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Abstract

A large set of machine learning and pattern classificatigorithms trained and
tested on KDD intrusion detection data set failed to identify rab#te user-to-
root and remote-to-local attacks, as reported by many réseario the literature.
In light of this observation, this paper aims to expose the defieerend
limitations of the KDD data set to argue that this datasketlld not be used to
train pattern recognition or machine learning algorithms fouseidetection for
these two attack categories. Multiple analysis techniques rapoyed to
demonstrate, both objectively and subjectively, that the KDD traiamytesting
data subsets represent dissimilar target hypotheses fotouset and remote-to-
local attack categories. These techniques consisted of switttiengples of
original training and testing data subsets to develop a decisierclassifier,
cross-validation on merged training and testing data subsets, an@toueakhnd
comparative analysis of rules generated independently on trainingstimdy tdata
subsets through the C4.5 decision tree algorithm. Analysis rekaatyycsuggest
that no pattern classification or machine learning algorithm cartrdoeed
successfully with the KDD data set to perform misuse detection for useottor
remote-to-local attack categories. It is further noted thatanalysis techniques
employed to assess the similarity between the two targpettingses represented
by the training and the testing data subsets can readilynsgaljeed to data set

pairs in other problem domains.
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1. Introduction

The Knowledge Discovery in Databases (KDD) 1999 data set, whashitroduced for
the 1999 KDD Cup contest, has been recently utilized extensively Vetagenent of intrusion
detection systems through a suite of pattern recognition and maeainay algorithms for four
main attack categories: namely Probing, Denial of ServiagS]PUser-to-Root (U2R), and
Remote-to-Local (R2L). Such efforts, as reported in the rditersiture, suggests relatively
poor performance profile for at least part of the functionalitgcBpm for the attempted
intrusion detection systems. Specifically, pattern recognitionnaachine learning algorithms
trained with the KDD training data subset and tested on the KBlihgedata subset failed to
detect majority of U2R and R2L attacks within the context ousgsdetection. In fact, not a
single classification algorithm whose performance even conoss tb an acceptable level, for
all practical purposes, has been reported in the literaturego dddme of the researchers did try
to explain the dismal performance figures obtained through reassogiated with training
algorithms themselves, the training process itself or some &dht@r, but not the potential
limitations of the data subsets themselves [1,2]. This obseryadiots at an important issue to
address since the KDD data set is one of few in the domamtrasion detection and as such
attracts significant attention from the researchers dues twetl-defined and readily accessible
nature [1,3,4,5,6,7,8,9]. It then becomes relevant and important to establistawlsatd what
cannot be done with this data set.

This paper exposes the deficiencies and limitations associatedheirepresentation of
U2R and R2L attack categories in the KDD data set for mideisetion context and attempts to
explain why the KDD data set should not be used to train pattern recognition or maahiegl

algorithms for these two attack categories. Multiple amalyschniques will be used to
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demonstrate, both objectively and subjectively, that the KDD traimgigt@sting data subsets
represent dissimilar hypotheSefor the U2R and R2L attack categories within a misuse
detection context. Hence, any pattern classification and mackaraiig algorithm that
employs the KDD training data subset to learn the attack sigabf these categories is very
likely to demonstrate poor performance on the KDD testing data subset.

Section 2 discusses various U2R and R2L attacks present in therKiDiDg and testing
data subsets while also presenting the distribution of attatkrmsmt Section 3 presents a
literature survey, which highlights various algorithms applied inr¢leent past to the KDD data
set for U2R and R2L attack categories. Section 4 describbéthe three analysis techniques
employed to show why the KDD data set cannot be leveraged toaigorithms from the
domain of pattern recognition and machine learning for U2R and R2tk atetegories for
misuse detection. Section 4.1 discusses the performance of Céibrdéee algorithm on the
KDD training and testing data subsets. Section 4.2 disculssesrass-validation approach,
which is applied to merged KDD training and testing data suhsetg multiple classifier
algorithms including a Binary Tree classifier, a Multi Laferceptron neural network classifier,
and a Gaussian classifier. Section 4.3 presents a qualitatiygagsom of the various rules
created through the C4.5 algorithm on the KDD training and testatg subsets. Finally,
Section 5 concludes this paper by highlighting strengths and weaknesses ofxluatalXet and

suggesting its appropriate use within the context of intrusion detection.

