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ABSTRACT 

We describe a technique for attaining high-accuracy, small-
vocabulary speech recognition capability in resource-scarce 
languages that requires minimal audio data collection and no 
speech technology expertise. We start with an off-the-shelf 
commercial speech recognizer that has been trained extensively 
on a resource-rich language such as English. We then derive 
phonemic representations for any desired word in any target 
language, by a process of cross-language phonemic mapping. We 
show that this results in high accuracy recognition of 
vocabularies of up to several dozen words – enough for many 
development-related applications such as information access, data 
collection, and simple transactions.   

Categories and Subject Descriptors 

H.5.2 [Information Interface and Presentation]: User 
Interfaces – Voice I/O. 

I.7.2 [Artificial Intelligence]: Natural Language Processing – 
Speech Recognition and Synthesis I/O. 

General Terms 
Algorithms, Human Factors, Languages. 

Keywords 
ICT4D, SLT4D, Small Vocabulary, Resource-Scarce Languages. 

1. INTRODUCTION 
Recent studies have pointed to potential benefits of developing 
speech technologies for developing regions [7, 9, 15, 16]. In 
particular, high-quality automatic speech recognition (ASR) is an 
essential part of spoken dialog systems (SDS), which have 
particularly high potential in telephone-based applications. Such 
applications are particularly relevant for the ICTD community as 
they leverage the high penetration rates of mobile phones, require 
only the ability to make a phone call, and perhaps most 
importantly, can be used by both literate as well as non-literate 
users. However, among the approximately 7000 living languages 
spoken in the world today, only a tiny fraction have been 

incorporated into speech recognizers, primarily due to market 
forces, as well as the limited availability of experts in speech 
recognition technology. Commercial packages like the Microsoft 
Speech Server (MSS) provide high-quality recognition for a few 
dozen of the most commonly used languages and dialects in the 
developed world. Open source recognition engines like Carnegie 
Mellon University’s Sphinx and open-platform tools like HTK 
allow in principle the creation of speech recognizers in any 
language, but require very significant amounts of recordings in 
the target language to be collected and processed. To achieve 
adequate accuracy, they also require significant speech 
technology expertise for training and tuning the system. Thus the 
process of creating ASR capability in a new language requires 
significant data, money and expertise – daunting requirements in 
developing regions with limited financial resources and 
overstretched workers. 

Recognizing this technological impediment to the otherwise large 
potential of spoken dialog systems in the developing world, we 
set out to develop a technique that will allow a low-cost, accurate 
speech recognizer to be built for any language. Specifically, we 
sought a technique that would: 

 work for any language  
 require very minimal data collection effort (on the order 

of 3-5 repetitions of each word), which could be done 
over the phone 

 require no linguistic or speech technology expertise  
 result in a speech recognizer suitable for use by low-

literate users  
 provide high-accuracy (>95%) recognition over 

vocabularies of up to a few dozen words 

2. BACKGROUND 
2.1 Speech Technologies for the Developing 
World 
Speech recognition technology is a few decades old. However, 
serious studies of speech technology for development-related 
applications began only recently. The notion that speech 
technology can play a positive role in development is suggested 
by the observation that illiteracy and low-literacy are major 
roadblocks to the wider dissemination of information services in 
the developing world. Despite the inability of many major 
technologies to take hold, the cell phone has been a widespread 
success, readily absorbed by virtually all developing communities 
[7]. Thus telephone-based spoken dialog systems appear 
promising for bridging the gap between low-literate populations 
and the information society. 
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Experimentation with speech interfaces in developing countries 
began with UC Berkley’s TIER group’s Tamil Market project [9], 
and was soon followed by several other pilot experiments and 
case studies [6, 8, 15, 16]. Some of these studies (e.g. [15]) 
demonstrated that speech interfaces can be effective for low-
literate users, while others (e.g. [9]) pointed to the need for high 
recognition accuracy. These findings motivated the work we 
report here. Both [4] and [15] discuss challenges to speaker 
recruiting, audio collection, and user testing caused by illiteracy. 

