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Abstract. Gaming the system, attempting to succeed in an interactive learning 

environment by exploiting properties of the system rather than by learning the 

material (for example, by systematically guessing or abusing hints), is prevalent 

across many types of educational software. Past research on why students choose 

to game has focused on student individual differences. Many student individual 

differences, including attitudes towards mathematics, have been shown to be 
associated with gaming, but generally with low correlation. In this paper, we 

investigate how individual differences between learning environments can increase 

or decrease the probability of gaming. We enumerate ways intelligent tutor lessons 
vary from each other, and use data mining to discover hypotheses about how 

differences in software design and content influence the choice to game the system. 

We discover a set of tutor features that explain 56% of the variance in gaming, 

over five times the degree of variance explained in any prior study of student 

individual differences and gaming. These results provide an important step 

towards developing prescriptions for designing intelligent tutor software that 

students game significantly less. 

Keywords. Gaming the System, Educational Data Mining, Intelligent Tutoring 

System, Software Features. 

Introduction 

In recent years, there has been considerable progress towards designing 

educational software that can respond in appropriate ways when students game the 

system [4], attempting to succeed in an interactive learning environment by exploiting 

properties of the system rather than by learning the material (by systematically 

guessing or abusing hints). These systems respond to gaming in a variety of ways, 

including the provision of supplementary exercises [3], meta-cognitive messages [1, 

16], and visualizations of a student’s degree of gaming behavior [17]. These strategies 

have achieved partial success at reducing gaming and mitigating its effects, albeit at the 

cost of making student-computer interaction considerably more complex. This 

approach for responding to gaming emerged from two factors – first, the failure of 
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approaches designed to eliminate gaming by making it harder to game (students found 

new ways to game) [e.g. 14], and second, the belief that individual differences between 

students, such as goal orientation, attitudes towards mathematics, or passive-

aggressiveness, explained most of the variance in gaming behavior [cf. 2, 4, 7, 8].   

However, thus far, the evidence seems weak for the belief that individual 

differences are the major factor explaining gaming, with several studies reporting 

statistically significant relationships, but accounting for fairly little of the variance in 

how much gaming occurred. Arroyo and Woolf [2] reported an analysis of associations 

between student attitudes and gaming, reporting associations explaining around 9% of 

the variance in gaming (r
2
 = 0.09). A collaboration between researchers at WPI and 

CMU [7] reported three additional studies along these lines, testing 13 hypotheses; no 

individual difference accounted for more than 5% of the variance in how much a 

student gamed (r
2
 < 0.05). Beal et al. [8] reported a study investigating 5 hypotheses, 

and found some student characteristics to be significantly associated with gaming; 

however, this paper did not report correlations between gaming and these 

characteristics, making it uncertain whether the associations were stronger than those 

reported in these earlier papers. 

Baker [5] attempted to determine if this pattern of results arose from researchers 

investigating the wrong individual differences, or if another type of factor – aspects of 

the software itself – might explain more of the variance in gaming behavior. He 

compared student-level and software-level explanations as classes (i.e. statistically 

considering the overall category of explanation rather than individual explanations), 

and found that differences in tutor lessons, as classes, explained over three times as 

much of the variance in gaming as student individual differences did. 

In this paper, we present a study which follows up on this finding, aiming to 

discover which aspects of educational software predict gaming. In this study, data was 

obtained from the PSLC DataShop [13] for an entire school year of the use of 

Cognitive Tutor Algebra. During the school year, students worked through a variety of 

lessons on different topics, with moderate variation in subject matter and considerable 

variation in design, making it possible to observe which differences in subject matter 

and/or design are associated with differences in how much gaming occurs. A taxonomy 

of the differences between tutor lessons was developed, and this taxonomy was used to 

determine which lesson features are most strongly associated with increased gaming.  

1. Data 

Data was obtained from the PSLC DataShop (dataset: Algebra I 2005-2006 

Hampton Only) [13], for 58 students’ use of Cognitive Tutor Algebra during an entire 

school year. The data set was composed of approximately 437,000 student transactions 

(entering an answer or requesting help) in the tutor software. All of the students were 

enrolled in algebra classes in one high school in the Pittsburgh suburbs which used 

Cognitive Tutors two days a week, as part of their regular mathematics curriculum. 

None of the classes were composed predominantly of gifted or special needs students. 

