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Abstract 
 

A large set of machine learning and pattern classification algorithms trained and 

tested on KDD intrusion detection data set failed to identify most of the user-to-

root and remote-to-local attacks, as reported by many researchers in the literature.  

In light of this observation, this paper aims to expose the deficiencies and 

limitations of the KDD data set to argue that this data set should not be used to 

train pattern recognition or machine learning algorithms for misuse detection for 

these two attack categories.  Multiple analysis techniques are employed to 

demonstrate, both objectively and subjectively, that the KDD training and testing 

data subsets represent dissimilar target hypotheses for user-to-root and remote-to-

local attack categories.  These techniques consisted of switching the roles of 

original training and testing data subsets to develop a decision tree classifier, 

cross-validation on merged training and testing data subsets, and qualitative and 

comparative analysis of rules generated independently on training and testing data 

subsets through the C4.5 decision tree algorithm.  Analysis results clearly suggest 

that no pattern classification or machine learning algorithm can be trained 

successfully with the KDD data set to perform misuse detection for user-to-root or 

remote-to-local attack categories.  It is further noted that the analysis techniques 

employed to assess the similarity between the two target hypotheses represented 

by the training and the testing data subsets can readily be generalized to data set 

pairs in other problem domains.   
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1. Introduction 

The Knowledge Discovery in Databases (KDD) 1999 data set, which was introduced for 

the 1999 KDD Cup contest, has been recently utilized extensively for development of intrusion 

detection systems through a suite of pattern recognition and machine learning algorithms for four 

main attack categories: namely Probing, Denial of Service (DoS), User-to-Root (U2R), and 

Remote-to-Local (R2L).  Such efforts, as reported in the recent literature, suggests relatively 

poor performance profile for at least part of the functionality spectrum for the attempted 

intrusion detection systems.  Specifically, pattern recognition and machine learning algorithms 

trained with the KDD training data subset and tested on the KDD testing data subset failed to 

detect majority of U2R and R2L attacks within the context of misuse detection.  In fact, not a 

single classification algorithm whose performance even comes close to an acceptable level, for 

all practical purposes, has been reported in the literature to date.   Some of the researchers did try 

to explain the dismal performance figures obtained through reasons associated with training 

algorithms themselves, the training process itself or some other factor, but not the potential 

limitations of the data subsets themselves [1,2].  This observation points at an important issue to 

address since the KDD data set is one of few in the domain of intrusion detection and as such 

attracts significant attention from the researchers due to its well-defined and readily accessible 

nature [1,3,4,5,6,7,8,9].  It then becomes relevant and important to establish what can and what 

cannot be done with this data set.  

This paper exposes the deficiencies and limitations associated with the representation of 

U2R and R2L attack categories in the KDD data set for misuse detection context and attempts to 

explain why the KDD data set should not be used to train pattern recognition or machine learning 

algorithms for these two attack categories.  Multiple analysis techniques will be used to 
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demonstrate, both objectively and subjectively, that the KDD training and testing data subsets 

represent dissimilar hypotheses1 for the U2R and R2L attack categories within a misuse 

detection context.  Hence, any pattern classification and machine learning algorithm that 

employs the KDD training data subset to learn the attack signatures2 of these categories is very 

likely to demonstrate poor performance on the KDD testing data subset. 

Section 2 discusses various U2R and R2L attacks present in the KDD training and testing 

data subsets while also presenting the distribution of attack patterns.  Section 3 presents a 

literature survey, which highlights various algorithms applied in the recent past to the KDD data 

set for U2R and R2L attack categories.  Section 4 describes each of the three analysis techniques 

employed to show why the KDD data set cannot be leveraged to train algorithms from the 

domain of pattern recognition and machine learning for U2R and R2L attack categories for 

misuse detection.  Section 4.1 discusses the performance of C4.5 decision tree algorithm on the 

KDD training and testing data subsets.  Section 4.2 discusses the cross-validation approach, 

which is applied to merged KDD training and testing data subsets using multiple classifier 

algorithms including a Binary Tree classifier, a Multi Layer Perceptron neural network classifier, 

and a Gaussian classifier.  Section 4.3 presents a qualitative comparison of the various rules 

created through the C4.5 algorithm on the KDD training and testing data subsets.  Finally, 

Section 5 concludes this paper by highlighting strengths and weaknesses of the KDD data set and 

suggesting its appropriate use within the context of intrusion detection. 