! A hypothesis is the estimate of a target concefurction learned through a set of training exaspif that target
concept or function [22].

% An attack signature is a distinctive complex pattesed to detect system penetration, which maylwevo
comparison of audit and log data from a varietgairces within the computing platform or infrastoue.
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2. KDD Data Set: U2R and R2L Attack Categories

In 1998, the United States Defense Advanced Research ProjeetxyA¢DARPA)
funded an “Intrusion Detection Evaluation Program (IDEP)” admirgdteby the Lincoln
Laboratory at the Massachusetts Institute of Technology. ®&leof this program was to build
a data set that would help evaluate different intrusion detectioensy¢IDS) in order to assess
their strengths and weaknesses. The objective was to sundeyaluate research in the field of
intrusion detection. The computer network topology employed for the [D&dtam involved
two sub networks: an “inside” network consisting of victim machines arfdwaside” network
consisting of simulated real-world Internet traffic. The imicmachines ran Linux, Sun®$
and Solari8" operating systems. Seven weeks of training data and twkswééesting data
were collected. Testing data contained a total of 38 attacks, Wiofi did not exist in the
training data. This was done to facilitate the evaluation of patdBtSs with respect to their
anomaly detection performance. Three kinds of data was collerwtsmission control
protocol (TCP) packets using the “tcpdump” utility, basic secumibgule (BSM) audit records
using the Sun Solari¥ BSM utility, and system file dumps. This data set is populartyvn as
DARPA 1998 data set [10].

One of the participants in the 1998 DARPA IDEP [11], used only TCP matkéuild a
processed version of the DARPA 1998 data set [10]. This data seddnarthe literature as
KDD intrusion detection data set [12], was used for the 1999 KDD Cupetdian, which
allowed participants to employ it for developing IDSs. The Kbda set was consequently
submitted to the University of California at Irvine “Knowledges@ivery in Databases” archive,
and consists of approximately 5 million training and 0.3 millionirigstecords. Both training

and testing data subsets cover four major attack categori@singr(information gathering
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attacks), Denial-of-Service (deny legitimate requests $yséem), User-to-Root (unauthorized
access to local super-user or root), and Remote-to-Local (unauthtwzadaccess from a
remote machine). Each record consists of 41 features [2], wheaee3Bumeric and 3 are
symbolic, defined to characterize individual TCP sessions. Diaiagrtechniques and domain
knowledge were utilized to formulate features for different commestusing the TCP packets
[11,13].

A User-to-Root (U2R) attack is characterized by a proegsseby any normal system
user illegally gains access to the super-user privilegesnef@lly, a system defect or bug is
exploited to execute a successful privilege transition fromm lesesl to root level. Buffer
overflows are the most common type of attack mechanisms in tegocg. Other U2R attacks
take advantage of root programs that do not manage temporarynfitbe system properly.
Some U2ZR attacks occur because of an exploitable race conditiainglexprogram, or two or
more programs executing concurrently. Though these defetisgsrcan be relatively easily
patched, any new attacks with previously unknown mechanisms can iregudurmountable
damage to the system, as the malicious user attains fulbtohthe victim machine at the root
level.

Generally most machines are accessible over the network througfiteheet, but only
authorized users are intended to be able to access the machinesdyrem\ Remote-to-Local
(R2L) attack occurs when an attacker who does not have an account wotithemachine,
gains local access as a user of the victim machine byrggndiwork packets through standard
protocols like TCP/IP or UDP. There are many ways in whicR2n attack can be executed.
Buffer overflow vulnerabilities in some networking programs Blendmai | , i map, ornaned

can result in local access on the victim. Attacks diket i onary, guest ,ftp-wite, and
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Xsnoop exploit system misconfigurations. Some attacks involve sociainegring, an
example being thel ock attack, which is a Trojan horse program and used to initiate the
screensaver on Solaris machines in order to capture the usesisophsand send it to the
attacker.

The KDD training data subset has 52 U2R and 1126 R2L records,tivhitesting data
subset has 228 U2R and 16189 R2L records. Four new U2R attacks areqrigsentie KDD
testing data subset and records for these new attacks corestiuel 80% of all U2R records in
the testing data subset. Similarly, seven new R2L attaekprasent only in the KDD testing
data subset, and more than 60% of R2L records in the KDD testiagulaset belong to these
new R2L attacks.