The students were in the 9
th

 and 10
th

 grades (approximately 14-16 years old).  

The Cognitive Tutor Algebra curriculum involves 32 lessons, covering a complete 

selection of topics in algebra, including formulating expressions for word problems, 

equation solving, and algebraic function graphing. Data from 10 lessons was eliminated 

from consideration, due to having insufficient data to be able to conduct at least 498 



observations, discussed below (500 was the planned cut-off, but a lesson with 498 

observations was included). On average, each student completed 9.9 tutor lessons 

(among the set of 22 lessons considered), for a total of 577 student/lesson pairs.  

To determine how often each student gamed the system, in each lesson, each 

student’s actions were retrospectively labeled using “text replays” [6]. In text replays, a 

segment of student behavior from log files is shown in pretty-printed form, and the 

coder identifies the segment, in terms of whether it involves the behavior category of 

interest (in this case, gaming). Text replays are fast to conduct, and achieve acceptable 

inter-rater reliability – Cohen’s κ=0.58 in one study involving labeling gaming the 

system [6]. One coder (the second author) made 18,737 text replay observations across 

the 22 units (labeling approximately a quarter of the transactions in the entire data set), 

in just over 200 hours, after multiple training sessions and checks of labeling 

agreement with the first author. The segments of the log files displayed were chosen by 

stratified sampling, across lessons and students, in order to achieve a comparable 

number of labels for each student in each lesson. These observations enabled us to 

calculate the proportion of time each student spent gaming in each lesson.  

2. The Cognitive Tutor Lesson Variation Space (CTLVS1) 

Next we developed an enumeration of the ways that Cognitive Tutor lessons can 

differ from one another. This enumeration, in its current form, is called the Cognitive 

Tutor Lesson Variation Space version 1.0 (CTLVS1). The CTLVS1 was developed by 

a six member design team with diverse expertise, including three Cognitive Tutor 

designers (with expertise in cognitive psychology and artificial intelligence), a 

researcher specializing in the study of gaming the system, a mathematics teacher with 

several years of experience using Cognitive Tutors in class, and a designer of non-

computerized curricula who had not previously used a Cognitive Tutor.   

The first step of the design process was for each participant who had previously 

used a Cognitive Tutor to separately – from memory – write a list of the features a tutor 

lesson could have that would differentiate it from another tutor. Afterwards, four of the 

participants separately went through each lesson in Cognitive Tutor Algebra, and wrote 

down any new features that came to mind. One participant conducted a literature 

review on papers discussing differences in intelligent tutors and similar forms of 

computer-aided instruction, and changes in tutor design over time, to generate further 

features. In total, the first step of the design process generated a list with 569 features.  

The second step was to develop a list of criteria for features that would be worth 

coding, to narrow this list down to a more tractable size. The criteria settled upon 

consisted of being understandable by multiple team members, whether a feature could 

probably be reliably coded (or automatically generated via data mining), whether a 

feature split the lesson space into two sizable groups (as opposed to distinguishing only 

1 or 2 lessons) (this criterion did not apply to software bugs, which are expected to be 

rare in a widely used commercial product such as Cognitive Tutor Algebra, but might 

still be worth associating with gaming), and whether the group thought a feature had a 

reasonable chance of being associated with gaming behavior.   

Each feature was evaluated according to these criteria by three members of the 

design team. 113 features were judged by the group to satisfy the set of criteria to a 

sufficient degree to be worth including in the CTLVS1. Then (a non-identical) three 

members of the design team proceeded to code the set of features for each of the 22 



lessons in the Algebra tutor for which we had data on gaming frequency. During the 

coding process, 34 features were found to be intractable, either because they took too 

much time to code, or because the coders felt uncertain about codes in multiple cases. 

This left a set of 79 quantitative and binary features (which were treated as quantitative 

during analysis). Of the 79 features, 10 were coded via data mining; the other 69 were 

coded by hand. Inter-rater reliability checks were not conducted, owing to the 

hypothesis-generating nature of this study. The 79 features within the CTLVS1 which 

were coded are shown in Table 1. Features are grouped into approximate categories 

within Table 1.  

The CTLVS1 was explicitly designed for use in comparing Cognitive Tutors. 

However, many of the features would also be relevant in other intelligent tutors, and in 

computer-aided instruction more broadly. Hence the effort to design the CTLVS1 has 

the potential to be useful not just in enabling the analysis presented here, but also in the 

broader study of how users respond to differences in computer-aided instruction. 