 

 
                                                 
1 A hypothesis is the estimate of a target concept or function learned through a set of training examples of that target 
concept or function [22]. 
2 An attack signature is a distinctive complex pattern used to detect system penetration, which may involve 
comparison of audit and log data from a variety of sources within the computing platform or infrastructure. 
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2. KDD Data Set: U2R and R2L Attack Categories 

In 1998, the United States Defense Advanced Research Projects Agency (DARPA) 

funded an “Intrusion Detection Evaluation Program (IDEP)” administered by the Lincoln 

Laboratory at the Massachusetts Institute of Technology.  The goal of this program was to build 

a data set that would help evaluate different intrusion detection systems (IDS) in order to assess 

their strengths and weaknesses.  The objective was to survey and evaluate research in the field of 

intrusion detection.  The computer network topology employed for the IDEP program involved 

two sub networks: an “inside” network consisting of victim machines and an “outside” network 

consisting of simulated real-world Internet traffic.  The victim machines ran Linux, SunOSTM, 

and SolarisTM operating systems.   Seven weeks of training data and two weeks of testing data 

were collected.  Testing data contained a total of 38 attacks, 14 of which did not exist in the 

training data.  This was done to facilitate the evaluation of potential IDSs with respect to their 

anomaly detection performance.  Three kinds of data was collected: transmission control 

protocol (TCP) packets using the “tcpdump” utility, basic security module (BSM) audit records 

using the Sun SolarisTM BSM utility, and system file dumps.  This data set is popularly known as 

DARPA 1998 data set [10].  

One of the participants in the 1998 DARPA IDEP [11], used only TCP packets to build a 

processed version of the DARPA 1998 data set [10].  This data set, named in the literature as 

KDD intrusion detection data set [12], was used for the 1999 KDD Cup competition, which 

allowed participants to employ it for developing IDSs.  The KDD data set was consequently 

submitted to the University of California at Irvine “Knowledge Discovery in Databases” archive, 

and consists of approximately 5 million training and 0.3 million testing records.  Both training 

and testing data subsets cover four major attack categories: Probing (information gathering 
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attacks), Denial-of-Service (deny legitimate requests to a system), User-to-Root (unauthorized 

access to local super-user or root), and Remote-to-Local (unauthorized local access from a 

remote machine).  Each record consists of 41 features [2], where 38 are numeric and 3 are 

symbolic, defined to characterize individual TCP sessions.  Data mining techniques and domain 

knowledge were utilized to formulate features for different connections using the TCP packets 

[11,13]. 

A User-to-Root (U2R) attack is characterized by a process whereby any normal system 

user illegally gains access to the super-user privileges.  Generally, a system defect or bug is 

exploited to execute a successful privilege transition from user level to root level.  Buffer 

overflows are the most common type of attack mechanisms in this category.  Other U2R attacks 

take advantage of root programs that do not manage temporary files in the system properly.  

Some U2R attacks occur because of an exploitable race condition in a single program, or two or 

more programs executing concurrently.  Though these defects or bugs can be relatively easily 

patched, any new attacks with previously unknown mechanisms can result in insurmountable 

damage to the system, as the malicious user attains full control of the victim machine at the root 

level. 

Generally most machines are accessible over the network through the Internet, but only 

authorized users are intended to be able to access the machines remotely.  A Remote-to-Local 

(R2L) attack occurs when an attacker who does not have an account on the victim machine, 

gains local access as a user of the victim machine by sending network packets through standard 

protocols like TCP/IP or UDP.  There are many ways in which an R2L attack can be executed.  

Buffer overflow vulnerabilities in some networking programs like sendmail, imap, or named 

can result in local access on the victim.  Attacks like dictionary, guest, ftp-write, and 
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Xsnoop exploit system misconfigurations.  Some attacks involve social engineering, an 

example being the Xlock attack, which is a Trojan horse program and used to initiate the 

screensaver on Solaris machines in order to capture the user’s password and send it to the 

attacker. 

The KDD training data subset has  52 U2R and 1126 R2L records, while the testing data 

subset has 228 U2R and 16189 R2L records.  Four new U2R attacks are present only in the KDD 

testing data subset and records for these new attacks constitute around 80% of all U2R records in 

the testing data subset.  Similarly, seven new R2L attacks are present only in the KDD testing 

data subset, and more than 60% of R2L records in the KDD testing data subset belong to these 

new R2L attacks.   

For the two attack categories (U2R and R2L), many attacks and their records are present 

only in the testing data subset.  Misuse detection is thus difficult, unless signatures show 

similarity between the attacks common to both the training and the testing data subsets and those 

new ones existing only in the testing data subset.  It is therefore important to determine the 

similarity between attack signatures in the KDD training and testing data subsets to assess an 

upper bound on the expected misuse detection performance of a classifier algorithm on these 

data subsets.   

