUCuist.pdf

[9] Nichols, J.W. “Using Handhelds as Controls for Everyday
Appliances: A Paper Prototype Study,” in ACM CHI'2001
Student Posters. 2001. Seattle, WA: pp. 443-444.

[10] Olsen Jr., D.R., et al. “Cross-modal Interaction using
Xweb,” in Proceedings UIST'00. 2000. San Diego, CA:
pp. 191-200.

[11] Plomp, C.J., Mayora-Ibarra, O., “A Generic Widget Vo-
cabulary for the Generation of Graphical and Speech-
Driven User Interfaces.” International Journal of Speech
Technology, 2002. 5: pp. 39-47.

[12] Ponnekanti, S.R., et al. “ICrafter: A service framework for
ubiquitous computing environments,” in UBICOMP 2001.
2001. Atlanta, Georgia: pp. 56-75.

[13] Rosenfeld, R., “Universal Speech Interfaces Web Site,”
2002. http://www.cs.cmu.edu/~usi/.

[14] Shriver, S., Toth, A., Zhu, X., Rudnikcy, A., Rosenfeld, R.
“A Unified Design for Human-Machine Voice Interaction,”
in Extended Abstracts of CHI 2001. 2001. Seattle, WA:
pp. 247-248.

[15] Sukaviriya, P. and Foley, J.D. “Coupling A UI Framework
with Automatic Generation of Context-Sensitive Animated
Help,” in ACM UIST. 1990. Snowbird, Utah: pp. 152-166.

[16] Sun, Jini Connection Technology. Sun Microsystems,
http://www.sun.com/jini/, 2000.

[17] UPnP, “Universal Plug and Play Forum,” 2002.
http://www.upnp.org.

[18] V2, I., “Information Technology Access Interfaces,” 2002.
http://www.ncits.org/tc_home/v2.htm.

[19] Zimmermann, G., Vanderheiden, G., Gilman, A. “Proto-
type Implementations for a Universal Remote Console
Specification,” in CHI'2002. 2002. Minneapolis, MN: pp.
510-511.

(a) (b)

Figure 2. Interfaces produced by the graphical generator for
a) an Audiophase shelf stereo and b) an X10 system.