2.2 Related Methods 
We seek a technique for obtaining high accuracy speech 
recognition in any language without relying on much data 
collection or technological expertise. Experiments conducted at 
Meraka Institute [1, 3] suggest that developing competent 
general-purpose SR systems from scratch will require tens of 
speakers and up to hundreds of training samples per speaker. For 
a resource-strapped developing world NGO, this may be 
unachievable. Instead, we seek methods that have fewer 
requirements, even if they can only support very small 
vocabularies.  

In the past two decades there have been many efforts to construct 
multilingual phoneme databases. One line of work by Schultz et 
al. is the GlobalPhone project [10, 11, 12, 13], where large 
amounts of speech data were collected from various source 
languages, so that only a limited amount of training data in the 
target language would be required to create acoustic models for 
that language. This approach still requires a moderate amount of 
data recording and a fair amount of expertise, and is geared 
towards creating unrestricted, large-vocabulary, moderate-
accuracy speech recognition capability.  As such, it is not optimal 
for the small-vocabulary, high-accuracy recognition capability we 
believe is needed for development-oriented applications. 

An earlier attempt employing both a cross-language pronunciation 
transcription and a data-drive approach to automatically process 
speech was reported by Constantine and Chollet [5]. Specifically, 
they employ a relatively simple variation of Genetic Algorithms 
to generate phoneme transcriptions based on a multilingual speech 
database. 

More recent work by Bansal, Nair, Singh and Raj [2] introduced a 
joint decoding algorithm on the training audio of a target 
language to automatically derive pronunciations. However, 
modification of the decoding algorithm for audio has to be done at 
a low level in the speech engine, which both requires technical 
expertise and excludes the use of commercial recognizers that 
employ highly-trained acoustic models. 

2.3 The Salaam Method 
One promising approach to our problem is the Speech-based 
Automated Learning of Accent and Articulation Mapping 
(Salaam) method [14], which is a refinement of the “Poor Man’s 
Speech Recognizer" (PMSR) method described in [15, 16].  In the 
PMSR method, a speech expert builds small-vocabulary 
recognizers by transcribing the pronunciation of a word from the 
target language into phonemes in the source language. 
Specifically, by employing cross-language phoneme mapping 
using existing acoustic models, one can avoid training new 
acoustic models, often the costliest and most complex part of 

training a speech recognizer.  While PMSR requires a speech 
expert to manually define word pronunciations, in the Salaam 
approach the speech recognizer was used to semi-automatically 
decode a few recorded samples of each target word to obtain more 
accurate pronunciations, improving upon those provided by a 
human expert (and diminishing the need for such an expert). 

The idea of representing foreign words by automatically derived 
cross-language pronunciations is not new to Salaam. It has been 
tried before by many researchers using so called “all-phone 
decoding” in open speech recognition platforms such as Sphinx or 
HTK. But anecdotal reports suggested that the accuracy of such 
an approach is insufficient even for a vocabulary of as few as 10 
words, which is the smallest vocabulary needed for all but the 
most trivial applications. The gist of the Salaam idea is to use the 
same approach but to also take advantage of the superior quality 
and robustness of commercial recognition systems, which are 
trained on hundreds of hours of speech recordings and are 
carefully tuned by expert speech engineers. Since commercial 
systems do not usually provide the rich interface needed to run 
all-phone decoding, the Salaam method effectively achieves the 
same result by heuristically querying the commercial recognition 
engine through whatever interface it supports. Thus the Salaam 
method is not a new modeling technique but rather a practical 
method for enabling highly accurate spoken language interfaces 
in new languages with very minimal training data and no 
technological expertise. 