 

3.  Misuse Detection Performance for U2R and R2L Attack Classes: 
Literature Survey 

 
A large number of pattern classification and machine learning algorithms have been 

applied to the KDD data set in order to develop intrusion detection systems for U2R and R2L 

attacks.  This section presents a brief overview of these algorithms, their application to the KDD 

data set, and their performance results on the U2R and R2L attack categories. 
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C5.0 decision trees were employed by the winner of the 1999 KDD Cup, an intrusion 

detection competition [14].  The training process utilized 50 data subsets each having all records 

from both the U2R and the R2L attack categories, 4,000 records from the Probing category, 

80,000 records from normal category, and 400,000 records from the DoS category.  This was 

done to make sure that there were sufficient records present from each attack category to build 

decision tree models.  For each of the above training data subsets, the researchers created ten 

C5.0 decision trees using error cost and boosting options.  The final predictions were computed 

on top of the 50 predictions each obtained from one decision tree, by minimizing the conditional 

risk (sum of error-costs multiplied by class-probabilities).  However, this classifier only detected 

10% of the U2R records and 8% of the R2L records from the KDD testing data subset.  It had a 

false alarm rate 0%. 

Another machine learning algorithm applied to the KDD data set was Kernel Miner [2].  

Kernel Miner is a data mining tool based on a global optimization model for classifying data and 

predicting the results of new cases using automatically generated decision trees (versus a single 

tree generated by the C4.5 algorithm).  It does this by initially constructing locally optimal set of 

decision trees (called a decision forest) from which the optimal subset of trees (called the sub-

forest) is selected for predicting new cases.  Levin used a random sample of 10% of the KDD 

training data for the training data subset.  A multi-class detection approach was used to detect 

different attack categories in the KDD data set.  The final decision trees scored very high 

detection rates for all classes in the entire training data subset.  Out of 311,029 test examples in 

the KDD data set, the classifier was able to correctly categorize 289,006 records, i.e. 92.92%.  

However, the classifier achieved detection rates of 11.84% and 7.32% for the U2R and the R2L 

attack categories, respectively.  False alarm rates of 38.64% and 2.5% were generated for the 
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U2R and the R2L attack categories, respectively, on the entire testing data subset.  Finally, the 

classifier was able to detect only 11.2% of the new attack examples present in the testing data 

subset:  hence the tool failed at anomaly detection as well.  ‘Over-fitting’ was suggested as one 

of the reasons for the dismal performance, where the number of records in the U2R and the R2L 

attack categories were significantly less in the training data subset than in the testing data subset. 

Agarwal and Joshi [1] proposed a two-stage general-to-specific framework for 

developing a rule-based (PN-rule) classifier model on a data set that has widely different class 

distributions in the training data set.   The proposed model consists of positive rules (P-rules) 

that predict the presence of the class, and negative rules (N-rules) that predict the absence of the 

class.  In the first stage, P-rules are created using the training data to increase the probability of 

detection.  After that, a set of N-rules is created to reduce the false-alarm rate for the learned 

classifier model.  Finally all the P-rules and N-rules are applied in the sequence in which they 

were created, to the test data.  The PN-rule method approach was applied on the KDD data set to 

develop a classifier model, which was able to detect only 6.6% of U2R attacks and 10.7% of 

R2L attacks in the KDD testing data subset.  The false alarm rate was negligible.  The testing 

data subset contained 17 new attack records not present in the training data subset.  For known 

attacks (misuse detection only), PN-rule detected 23.1% of records in the U2R attack category 

and 28.9% of records in the R2L attack category, which is still very low for all practical 

purposes. 

Yeung and Chow [9] proposed a novelty detection approach using non-parametric 

density estimation based on Parzen-window estimators with Gaussian kernels.  Parzen [23] 

introduced a non-parametric approach for estimating the probability density function p(x) from a 

set of n points represented by vectors xi, where i=1,2,…,n, using kernel functions.  The estimated 
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probability function p(x) can be expressed as a mixture of radially symmetrical Gaussian kernels 

with common variance ̌ 2 as 
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where d is the dimensionality of the feature space.  Two sets of normal (attack free) data are 

required to build a model.  The first set of normal data is used to build the non-parametric 

density estimation model M.  The second set of normal data is used to define thresholds for the 

model.  It is important to note that this non-parametric approach does not need training as it 

relies on estimating probability distribution.  The model M is used to find whether test pattern x 

belongs to M using the Bayes decision rule.  This novelty detection approach was employed to 

detect attack categories in the KDD data set.  Symbolic features were represented by a group of 

binary-valued variables.  The resulting feature vectors used to test this technique had 119 

dimensions.  30,000 randomly sampled normal records from the KDD training data subset were 

used as training data to estimate the density of the model.  Another 30,000 randomly sampled 

normal records (also from the KDD training data subset) formed the threshold determination set, 

which had no overlap with the training data subset.  Their classifier detected 93.57% and 31.17% 

of U2R and R2L attack records, respectively, in the KDD testing data subset.  The advantage of 

this technique is that no intrusion data is required: this effectively also introduces an anomaly 

detection capability.  On the other hand, the disadvantage is that it cannot differentiate whether 

the intrusion belongs to a DoS or a U2R attack, etc.  It can only indicate intrusive activity.  