For the two attack categories (U2R and R2L), many attacks amaedberds are present
only in the testing data subset. Misuse detection is thus diffianless signatures show
similarity between the attacks common to both the training an@skiag data subsets and those
new ones existing only in the testing data subset. It is therafgportant to determine the
similarity between attack signatures in the KDD training audiig data subsets to assess an
upper bound on the expected misuse detection performance of a elasgdéirithm on these

data subsets.

3. Misuse Detection Performance for U2R and R2L Attack Classes:
Literature Survey

A large number of pattern classification and machine learniggritoms have been
applied to the KDD data set in order to develop intrusion detectsterag for U2R and R2L
attacks. This section presents a brief overview of these thlgyi their application to the KDD

data set, and their performance results on the U2R and R2L attack categories.
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C5.0 decision trees were employed by the winner of the 1999 KDD &@umtrusion
detection competition [14]. The training process utilized 50 data tsuéseh having all records
from both the U2R and the R2L attack categories, 4,000 records fronradhmdP category,
80,000 records from normal category, and 400,000 records from the Degfdrga This was
done to make sure that there were sufficient records presene&omattack category to build
decision tree models. For each of the above training data subsetsse¢hechers created ten
C5.0 decision trees using error cost and boosting options. The finaltjoresiwvere computed
on top of the 50 predictions each obtained from one decision tree, byinmgrihe conditional
risk (sum of error-costs multiplied by class-probabilities). kEwsv, this classifier only detected
10% of the U2R records and 8% of the R2L records from the KDihgedata subset. It had a
false alarm rate 0%.

Another machine learning algorithm applied to the KDD data sstkeanel Miner [2].
Kernel Miner is a data mining tool based on a global optimizatiodetfor classifying data and
predicting the results of new cases using automatically gedetatésion trees (versus a single
tree generated by the C4.5 algorithm). It does this bwylilyittonstructing locally optimal set of
decision trees (called a decision forest) from which the optuonaset of trees (called the sub-
forest) is selected for predicting new cases. Levin useddoma sample of 10% of the KDD
training data for the training data subset. A multi-classctiete approach was used to detect
different attack categories in the KDD data set. The fawision trees scored very high
detection rates for all classes in the entire training ddises. Out of 311,029 test examples in
the KDD data set, the classifier was able to correctlggmaize 289,006 records, i.e. 92.92%.
However, the classifier achieved detection rates of 11.84% and 7.32ke fo2R and the R2L

attack categories, respectively. False alarm rates of 38a4P2.5% were generated for the
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U2R and the R2L attack categories, respectively, on the ¢esti@eg data subset. Finally, the
classifier was able to detect only 11.2% of the new attack eranpoésent in the testing data
subset: hence the tool failed at anomaly detection as weller-fdting’ was suggested as one
of the reasons for the dismal performance, where the numberoofisén the U2R and the R2L
attack categories were significantly less in the training data subseanttiee testing data subset.

Agarwal and Joshi [1] proposed a two-stage general-to-specificewark for
developing a rule-based-rule) classifier model on a data set that has widely diitectass
distributions in the training data set. The proposed model consiptssitive rules P-rules)
that predict the presence of the class, and negative NHeses) that predict the absence of the
class. In the first stag®@-rules are created using the training data to increase thebpitybaf
detection. After that, a set dfrules is created to reduce the false-alarm rate ®rdarned
classifier model. Finally all th@-rules andN-rules are applied in the sequence in which they
were created, to the test data. HMerule method approach was applied on the KDD data set to
develop a classifier model, which was able to detect only 6.6%28Bf &ttacks and 10.7% of
R2L attacks in the KDD testing data subset. The falsenalate was negligible. The testing
data subset contained 17 new attack records not present in the tdatangubset. For known
attacks (misuse detection onlyN-rule detected 23.1% of records in the U2R attack category
and 28.9% of records in the R2L attack category, which is still @y for all practical
purposes.