The Salaam method was first tested anecdotally as part of a live 
demonstration during the ICTD 2009 conference in Doha, and 
yielded less than 10% word error rate (WER) on ten diverse 
languages, with vocabulary sizes ranging from 3 to 10 words [14]. 
Using a similar technique, a comparative study on voice 
interfaces using a prototype system by IBM Research in rural 
India [8] has attained less than 6% WER with sentences/phrases 
of the target language mapped to English phonemes, although the 
effective vocabulary size was only 2--3. These studies suggest 
that the Salaam method can yield good performance (though it 
still falls short compared to recognizers trained directly using 
significant resources from the target language).  

Our proposed solution builds upon the Salaam method. We 
review key details of that method in the next section. 

3. INCORPORATING SALAAM’S 
COMPONENTS 
To take advantage of the potential shown by the Salaam method, 
we pick up on two of its most important components: the cross-
language phoneme mapping and the data-driven optimization. 

3.1 Cross-Language Phoneme Mapping 
Using an existing, highly-trained speech recognition system in a 
source language, cross-language phoneme mapping is done by 
defining each word or phrase in the target language using a 
sequence of source-language phonemes. An obvious problem with 
this approach is that the phonemes of the source language and the 
target language are different, sometimes dramatically so. For 
instance, the Hebrew word for “one” has an uvular fricative 
phoneme that sounds like a mix between the “H” and “K” 
phonemes in English. In such cases, we pick the phoneme that  



most closely matches the training samples. So with the MSS U.S. 
English recognizer, the resulting pronunciation would be similar 
to “E H AA D” or “E K AA D”, or both if multiple 
pronunciations per word are allowed. 

3.2 Data-Driven Approach in Salaam 
In the original Salaam method, a data-driven approach is 
leveraged to aid the human expert with the task of generating a 
pronunciation for a new word – the aforementioned cross-
language transcription. The idea is largely reliant on the scoring 
of recognition results returned by the baseline recognizer which is 
run in an “all-phone-decoding” mode, namely allowing it to 
return any sequence of phonemes, rather than regular vocabulary 
words. Since most commercial recognizers do not expose their 
“all-phone-decoding” capabilities, we simulate this mode by 
defining artificial words that consists of one, two or three 
phonemes. If the recognizer is given an exhaustive set of these 
“words”, it would pick out the ones that best match the audio 
samples, and provide acoustic and/or confidence scores that we 
can then use to select target pronunciations. However, with a 
typical phoneme set of, say, 37 phonemes, trying to match a 
sequence of even only 5 phonemes creates a search space of 375 
distinct sequences, making the task computationally impractical.  

The design described by the Salaam method is a semi-automatic 
pronunciation generation technique that also addresses the 
computational complexity issue by having a linguistic expert fix 
down a number of phonemes that humans are more certain of (e.g. 
the consonants), and then create artificial word boundaries inside 
the word. The former action reduces the search space by relying 
on human expert knowledge, and the latter effectively partitions 
the problem into a set of smaller, separable and more tractable 
search problems. For example, if a word has 2 phonemes that the 
expert is uncertain of (e.g. S ? L ? M), one can place the artificial 
word boundary somewhere between the two unknown phonemes 
(e.g. S ? / L ? M), and the Salaam method will match each 
separate word with a set of pronunciation possibilities, whose size 
is equal to or less than the total number of phonemes in the 
baseline recognizer. In general, if there are N phonemes in the 
language and n uncertain phonemes in the target word or phrase, 
the complexity of the search can be reduced to O(nN). 

3.3 Means for Automated Learning 
The original Salaam method for cross-language phoneme 
mapping required a language expert with deep knowledge of both 
the source and the target language, as well as a certain level of 
understanding of how phonology is used in speech technologies. 
But in the developing world setting, finding or training such an 
expert can be difficult.  

To eliminate the need for human linguistic experts, Salaam 
introduced a further improvement: heuristic letter-to-sound rules 
are used to generate initial candidate pronunciations, starting from 
a written transliteration of the target word as typed by a native 
speaker of the target language, using a source language (e.g. 
English) alphabet (e.g. Indian cell phone users often Romanize 
Hindi in SMS text messages). This moved much of the burden in 
pronunciation generation away from reliance on human expertise. 