Hence it cannot be used for multi-class detection, as required for the KDD data set.  

Furthermore, an increase in the false alarm rate can also be expected if the normal data is not a 

sufficiently good model.   
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Sabhnani [15] applied numerous pattern classification and machine learning algorithms 

on the KDD data set to develop intrusion detection systems.  Numerous classifiers including a 

multilayer perceptron neural network, an incremental radial basis function neural network, a 

Gaussian classifier, a K-means classifier, a nearest neighbor classifier, a C4.5 decision tree, a 

Fuzzy ARTMAP classifier, a Leader cluster, and a Hyper sphere algorithm were developed.  

Each classifier model was built using the KDD training data subset and then evaluated using the 

KDD testing data subset.  None of the classifiers were able to detect more than 25% of the attack 

records with acceptable false alarm rates.     

The literature survey indicates that pattern recognition and machine learning algorithms 

trained and tested with the KDD data set demonstrate poor performance in terms of probability 

of detection versus the false alarm rate for the U2R and the R2L attack categories within the 

context of misuse detection.  Although some researchers [1,2] suggested reasons for this failure, 

none have presented a conclusive and convincing argument to explain it to date.  We believe 

certain intrinsic features of the KDD data set might explain why pattern classification and 

particularly trainable algorithms fail to demonstrate a significant detection rate for the U2R and 

R2L attack categories.  The following sections explain why trainable algorithms that employ the 

KDD data set fail for the U2R and R2L attacks.  Both objective and subjective analyses are used 

to demonstrate the deficiencies and limitations associated with the KDD data set. 

 

4. Analysis of KDD Data Set 

This section describes analyses demonstrating that the KDD training and testing data 

subsets represent dissimilar target hypotheses for the U2R and R2L attack categories.  This 

characteristic violates the basic requirement for any trainable classifier algorithm to succeed.  



Page 11 of 24 

Three separate procedures are applied for the analysis and the following sections elaborate on the 

procedures and results.   

In Section 4.1, one of the procedures requires two scenarios to be studied: in one case, the 

original KDD training data subset is employed to induce a rule set through the C4.5 algorithm, 

whose performance is tested on the original KDD testing data subset.  The second case involves 

utilizing the original KDD testing data subset as the training data and inducing a set of rules 

through the C4.5 algorithm.  Performance of the decision tree is tested on the original KDD 

training data subset.  These two cases collectively suggest whether or not the target hypotheses 

represented by the two KDD data subsets are similar.   

In Section 4.2, cross-validation approach will be leveraged to evaluate if two data subsets 

represent similar target hypotheses.  Two KDD data subsets will be merged to form a data 

superset which will be randomly partitioned into five equal-sized subsets or folds.  Out of five 

folds, four will be used to develop classifiers and the fifth one will be employed to test 

performance.  The idea is to assess if 80% of records in the merged superset (compared to all the 

records in the KDD training data subset) possesses sufficient information to develop a high-

performance classifier.   

Section 4.3 presents a qualitative analysis of knowledge represented by two KDD data 

subsets by comparing the two rule sets induced separately from each data subset.  Since rule sets 

offer a convenient means for human interpretability of knowledge entailed by the associated data 

subset, a comparison between two rule sets is feasible to assess the similarity in knowledge, and 

consequently in target hypotheses represented by the two data subsets.    
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No preprocessing is performed on the KDD data set to ensure that the rules are created 

without any bias from scaling and other transformations, while noting that rules created from the 

original KDD data set will tend to be more intelligible. 

 

4.1 C4.5 Decision Tree Algorithm Performance on KDD Data Set for U2R and R2L 

Attack Categories 

The C4.5 algorithm [16] creates a decision tree from training data, while trying to 

maximize the probability of detection and reduce errors for each class in training data.  In this 

study, two separate trees were created using the KDD data set.  One decision tree was created 

using the KDD training data subset and the second one using the KDD testing data subset.  The 

decision tree created using the KDD training data subset was tested on the KDD testing data 

subset and vice versa.  After creating the decision tree models for the U2R and R2L attack 

categories, optimized rules were extracted using the C4.5rules utility, which is provided with 

the C4.5 decision tree software tool [17].  There were approximately 1000 nodes in the unpruned 

decision trees for the R2L models and 300 nodes for the U2R models. 

Table 1 compares models for the U2R category with two classes, U2R and Not U2R.  