 

Table 1. The 79 features of the Cognitive Tutor Lesson Variation Space (CTLVS1). Features distilled 

through data mining (as opposed to hand-coding) are marked with *. 

Difficulty, Complexity of Material, and Time-Consumingness 

1*. Avg. % error 2. Lesson consists solely of review of material 
encountered in previous lessons 

3*. Avg. probability that student will learn a skill at 

each opportunity to practice skill [cf. 10] 

4*. Avg. initial probability that student will know a 

skill when starting tutor  [cf. 10] 

5. Avg. # of “distractor” values per problem 6. % of problems where “distractor” values given 

7. Max number of mathematical operators needed 

to give correct answer on any step in lesson 

8. Maximum number of mathematical operators 

mentioned in hint on any step in lesson 

9. Intermediate calculations must be done outside 

of software (mentally or on paper) for some 
problem steps (ever occurs) 

10. % of hints that discuss intermediate calculations 

that must be done outside of software 

11*. Total number of skills in lesson 12*. Avg. time per problem step 

13. % of problem statements that incorporate 

multiple representations (ex: diagram and text) 

14. % of problem statements that use same numeric 

value for two constructs 

15. Avg. number of distinct/separable questions or 

problem-solving tasks per problem 

16. Maximum number of distinct/separable 

questions or problem-solving tasks in any problem 

17. Avg. # of numbers manipulated per step 18. Avg. # of times each skill repeated per problem 

19*. Number of problems in lesson 20*. Avg. time spent in lesson 

21. Avg. number of problem steps per problem 22. Minimum number of answers or interface 

actions required to complete problem 

Quality of Help Features 

23*. Avg. amount that reading on-demand hints 

improves performance on future opportunities to 

use skill [cf. 9] 

24*. Avg. Flesch-Kincaid Grade Reading Level  

[12] of hints, a measure of how difficult the hints 

were to read (in terms of vocabulary and grammar) 

25. % of hints using inductive support, going from 

example to abstract concept/principle 

26. % of hints that explicitly explain concepts or 

principles underlying current problem-solving step 

27. % of hints that explicitly refer to abstract 

principles 

28.  On average, # of hints must student request 

before concrete features of problems are discussed 

29. Avg. number of hint messages per hint 

sequence that orient student to math sub-goal 

30. % of hints that explicitly refer to scenario 

content (instead of solely math constructs) 

31. % of hint sequences that use terminology 

specific to this software 

32. % of hint messages which refer solely to 

interface features 

33. % hint messages that teacher can’t understand 34. % of hint messages with complex noun phrases 

35. % of skills where the only hint message 

explicitly tells student what to do 

 

Usability 



36. First problem step in first problem of lesson is 

either clearly indicated, or follows established 

convention (such as top-left cell in worksheet) 

37. % of steps where student must change a value in 

a cell that was previously labeled as correct 

(example: estimation lessons) 

38. After student completes step, system indicates 
where in interface next action should occur 

39. % of steps where it is necessary to request hint 
to figure out what to do next 

40. Not immediately apparent what icons in toolbar 

mean 

41. Screen cluttered with interface widgets;  difficult 

to determine where to enter answers 

42. Problem-solving task is not immediately clear 43. Format of answer changes between problem 
steps without clear indication 

44. If student has skipped step, and asks for hint, 

hints refer to skipped step without explicitly 

highlighting  in interface (ever seen) 

45. If student has skipped step, and asks for hint, 

skipped step is explicitly highlighted in interface 

(ever seen) 

Relevance and Interestingness 

46. % of problems which appear to use real data 47. % of problem statements with story content 

48. % of problem statements with scenarios 

relevant to the "World of Work" [cf. 11] 

49. % of problem statements with scenarios relevant 

to students’ current daily life 

50. % of problem statements which involve fantasy 

(example: being a rock star) 

51. % of problem statements which involve concrete 

details unfamiliar students (example: dog sleds) 

52. % of problem statements which involve 

concrete people/places/things 

53. % of problem statements with text not directly 

related to problem-solving  task 

54. Avg. number of person proper names in 

problem statements 

 

Aspects of “buggy” messages notifying student why action was incorrect 

55. % of buggy messages that indicate concept 
student demonstrated misconception in 