4. OUR IMPROVED METHOD 
The improved method we present here adopts cross-language 
phoneme mapping directly from Salaam. But we go further in 
relying only on minimal amounts of recorded data, and nothing 
else. Specifically, we attempt to overcome the limitations of 
Salaam in the following areas:  

1. Salaam’s reliance on the phonemes fixed by the expert 
or letter-to-sound rules, and on a pre-determined fixed 
number of phonemes in the target pronunciation. 

2. Salaam’s reliance on artificial word boundaries to 
reduce computational complexity. These boundaries are 
undesirable because modern speech recognizers use 
approximate acoustic matching at word boundaries, 
which degrades the acoustic match and results in 
suboptimal pronunciations. 

Eliminating the reliance on hints provides by human experts or 
heuristic letter-to-sound rules means that the baseline recognizer 
must be used to generate the phoneme sequences from scratch, 
without any prior knowledge of the word to be recognized. To 
do this, we must look at some subsets of all possible phoneme 
sequences, and take the ones that the recognizer matches best 
given the audio samples of the target word. But as pointed out 
before, the set of potential phoneme sequences grows 
exponentially with the number of phonemes in the sequence. So 
due to computing limitations, we still leverage artificial word 
boundaries to cut down on the size of the search space, albeit in a 
different manner.   

4.1 Details of the Improved Method 
We designed an iterative algorithm that, for each desired word in 
the target language, uses a small number (between one and five) 
of recorded samples, and progressively generates phonemes 
resulting in a decoded phoneme sequence that has been given a 
relatively high score by the underlying recognizer. The speech 
recognition grammar used in this method hinges on one critical 
grammar element, which we call the super-wildcard.  This super-
wildcard can be described in the following shorthand: 

     
  

10

3

1

3

1

3

1
/...// XXX  

{X} represents a phoneme wildcard – namely, it can represent any 
phoneme in the speech recognizer’s phonetic vocabulary.  The 
subscript and superscript denote that all permutations of between 
1 and 3 phonemes are being represented, while the / represents an 
artificial word boundary.  This super-wildcard consists of 10  
subwords, with each subword consisting of all permutations of 
between 1 and 3 phonemes.  It should be kept in mind that this 
super-wildcard is used to represent the pronunciation for a single 
word, and we use these artificial word boundaries only to reduce 
the computational complexity of the search task, and not to imply 
that the word itself is composed of multiple subwords. 

We will describe the algorithm with reference to a concrete 
example. Specifically, we demonstrate here how our technique 
generates pronunciations for the Hebrew word for “one”, roughly 
pronounced “EH-HUD”, using the English recognizer from the 
Microsoft Speech Server. 



In the first pass, the super-wildcard grammar is used on its own, 
and recognition is performed on a word’s audio using this 
grammar. The recognition results from this pass are then parsed to 
determine what phonemes to consider for the final pronunciation. 
For the ith pass, we accept up to i phonemes, and so for the first 
pass, we accept only the first phoneme as the potential first 
phoneme in the final pronunciation. We keep a list of 
“competing” first phonemes, and we do not just take the sequence 
with the highest score, as the nature of artificial word boundaries 
makes the intermediate step a heuristic recognition result; so a 
phoneme from a recognition result with low score may in fact be 
a part of a high-score pronunciation once it is tried without word 
boundaries.  

In the first iteration, the super-wildcard is used on its own, with 
each “word” unit comprising all the sequences of length 1 through 
3 of MSS’s English recognizer’s phonemes, repeated from 0 up to 
10 times across each sample. Concretely, each “word” unit 
consists of the following sequences: 

AA 
AE 
AH 
... 
Z 

ZH 
AA AA 
AA AE 

... 
ZH ZH 

AA AA AA 
AA AA AE 

... 
ZH ZH ZH  

We allow the recognizer to treat each audio sample as consisting 
of from 0 up to 10 words, and match each word to one of the 
above sequences.  Thus, the upper bound on the number of 
phonemes in a word that our system can recognize is 30 
phonemes – large enough to adequately capture any word or short 
phrase. 