Model 1 used the KDD training data subset for creating the decision tree and Model 2 used the 

KDD testing data subset.  Similarly, Table 2 compares models to detect two classes, R2L and 

Not R2L.  The following notation is used in these tables: ‘KDD-R’ – KDD training data subset, 

‘KDD-T’ – KDD testing data subset.  Similar notation is used in Table 2. 
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Model 1 Model 2  
Training Testing Training Testing 

Data Subset KDD-R KDD-T KDD-T KDD-R 
Number of Not-U2R Records 1074938 310797 310782 1073987 
Not-U2R Record Detection Rate 99.99% 99.99% 99.99% 99.91% 
Number of U2R Records 40 14 222 23 
U2R Record Detection Rate 76.92% 6.14% 97.37% 44.23% 

 
Table 1: Comparison of C4.5 Decision Tree Performance for the U2R Attack Category 

 
 

Model 1 Model 2  
Training Testing Training Testing 

Data Subset KDD-R KDD-T KDD-T KDD-R 
Number of Not-R2L Records 1073988 294720 292987 1060386 
Not-R2L Record Detection Rate 99.99% 99.96% 98.79% 98.73% 
Number of R2L Records 986 876 11859 43 
R2L Record Detection Rate 98.70% 5.41% 73.25% 4.30% 

 
Table 2: Comparison of C4.5 Decision Tree Performance for the R2L Attack Category 
 
 

Tables 1 and 2 indicate that most of the non-attack records are detected with high 

probability.  This result is expected because there are a large number of records in this class.  For 

attack records, it can be seen that there are large variations between the performances of the two 

models.  For example, Model 1 for U2R detects 76.92% of attack records in the training data 

subset and detects only 6.14% in the testing data subset.  Model 2 for the U2R category detects 

97.37% of attack records in the training data subset and detects only 44.23% in the testing data 

subset. A similar observation can be made for the R2L category.  These results show that the 

model built from the KDD training data subset fails when tested on the KDD testing data subset.  

Similarly, the model built on the KDD testing data subset fails when tested with the KDD 

training data subset.  This failure happens only when the attack-specific information or signature 

present in training and testing data subsets represent sufficiently dissimilar hypotheses for the 

target concept or function to be learned.  If a classifier model shows promising results for 
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training data, it should perform reasonably well on testing data if training and testing data subsets 

represent reasonably similar hypotheses.   

When performance of the two models, Model 1 and Model 2, are evaluated within the 

same context, the results suggest that the U2R and R2L attack signatures in the KDD training 

and testing data subsets are not similar.  This empirical finding is also justified by the way the 

KDD data set was created.  One of the features of the KDD data set is that the testing data subset 

consists of many U2R and R2L attack signatures that are not present in the KDD training data 

subset.  This feature exists to facilitate performance assessment of anomaly detection algorithms.  

However this feature is so prominently established in the KDD data set that traditional pattern 

recognition and machine learning algorithms are provided with diminished and (highly) distorted 

attack signatures in the training data subset, which fails to offer a reasonable framework for 

training.  A fairly representative class samples are required to exist in the training data subset for 

pattern recognition and machine learning algorithms to achieve acceptable classification 

accuracy on the testing data subset. 

 

4.2 Performance of Classifiers on Merged Data Set Using A Cross-Validation Approach 

Recognizing the lack of similarity between attack signatures in the KDD training and 

testing data subsets, reported in Section 4.1, a new experiment was designed to further validate 

this empirical finding.  In this experiment, the KDD training and testing data subsets were 

merged into one data set.  This merged data set was partitioned into five subsets such that each 

subset contained approximately equal number of records, randomly selected, from different 

classes of the merged data set. 
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Five-fold cross-validation approach was applied to test the performance of the classifier 

algorithms on the merged data set.  To build classifier models for the U2R attack category, the 

records were labeled as either U2R or Not U2R.  The KDD training and testing data subsets were 

merged together and then re-sampled into five equal sized sets (called cross-validation folds).  

These folds had almost equal numbers of records from the U2R and the Not U2R classes.  

Models were then built using any four of the five folds of data and tested on the fifth fold.  This 

means that the training data had 80% of records from the merged KDD data set and the testing 

data had 20%.  Five sets of results, corresponding to the five folds, were obtained for each 

classifier algorithm.  The same approach was used to create R2L classifier models.  The 

motivation of using a cross-validation methodology was to determine whether or not 80% of the 

merged KDD data set (randomly sampled) contains sufficient information about the U2R and 

R2L attack categories to build high performance classifier models. 

Three algorithms including a trainable neural network classifier (Neural), which is a 

multi layer perceptron network[18], a probabilistic classifier (Gaussian) [19], and a decision tree 

classifier (Binary Tree) [20] were tested using the cross-validation approach.  These three 

algorithms represent a diverse set of algorithmic approaches to pattern classification.  All three 

algorithms, as implemented in the LNKnet [21] pattern classification software, were applied to 

build classifiers for the U2R and R2L attack categories.  The Binary Tree algorithm ensures that 

the classifier models created are not under or over trained, as could be the case with a multi layer 

perceptron network.  Both the Neural and Gaussian classification algorithms have limitations 

with respect to the KDD data set.  As there was no validation data subset, there was no precise 

stopping criterion for the Neural classifier.  Due to uneven distributions of patterns in various 

attack classes, the Gaussian classifier might not be able to accurately model the KDD attack 
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categories in the KDD data set.  Neither of these limitations is applicable to the Binary Tree 

classifier algorithm. 