56. % of buggy messages that indicate how 
student’s action was result of procedural error 

57. % of buggy messages that refer solely to 

interface action 

58. Buggy messages given by icon, which can be 

hovered over to receive buggy message 

Design Choices Which Make It Easier to Game the System 

59. % of multiple-choice steps 60. Avg. number of choices in multiple-choice 

61. % of hint sequences with final “bottom-out” 

hint that explicitly tells student  what to enter 

62. % of hint sequences with final hint that 

explicitly tells student  what the answer is, but not 

what/how to enter it in the tutor software 

63. Hint gives directional feedback (example: “try 

a larger number”) (ever seen/boolean) 

64. Avg. number of feasible answers for each 

problem step 

Meta-Cognition and Complex Conceptual Thinking  

(or features that make them easy to avoid) 

65. Student is prompted to give self-explanations 66. Hints ever give explicit metacognitive advice 

67. % of problem statements that use common 

word to indicate  mathematical operation to use 
(example: “increase”) 

68. % of problem statements that indicate  math 

operation with uncommon terminology (“pounds 
below normal” for subtraction) 

69. % of problem statements that explicitly tell 

student which math operation to use (“add”) 

 

Software Bugs/Implementation Flaws (generally rare) 

70. % of problems where grammatical error is 

found in problem statement 

71. Reference in problem statement to interface 

component that does not exist (ever occurs) 

72. Student can advance to new problem despite 

still visible errors 

73. Hint recommends student do something which is 

incorrect or non-optimal (ever occurs) 

74. % of problem steps where hints are unavailable  

Miscellaneous 

75. Hint requests that student perform some action 76*. Avg. length of text in popup widgets 

77. Value of answer is very large (over four 

significant digits)  (ever seen) 

78. % of problem statements which include question 

or imperative 

79. Student selects action from menu, tutor 

software performs action (as opposed to typing in 

answers, or direct manipulation) 

 



3. Analysis Method and Results 

The goal of our analyses was to determine how well each difference in lesson 

features predicts how much students will game in a specific lesson. To this end, we 

combined the labels of the CTLVS1 features for each of the 22 Cognitive Tutor 

Algebra lessons studied, with the assessments of how often each of the 58 students in 

the data set gamed the system in each of the 22 lessons.  

Our first step in conducting the analysis was to determine if the 79 features of the 

CTLVS1 grouped into a smaller set of categories. One option would have been to have 

used the categories of features within Table 1 – however, it is not clear that the features 

in each category would be inter-correlated, as they cover different aspects of large 

constructs, and the assignments to categories are in any event approximate. Instead, we 

empirically grouped the 79 features of the CTLVS1 into 6 factors, using Principal 

Component Analysis (PCA) (a similar pattern was observed with other numbers of 

factors), a common method for distilling inter-item structure.  

We then analyzed whether the correlation between any of these 6 factors and the 

frequency of gaming the system was significant. Of the 6 factors, one was statistically 

significantly associated with the choice to game the system, r
2
 = 0.29 (e.g. accounting 

for 29% of the variance in gaming), F(1,19)= 7.84, p=0.01. The factor loaded strongly 

on eight features associated with more gaming:  

• 14: The same number being used for multiple constructs 

• 23-inverse: Reading hints does not positively influence performance on future 

opportunities to use skill 

• 27: Proportion of hints in each hint sequence that refer to abstract principles 

• 40: Not immediately apparent what icons in toolbar mean 

• 53-inverse: Lack of text in problem statements not directly related to the 

problem-solving task, generally there to increase interest 

• 63-inverse: Hints do not give directional feedback (“try a larger number”) 

• 71-inverse: Lack of implementation flaw in hint message. Flaw is a reference 

to a non-existent interface component 

• 75: Hint requests that student perform some action 

 

In general, several of the features in this factor appear to correspond to a lack of 

understandability in the presentation of the content or task (23-inverse, 40, 63-inverse), 

as well as abstractness (27) and ambiguity (14). Curiously, feature 71-inverse (the lack 

of a specific type of implementation flaw in hint messages, which would make things 

unclear) appears to point in the opposite direction – however, this implementation flaw 

was only common in a single rarely gamed lesson, and thus may be a statistical artifact. 