Continuing with this particular example, the recognition results 
pooled from all samples from the first run consist of the 
following: 

K AA D 
T AA D 
H AA D 
K AO D 
T AO D 
H AO D 

As this is the first iteration, we accept the very first phoneme from 
each result as the potential first phoneme in our final sequence. In 
this case, we record K, H, and T, and move to the next iteration. 

In the second iteration, we again build a grammar that leverages 
the super-wildcard construct; however, we prepend the phonemes 
under consideration to the grammar. Thus, the complete form of 
the grammar may be represented as: 

      
  

10

3

1

3

1

3

1
/...// XXXP  

Here, {P} represents the set of phonemes under consideration till 
the current iteration – namely, K, H and T.  Thus, the grammar for 
the first “word” in the second iteration consists of the following 
phoneme sequences: 

K 
K AA 
K AE 

... 
K ZH ZH ZH 

T 
T AA 

... 
T ZH ZH ZH 

H 
H AA 

...  
H ZH ZH ZH 

Based on the top scoring results of the second iteration of 
recognition, we now fix the first two phonemes. 

The algorithm then repeats as in the previous iteration. Thus, 
we iteratively fix one more phoneme in each successive iteration, 
and then append the super-wildcard construct to help identify the 
next best phoneme. We continue this until we arrive at iteration 
four, and obtain K AA D as the best recognition result, which 
consists of only 3 phonemes.  The stopping condition for the 
algorithm is to check if there are less than i phonemes discovered 
on iteration i, or if there are no i-length phoneme sequences with 
as high a score as the best pronunciation from the previous pass 
(“K AA D” in our example). In our example, this is exactly what 
has happened, and so we output the best single-word recognition 
results from the current pass as the pronunciation for “ehad” to 
the lexicon of our new Hebrew recognizer. The top three results 
consist of:  

K AA D 
K AA AA D 
K O AA D 

Using this technique, we are able to create pronunciation 
definitions for words or phrases without any a priori knowledge 
of the words’ phonetics or length.  In the next section, we 
describe the evaluation of our method. 

5. EVALUATION 
5.1 Data Collection 
To evaluate our method, a list of 50 words/short phrases in 
English was compiled, consisting of numbers, commands to a 
typical information-access applications, and disease names. Each 
entry was selected because it is either a single word or a short 
phrase, and it pertains to the topic of a service that could be 
provided by a Spoken Dialog System (SDS). Given our goal of 
high accuracy, small-vocabulary speech recognition, the 
vocabulary size was kept to a maximum of 50 words. Three target 
languages were chosen: Yoruba, Hindi, and Hebrew.  The first 
recorded speaker for each target language provided the translation 



of the 50 words into that language (written in that language’s 
native writing system), and we adhered to that translation for all 
subsequent recordings in that language. 

The source language used was US English, using the Microsoft 
Speech Server bundled with Microsoft Unified Communications 
Managed API 2.0 SDK. 

We recorded sample audio using both analog and digital 
landlines, as well as cellular telephones, since these are prevalent 
in developing regions and are what we expect the SDS 
applications to be used with.  All recordings were done at 8kHz 
sample rate.  We have not addressed general dissimilarities 
between the sets of recordings we collected, such as possible 
differences in speech coding and compression used by different 
cellular carriers, or any difference in quality between digital and 
analog landline telephones. 

We built an SDS for collecting audio data, using VoiceXML and 
hosted on Voxeo1. During each recording session, participants 
were prompted to read each of the 50 words one at a time. To 
obtain more than one sample per word, we had participants iterate 
over the entire set multiple times, collecting one sample of each 
word per iteration, rather than recording all samples of each word 
all at once, to minimize the effect of repeating the same word 
multiple times in quick succession, as this can drastically change 
the way a particular word is pronounced. 