For each classification algorithm, five-fold testing was used.  Five models were built, 

each having one distinct fold for testing.  For the Neural classifier, a three layer feed-forward 

neural network topology was instantiated.  The unipolar sigmoidal transfer function with slope 

value of 1.0 was utilized for every neuron in both the hidden and the output layers.  The learning 

algorithm was stochastic gradient descent with a mean squared error function.  There were 41 

neurons in the input layer (i.e., 41 features in the input pattern), 60 neurons in the hidden layer 

(an empirically determined value), and 2 neurons in the output layer (2 class detection).  A 

constant learning rate of 0.1 along with a weight change momentum of 0.6 was applied.  

Randomly selected initial weights were used; they were uniformly distributed in the range [-0.1, 

0.1].  Each epoch consisted of 200,000 patterns randomly selected from the training data subset.  

Gaussian classifier was built using a quadratic classifier having a separate tilted covariance 

matrix for each class to be detected.  For the Binary Tree algorithm, a single feature was used for 

splitting the data subset among child nodes.  The tree was expanded until no errors were found 

on the training data subset.  No pruning of the decision tree was performed and the complete 

binary decision tree was used for testing. 

For U2R attack detection, each fold consisted of 277,148 patterns not belonging to the 

U2R category and 56 patterns belonging to the U2R category.  For the R2L attack category, each 

fold consisted of 273,766 patterns not belonging to the R2L category and 3,438 patterns 

belonging to the R2L category.  Table 3 shows the result obtained by using these three classifier 

models for the U2R and Not U2R categories.  These results present the average number of 

records detected in the testing data subset for each of the five models.  Standard deviation values 
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for the average values are shown in parentheses.  For the R2L category, Table 4 shows 

equivalent results obtained for the three algorithms tested.   

As shown in Table 3, the U2R class detection increased to almost 90% for any of the 

three algorithms tested.  Similarly for the R2L attack category (Table 4), the detection rate was 

more than 97%, which represents highly superior performance.  Gaussian classifier performed 

the best with 96.43% for the U2R category.  For the R2L category, both the Neural and the 

Binary Tree algorithms performed well, with more than 99% detection rate.  Little deviation was 

presented in the results (as shown in parentheses), when any of the five folds were used as 

testing, which suggests that the class patterns in each fold represent similar target hypotheses.  

 
No of Records Detected % of Records Detected  

Not-U2R U2R Not-U2R U2R 

Neural 
276906 

(172.04) 
50 

(2.59) 
99.91 

(0.039) 
89.28 

(4.622) 

Gaussian 
272534 

(568.06) 
54 

(1.14) 
98.34 

(0.206) 
96.43 

(2.036) 

Binary Tree 
277057 
(13.09) 

49 
(3.21) 

99.96 
(0.006) 

87.50 
(5.731) 

 
Table 3: Cross Validation Results for the U2R Category: Mean and Standard Deviation 
Values  
 
 
 

 
No of Records Detected % of Records Detected  

Not-R2L R2L Not-R2L R2L 

Neural 
271126 

(101.745) 
3419 

(5.385) 
99.04 

(0.415) 
99.44 

(0.177) 

Gaussian 
266253 

(449.215) 
3368 

(4.930) 
97.26 

(0.165) 
97.96 

(0.151) 

Binary Tree 
272174 

(51.885) 
3410 

(4.930) 
99.42 

(0.882) 
99.18 

(0.168) 
 
Table 4: Cross Validation Results for the R2L Category: Mean and Standard Deviation Values 
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These results demonstrate that classifier models trained using any four folds acquire 

sufficient information to achieve high detection rates if the fifth fold is employed for testing.  

Algorithms tested in the literature were able to achieve only approximately a detection rate of 10 

to 20% for the U2R and the R2L attack categories.  If KDD training and testing data subsets are 

merged and re-sampled with 80% of records in the training data subset and 20% of records in the 

testing data subset, the detection rates for the U2R and R2L attack categories rise to 90%.  This 

clearly indicates that the original KDD training and testing data subsets represent dissimilar 

target hypotheses for the U2R and the R2L attack categories. 

 

4.3 Qualitative Comparison of Rule Sets Induced from the KDD Training and Testing 

Data Subsets through C4.5 

In this section, the decision trees, or equivalently the rule sets, induced by the C4.5 

algorithm separately on the KDD training and testing data subsets are qualitatively compared for 

U2R and R2L attack categories.  Observations are made in terms of features utilized, how many 

records are classified using the C4.5 rules, and whether the knowledge extracted from the 

training and the testing data subsets is “similar”, i.e., whether the two data subsets represent 

similar target hypotheses. 