Feature 53-inverse appears to represent a different construct – the attempt to 

increase interestingness. The fact that feature 53 was associated with less gaming 

whereas more specific interest-increasing features (features 46-52) were not 

significantly related may suggest that it is less important exactly how a problem 

scenario attempts to increase interest, than it is important that the problem scenario has 

some content in it that is not strictly mathematical. 

Taken individually, two of the constructs in this factor were significantly (or 

marginally significantly) associated with gaming. Feature 53-inverse (text in the 

problem statement not directly related to the problem-solving task) was associated with 

significantly less gaming, r2 = 0.19, F(1,19) = 4.59, p = 0.04. Feature 40 (when it is not 



immediately apparent what icons in toolbar mean) was marginally significantly 

associated with more gaming, r
2
 = 0.15, F(1, 19)=3.52, p=0.08. The fact that other top 

features in the factor were not independently associated with gaming, while the factor 

as a whole was fairly strongly associated with gaming, suggests that gaming occurs 

primarily when more than one of these features are present. Only one other taxonomy 

feature was significantly associated with gaming: Feature 36, where the location of the 

first problem step is not directly indicated and does not follow standard conventions 

(such as being the top-left cell of a worksheet), r2 = 0.20, F(1,19)=4.97, p=0.04. This 

feature, like many of those in the gaming-related factor, implies an unclear or 

confusing lesson.  

Further analysis indicated that Feature 53-inverse can be meaningfully split into 

two sub-features: Whether there was any text at all in the problem statement that was 

not directly related to the problem-solving task (binary feature), and how much text 

there was, among problems that did have at least some text (numerical feature). In both 

cases, less text was associated with more gaming. A model that splits out these sub-

features (in addition to the factor and Feature 36) is significantly better at predicting 

gaming than a model which does not split these sub-features, F(1,19)=6.14, p=0.02.   

The full model, including the factor and all other significant features, explains 56% 

of the variance in gaming (r
2
 = 0.56), over five times the degree of variance in gaming 

explained by any prior study predicting gaming with student individual differences. 

4. Discussion and Conclusions 

In this paper, we have studied which specific attributes of Cognitive Tutors lead to 

differences in how much students game the system, by developing a taxonomy of ways 

that tutors can differ from each other, labeling a set of tutor lessons with reference to 

this set of features, and identifying which features are associated with gaming. In past 

studies predicting gaming with student individual differences, the strongest 

relationships between student individual differences and gaming were around r
2
 = 0.09. 

In this study, one difference between lessons achieved an r2 of 0.20, by itself explaining 

about twice as much of the variance in gaming as any previously studied difference 

between students, and a full model based on the taxonomy achieved an r
2
 of 0.56. 

The results suggest that gaming the system appears to be significantly more 

frequent in lessons that are abstract, ambiguous, and have unclear presentation of the 

content or task, a finding that coheres with the previous finding that students tend to 

display confusion shortly before gaming [15]. The finding that less gaming occurs in 

lessons with non-task related text in the problem statement (included to increase 

interest) coheres with the previous finding that boredom also precedes gaming [15].  

Beyond this confirmation of earlier results, these findings offer concrete 

prescriptions for how tutor lessons can be re-designed to reduce gaming, suggesting 

that we may be able to reduce gaming in intelligent tutoring systems substantially 

through the following feasible steps: First, re-designing confusing toolbars to make 

them easier to understand, perhaps with pop-up messages for each toolbar item 

explaining how it is used. Second, identifying specific hints that do not seem to 

effectively improve student future performance [cf. 9], and re-designing them. Third, 

replacing textual references to abstract principles in hints with other ways of 

communicating abstract principles, such as diagrams or interactive examples. Fourth, 

adding more interest-increasing text to problem scenarios. 



These prescriptions can be tested in future research, by taking a frequently-gamed 

lesson with these features, and re-designing the lesson as these findings suggest. If the 

resultant lesson is gamed significantly less, and students have better learning, we will 

have additional confirmation of the hypotheses generated here for why students game, 

and an actionable plan for how to reduce gaming in interactive learning software.  

Beyond this, we believe that the methods used in this paper point to a new way that 

student-tutor interactions can be studied in a deep fashion. The creation of taxonomies 

such as the CTLVS1 will enable an increasing number of data mining analyses about 

how differences in educational software concretely influence student behavior. In turn, 

these analyses will enable the development of more precise and validated guidelines for 

the design of educational software.  
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