For the result presented below, we have used data from two 
speakers each for Yoruba and Hindi, and from three speakers for 
Hebrew2. Each speaker provided five samples for each word. 

 
                                                                 
1www.voxeo.com. 
2Although Hebrew is not a developing world language, we chose 
it out of convenience and to demonstrate that our technique works 
across very different language families. 

 

 

5.2 Results 
5.2.1 Expert-Produced vs. Automatically-Generated 
Pronunciations (same speaker) 
The first set of results for the method described here is a same-
speaker five-fold cross-validation test on pronunciations 
generated from four samples/words of single speakers, for Yoruba 
and Hebrew (See Figure 1).  Alongside the results from our 
improved Salaam method, we have also shown recognition results 
based on expert-supplied pronunciations, from the older PMSR 
method. 

As expected, word recognition accuracy generally degrades as 
vocabulary size increases. Most importantly, pronunciations 
generated automatically by our method result in recognition 
accuracy that is consistently, substantially, and statistically 
significantly better than that achieved with pronunciations 
generated by linguistic experts.  The automatically generated 
pronunciation result for Hebrew is especially noteworthy, in that 
the few recognition failures were all due to failure of our method 
to produce any pronunciations (this happens when no vocabulary 
choice provides reasonable match to the recording, as might 
happen if there is excessive noise during the recording or 
particularly unusual pronunciation).  In other words, for those 
words for which our method did produce a pronunciation, 
subsequent recognition accuracy was 100%.   This is significant 
because a failure to produce a pronunciation can be detected at 
training time and corrective action can be taken: collecting more 
samples, using expert-selected pronunciations, or suggesting to 
the developer that they use alternative wording. 

Figure 1.  Same-speaker leave-one-out recognition accuracy for Yoruba and Hebrew for both manual and automatically 
generated pronunciations with varying vocabulary size. 



5.2.2 Cross-Speaker Accuracy (single-speaker 
training) 
Next, we tested cross-speaker recognition accuracy: 
pronunciations trained on each speaker were tested on the two 
other speakers (Figure 2).   Recognition accuracy varies 
noticeably based on the specific speakers used. While 
pronunciations trained on speaker gxt worked extremely well, and 
those trained with data from speaker rxr also performed 
satisfactorily, those from speaker nxb did not always do very 
well.  Similarly, recognition accuracy on test speaker gxt’s voice 
was consistently lower than that on the other two speakers.  
Speaker variations are a known phenomenon in speech 
recognition, and highlight the need to create robust pronunciations 
based on multiple speakers. 

 

5.2.3 Multiple Pronunciations per Word (cross-
speaker, single-speaker training) 
Next, we probed the potential benefit of providing the recognizer 
with more than one pronunciation for each target word (Figure 3).  
Our pronunciation-generation method routinely generates a 
ranked list of pronunciations for each target word.  In the 
experiments reported above we used only the top-ranked 
pronunciation in each such list.  In this experiment, we compared 
this with giving the recognizer the top three alternatives for each 
target word.  Even though this is an extremely simple method for 
selecting the number of pronunciations, Figure 3 shows that it 
does result in some further improvement in recognition accuracy 
when the vocabulary size is relatively large.   This suggests that 
further improvement may be possible if we choose the number of 
pronunciations intelligently and individually for each target word.  
This has indeed shown to be the case in subsequent work (in 
preparation). 

Figure 2. Cross-Speaker recognition accuracy for Hebrew for pronunciations trained on single speakers. 

Figure 3.  Recognition results for Hindi of a recognizer with a single pronunciation for each word, vs. one with multiple 
pronunciations per word. 