The C4.5 decision tree algorithm creates rules based on the training data.  Two decision 

trees or rule sets were created using the C4.5 algorithm, one using the KDD training data subset 

and the other using the KDD testing data subset.  These two rule sets are compared qualitatively 

to assess “similarity” between them for both the U2R and the R2L attack categories. 

All records in the KDD training and testing data subsets were relabeled as either 

belonging or not belonging to the U2R/R2L attack class.  Table 5 shows the significant rules 
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(which detect more than 80% of the U2R attack records) generated for the U2R attack category.  

Significant rules, which detect more than 85% of the R2L attack records, are presented in Table 

6. 

Table 5 indicates that for the U2R category, 24 out of 41 features were used by rules 

created using the KDD training and testing data subsets.  Among these 24 features, many exist in 

either the rules created using the training data or the rules induced from testing data, but not 

both.  There were a total of nine features (logged_in, num_root, num_file_creations, 

num_compromised, num_access_files, count, same_srv_rate, dst_host_srv_diff_host_rate, and 

dst_host_same_srv_rate) only present in the rules created using the KDD training data subset 

and not in those rules created using the KDD testing data subset.  These features are not used by 

the rules created from the KDD testing data subset.  Again there were a total of nine features 

(is_hot_login, is_guest_login, dst_host_diff_srv_rate, flag, srv_count, dst_host_rerror_rate, 

rerror_rate, urgent, and dst_host_srv_rerror_rate) only present in the rules induced from the 

KDD testing data subset.  Hence out of 24 features used by rules created using both KDD data 

subsets, only six features (dst_host_same_srv_port_rate, service, src_bytes, dst_bytes, hot, and 

root_shell) were common to both sets of rules. 

Similar observations are applicable for the R2L attack category.  Table 6 indicates that 

for R2L attack category, a total of 17 out of 41 features were used by rules created using the 

KDD training and testing data subsets.  Five features (hot, dst_host_same_srv_port_rate, 

logged_in, dst_host_srv_diff_host_rate, and num_failed_login) were only present in the rules 

created through the KDD training data subset and were not present in rules induced from the 

KDD testing data subset.  Similarly, six features (is_guest_login, count, dst_host_same_srv_rate, 

srv_count, srv_diff_host_rate, and dst_host_srv_count) were only present in rules created by the 
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KDD testing data subset.  The remaining six features (duration, service, src_bytes, dst_bytes, 

same_srv_rate, and dst_host_diff_srv_rate) were common for both rule sets.  

Tables 5 and 6 suggest that the included feature sets from the KDD training and testing 

data subsets are not similar.  Tables 5 and 6 also indicate that for the features that are common to 

both sets of rules created using the KDD training and testing data subsets, the range of values for 

which the rules assume the logic truth value is not similar.  Although the features are common, 

the rules are applicable in different ranges leading to a conclusion that rule sets represent 

different knowledge from the domain.  Hence, for the U2R and the R2L attack categories, any 

classifier algorithm trained on the KDD training (testing) data subset will not be able to detect a 

significant set of attacks in the KDD testing (training) data subset.  This observation, once more, 

strongly suggests and validates that the two data subsets, the KDD training and testing, do not 

represent similar target hypotheses for the U2R and the R2L attack categories. 

 

5. Conclusions 

This paper demonstrated that the KDD training and testing data subsets represent 

dissimilar target hypotheses for the U2R and the R2L attack categories.  In light of the extensive 

analyses performed in Section 4, it is reasonable to conclude that it is not possible for any 

trainable pattern classification or machine learning algorithm to demonstrate an acceptable level 

of misuse detection performance on the KDD testing data subset if classifier models are built 

using the KDD training data subset for the U2R and the R2L attack categories.  Therefore, 

researchers are advised not to employ the KDD training and testing data subsets in this context.  

The KDD data set, on the other hand, might be attractive for anomaly detection algorithms since 
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the testing data has substantial new attacks with signatures that are not correlated with similar 

attacks in the training data. 

