
PFPL Supplement: Inductive and Coinductive Types in FPC∗

Robert Harper

Fall 2023

1 Introduction

FPC is an extension of PCF with (unrestricted) recursive types, rec(t . τ), that represent solutions
of type equations “up to isomorphism” mediated by fold and unfold:

fold(−) : {rec(t . τ)/t}τ → rec(t . τ)

unfold(−) : rec(t . τ) → {rec(t . τ)/t}τ

Recursive types are powerful. They may be used to define self-referential types, including recur-
sive function types, and are sufficient to encode the untyped λ-calculus. Divergent computations,
and therefore partial functions, are therefore unavoidable in FPC: as soon as recursive types are
admitted, divergence is too.

These examples all involve type constructors t . τ in which t occurs in a “negative” position (for
example, as the domain of a function type). What if t . τ is instead a positive type operator? What
are the values of such a type? The answer is, unsurprisingly, sensitive to whether the dynamics is
eager or lazy. For example, consider the type operator t . unit+ t. In an eager setting the type
rec(t . unit+ t) has as values the natural numbers, as in the inductive case. Because the range
of significance of variables is confined to values, there is nothing further to say—there are always
divergent computations, but these do not infect the values of a type. In a lazy setting the same
type has a rather different interpretation: it includes not only the natural numbers extended with a
point at infinity (the infinite stack of successors), but also any divergent computation of that type
(any infinite loop), and all finite successors of such a computation. Thus it is neither the natural
numbers nor the co-natural numbers! Were the successor operation (encoded by a folded injection)
deemed strict (evaluates its argument), the type would be cut down to the natural numbers plus
any divergent computation of that type. And there is no avoiding it: in a lazy setting divergence
inhabits every type, because in such languages divergence is a value.

On the other hand there is, without further provision, no way to represent the conatural numbers
as a recursive type either. However, whereas there is no modification of a lazy language to represent
inductive types, by adding suspension types to an eager language one may represent all of the types
representable in a lazy language using suspensions. For example, the type rec(t . susp(unit+ t))
captures the case of the near-as-possible representation of the natural numbers in a lazy language.
By interposing suspensions on the summands we fully lazy case can be reproduced as well, as can
in general any level of “degrees” of laziness one may seek. Thus, the eager setting strictly dominates

∗© 2020 Robert Harper. All Rights Reserved.

1

the expressive power of the lazy setting by providing a much finer grain of control over the use of
laziness, if any, allowing a wider range of expressive power than in the lazy case.

2 Inductive Types in Eager FPC

As illustrated in the introduction, under the eager dynamics for FPC the recursive type rec(t . τ)
is the inductive type µ ≜ µ(t . τ). To see this it suffices to define the introduction and elimination
forms for the inductive type in terms of those of the recursive type, and to check that they behave
as expected.

First, the introductory form for the recursive type, fold(−), serves as the introductory form
for that type viewed as an inductive type. Note that under the eager interpretation fold(e) is a
value only if e is a value. Second, the eliminatory form rec[t . τ](e ; x . e′) : ρ, may be defined as
the application, R(e), of the recursive function

R ≜ fun r(x:µ):ρ is {map[t . τ](x . ap(r ; x))(unfold(x))/x}e′.

When v is a value,

R(fold(v)) 7−−→∗ {map[t . τ](x . ap(R ; x))(v)/x}e′,

which is essentially equivalent to

R(fold(v)) 7−−→∗ {rec[t . τ](v ; x . e′)/x}e′,

as specified for inductive types. For example, in the case of the type operator t . unit+ t, the
recursor steps to a case analysis distinguishing zero from successor, and performing the recursive
call on the predecessor in the latter case.

3 Coinductive Types in Lazy FPC

As suggested in the introduction under the lazy interpretation the recursive type rec(t . τ) contains
any divergent computation, plus all further elements constructed with it. Indeed, the eliminatory
form of the recursive type diverges when applied to a divergent element, because it must evaluate
its principal (and only) argument. The generator is defined by taking gen[t . τ](e ; x . e′) to be the
application, G(e), of the recursive function

G ≜ fun g(x:σ):ν is fold(map[t . τ](x . g(x))(e′)).

Under lazy evaluation the application G(e) steps immediately to a value, because fold(e) is always
a value. And indeed one may check that

unfold(G(e)) 7−−→∗ map[t . τ](x . G(x))({e/x}e′),

which is morally equivalent to the transition

unfold(G(e)) 7−−→∗ map[t . τ](x . gen[t . τ](x ; x . e′))({e/x}e′).

2

4 Not Conversely

Does the definition of the generator give a coinductive interpretation in the eager case? No. Consider
the recursive type ρ ≜ rec(t . unit+ t). Were it coinductive, the function

I ≜ λ (x : ρ) gen[t . unit+ t](x ; y . unfold(y))

would be the identity function, which it is not under the by-value dynamics. For example, the
application

I(gen[t . unit+ t](⟨⟩ ; _ . r · x))

diverges, rather than computing to a value of the recursive type.
Does the definition of the recursor give an inductive interpretation the lazy case? No, not even

if folding and injection are eager. For example, were the recursive type ρ ≜ rec(t . unit+ t)
inductive, then it would also have elements ⊥, fold(⊥), fold(r · ⊥), fold(r · fold(r · ⊥)), and
so on. All of these would be sent to ⊥ by the function

I ≜ λ (x : ρ) rec[t . unit+ t](x ; y . fold(y)),

which would be the identity in the inductive case.

References

Robert Harper. Practical Foundations for Programming Languages. Cambridge University Press,
Cambridge, England, Second edition, 2016.

3