5.2.4 Multiple Pronunciations per Word (cross-
speaker, multi-speaker training) 
In this final experiment, we generated multiple pronunciations for 
each word by training on audio samples from two speakers, and 
tested their accuracy on the third speaker. We compared the 
results to those of pronunciations trained on single speakers, and 
also to recognition runs restricted to a single pronunciation per 
target word (Figure 4).  These comparisons reveal that training on 
multiple speakers’ voices result in more robust pronunciations, 
and re-confirm that allowing multiple pronunciations further 
improves accuracy (this time, across all vocabulary sizes). 

6. CONCLUSION 
The results from the last section present empirical confirmation 
that our method achieves high recognition accuracy for small 
vocabulary sizes without the involvement of any human experts, 
and with extremely meager language resource requirements. 
Modern, general-purpose speech recognition systems require 
hundreds of hours of net speech data – while our method requires 
only 10 minutes worth (~1 second per word, with 50 words, 5 
repetitions per word, and 2 speakers per word, which gives 500 
seconds). The clock time required to record the two speakers was 
an hour each. We know of no other techniques that yield that 
level of accuracy in speech recognition for resource-scarce 
languages. Moreover, our method yields pronunciations that 
consistently outperform those provided by linguistic experts. 
While other methods exist to create small vocabulary recognition 
capability, ours is the only one we know of that can achieve 
greater than 90% accuracy with such trivial resource requirements 
– and our experience in working with developing world NGOs 
shows that there are real limits on the amount of resources that 
can be allocated for such initiatives. Many spoken dialog 
applications become usable when the error rate drops below 5% -- 
this is already the case with our method when the number of input 
choices at any point in the application is limited to about 10 – 
typical of many useful information access applications. 

Furthermore, we have also shown that one can improve upon the 
quality of recognition achieved with our technique by expanding 
the training set size and the number of speakers for training, or 
mapping multiple pronunciations to a single word. Further studies 
can help discover other strategies to use in junction with this 
technique.  

Although we only have results from three different languages, 
these languages come from three different areas and belong to 
distinct language families: the Afro-asiatic languages (Hebrew), 
the Niger-Congo languages (Yoruba), and the Indo-Aryan 
languages (Hindi); and the method yielded satisfactory results for 
all. There is a greater implication for the Yoruba and the Hindi 
test sets – these languages are used in developing regions of the 
world, and little deployable speech technology has been 
developed for them so far. It would be very useful to study this 
technique using other languages, especially ones from regions 
with low literacy levels. We also plan to field-test recognizers 
built with our method in developing regions.  

As per our description of the method’s design in section 4, 
implementation of our method should not entail low-level 
modifications to a speech recognition engine of the source 
language - our design could be used with any recognition engine, 
including commercial, proprietary ones. An interesting future 
direction would be to test this method’s effectiveness on different 
recognition engines.  

We hope that other groups build on our work to improve 
recognition accuracy, and we welcome collaboration to create 
toolkits that could enable a completely turnkey solution for 
organizations in the developing world to create and use speech 
recognition capabilities for languages of their interest. We 
envision that this would enable the creation of speech-based 
applications that can target the needs of those with the least 
amount of resources available to them – low literate individuals 
for whom such technology may be their only option to interact 
with the digital world. 

Figure 4.  Comparison of recognition results of Hebrew recognizers trained with single speakers generating single 
pronunciations, multiple speakers generating single pronunciations and multiple speakers generating multiple 

pronunciations. 



7. CORPORA STANDARDIZATION AND 
DATA AVAILABILITY 
As part of our ongoing research we continue to collect small 
vocabulary, isolated-phrase, and telephone-bandwidth multiple-
speaker speech samples in a variety of languages. As of 
November 2010 we have collected recordings of 50-100 phrase 
standardized vocabularies in Mandarin, Yoruba, Hebrew, Hindi 
and Urdu, with 2-3 speakers per language and 5 samples per 
phrase per speaker. We plan to increase the breadth and depth of 
this collection, and to record more South Asian and African 
languages in the near future. To encourage standardization of 
speech corpora for developing-world languages, we will make all 
our data available upon request to interested parties for research 
and development.  
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