It is possible to generalize the findings in this paper by stating that any training and 

testing data subset pair can be validated for representing similar target hypotheses through the 

methodology proposed in this paper.  This should be done in the event substantial attempts to 

develop classifiers or function approximators through a suite of trainable pattern classification or 

machine learning algorithms fail. 
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(service = telnet ∧ root_shell = 1 ∧  
hot > 2 ∧ num_root <= 5)  
� A U2R attack 
 
(service = ftp_data  ∧ logged_in = 1 ∧ 
dst_bytes > 2931 ∧ 
dst_host_srv_diff_host_rate <= 0.03)  
� A U2R attack 
 
(service = ftp_data ∧ logged_in = 1 ∧ 
dst_bytes > 2931 ∧ count > 1)  
� A U2R attack 
 
(src_bytes <= 533 ∧ num_file_creations > 0 ∧ 
num_access_files <= 0 ∧ 
dst_host_same_srv_port_rate > 0.11) 
� A U2R attack 
 
(dst_bytes <= 11972 ∧ root_shell = 1 ∧ 
hot <= 2 ∧ num_root > 1 ∧  
num_file_creations > 0)  
� A U2R attack 
 
(num_file_creations > 0 ∧  
same_srv_rate <= 0.41 ∧ 
dst_host_same_srv_rate > 0.89)  
� A U2R attack 
 
(num_compromised > 1 ∧ 
root_shell = 0 ∧ num_root > 0 ∧ 
dst_host_same_srv_port_rate > 0.13 ∧ 
dst_host_srv_diff_host_rate <=0.33)  
� A U2R attack 

(a) Training Data Subset 

(service = other ∧ flag = REJ ∧ 
rerror_rate > 0.99 ∧ dst_host_rerror_rate <=0.19) 
� A U2R attack 
 
(service = telnet ∧ hot > 0 ∧ root_shell = 1 ∧ 
is_hot_login = 0 ∧  
dst_host_same_srv_port_rate <= 0.02) 
� A U2R attack 
 
(service = other ∧ flag = SF ∧ 
dst_host_srv_rerror_rate > 0.61) 
� A U2R attack 
 
(srv_count <= 1 ∧ dst_host_diff_srv_rate <= 0.02 ∧ 
dst_host_rerror_rate <= 0.12 ∧ 
dst_host_srv_rerror_rate > 0.61) 
� A U2R attack 
 
(urgent > 0 ∧ root_shell = 1) 
� A U2R attack 
 
(service = ftp ∧ is_guest_login = 0 ∧  
src_bytes <= 2203 ∧ dst_bytes > 195 ∧ 
is_hot_login = 0) 
� A U2R attack 
 
(service = ftp_data ∧ dst_bytes > 195) 
� A U2R attack 
 

(b) Testing Data Subset 
 

Table 5: Significant C4.5 Rules to Detect U2R Attack Records in the KDD Data Set 
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 (dst_bytes <= 3299 ∧ hot > 25) 
� A R2L attack 

 
(service = ftp_data ∧ src_bytes > 333 ∧ 
src_bytes <= 334) 
� A R2L attack 
 
(service = ftp_data ∧ same_srv_rate > 0.87 ∧ 
dst_host_same_srv_port_rate > 0.99 ∧ 
dst_host_srv_diff_host_rate > 0.11) 
� A R2L attack 
 
(logged_in = 1 ∧ duration > 3 ∧ 
src_bytes > 333 ∧ dst_bytes <= 63 ∧ 
dst_host_same_srv_port_rate > 0.99) 
� A R2L attack 
 
(num_failed_logins > 0 ∧ 
dst_host_diff_srv_rate <= 0) 
� A R2L attack 

(a) Training Data Subset 

(service = private ∧ duration <= 2 ∧ 
src_bytes > 40 ∧ src_bytes <= 104 ∧ 
count <= 5) 
� A R2L attack 
 
(service = pop_3 ∧ src_bytes > 11 ∧ 
src_bytes <= 37) 
� A R2L attack 
 
(duration > 88 ∧ is_guest_login = 1) 
� A R2L attack 
 
(duration > 144 ∧ service = ftp_data) 
� A R2L attack 
 
(service = ftp_data ∧ src_bytes > 11 ∧ 
src_bytes <= 14 ∧ dst_host_srv_count <= 34) 
� A R2L attack 
 
(service = private ∧ dst_bytes > 125 ∧ 
srv_count <= 1 ∧ dst_host_srv_count <= 252 ∧ 
dst_host_diff_srv_rate <= 0.01) 
� A R2L attack 
 
(duration <= 2 ∧ src_bytes > 11 ∧ 
src_bytes <= 133 ∧ dst_bytes > 125 ∧ 
srv_count <= 3 ∧ 
dst_host_same_srv_rate <= 0.99) 
� A R2L attack 
 
(src_bytes > 11 ∧ src_bytes <= 133 ∧ 
dst_bytes > 52 ∧ srv_count <= 2 ∧ 
same_srv_rate > 0.58 ∧ srv_diff_host_rate <= 0.01 ∧ 
dst_host_diff_srv_rate > 0 ∧ 
dst_host_same_srv_port_rate <= 0) 
� A R2L attack 

(b) Testing Data Subset 

Table 6: Significant C4.5 Rules to Detect R2L Attack Records in the KDD Data Set 
 