Yeung and Chow [9] proposed a novelty detection approach using non-p&rametr
density estimation based on Parzen-window estimators with Gaus=iaels. Parzen [23]
introduced a non-parametric approach for estimating the prolyatsiitsity functiorp(x) from a

set ofn points represented by vectogswherei=1,2,...n, using kernel functions. The estimated
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probability functionp(x) can be expressed as a mixture of radially symmetriaak&8an kernels

with common variance? as
NOTE S L
nm?c?® = 20° |’

whered is the dimensionality of the feature space. Twts ©f normal (attack free) data are
required to build a model. The first set of norrdaka is used to build the non-parametric
density estimation mod@&ll. The second set of normal data is used to défiresholds for the
model. It is important to note that this non-pagtime approach does not need training as it
relies on estimating probability distribution. ThedelM is used to find whether test pattern
belongs taV using the Bayes decision rule. This novelty detacapproach was employed to
detect attack categories in the KDD data set. Sjimifeatures were represented by a group of
binary-valued variables. The resulting featuretmex used to test this technique had 119
dimensions. 30,000 randomly sampled normal rectsoss the KDD training data subset were
used as training data to estimate the density @intbdel. Another 30,000 randomly sampled
normal records (also from the KDD training datassaipformed the threshold determination set,
which had no overlap with the training data sub3dteir classifier detected 93.57% and 31.17%
of U2R and R2L attack records, respectively, inKI¥D testing data subset. The advantage of
this technique is that no intrusion data is reqlithis effectively also introduces an anomaly
detection capability. On the other hand, the diaathge is that it cannot differentiate whether
the intrusion belongs to a DoS or a U2R attack, dtccan only indicate intrusive activity.
Hence it cannot be used for multi-class detectias, required for the KDD data set.
Furthermore, an increase in the false alarm rateatso be expected if the normal data is not a

sufficiently good model.
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Sabhnani [15] applied numerous pattern classiicatind machine learning algorithms
on the KDD data set to develop intrusion detectigstems. Numerous classifiers including a
multilayer perceptron neural network, an incremendaial basis function neural network, a
Gaussian classifier, i-means classifier, a nearest neighbor classifi€e4#& decision tree, a
Fuzzy ARTMAP classifier, a Leader cluster, and goétysphere algorithm were developed.
Each classifier model was built using the KDD tnagndata subset and then evaluated using the
KDD testing data subset. None of the classifieesevable to detect more than 25% of the attack
records with acceptable false alarm rates.

The literature survey indicates that pattern red¢agnand machine learning algorithms
trained and tested with the KDD data set demorsgabr performance in terms of probability
of detection versus the false alarm rate for th& @2d the R2L attack categories within the
context of misuse detection. Although some re$easc[1,2] suggested reasons for this failure,
none have presented a conclusive and convincingmaggt to explain it to date. We believe
certain intrinsic features of the KDD data set niighplain why pattern classification and
particularly trainable algorithms fail to demonstra significant detection rate for the U2R and
R2L attack categories. The following sections akpivhy trainable algorithms that employ the
KDD data set fail for the U2R and R2L attacks. IBobjective and subjective analyses are used

to demonstrate the deficiencies and limitation®eiased with the KDD data set.

4. Analysis of KDD Data Set

This section describes analyses demonstratingttteaKDD training and testing data
subsets represent dissimilar target hypotheseshtorU2R and R2L attack categories. This

characteristic violates the basic requirement foy @rainable classifier algorithm to succeed.
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Three separate procedures are applied for thesas@gd the following sections elaborate on the
procedures and results.

In Section 4.1, one of the procedures requiresswemarios to be studied: in one case, the
original KDD training data subset is employed tduoe a rule set through the C4.5 algorithm,
whose performance is tested on the original KDIirtgdata subset. The second case involves
utilizing the original KDD testing data subset &g training data and inducing a set of rules
through the C4.5 algorithm. Performance of theigiec tree is tested on the original KDD
training data subset. These two cases collectisafigest whether or not the target hypotheses
represented by the two KDD data subsets are similar

In Section 4.2, cross-validation approach will éeeraged to evaluate if two data subsets
represent similar target hypotheses. Two KDD datbsets will be merged to form a data
superset which will be randomly partitioned inteefiequal-sized subsets or folds. Out of five
folds, four will be used to develop classifiers ati@ fifth one will be employed to test
performance. The idea is to assess if 80% of dsciorthe merged superset (compared to all the
records in the KDD training data subset) possesaégient information to develop a high-
performance classifier.

Section 4.3 presents a qualitative analysis of kedge represented by two KDD data
subsets by comparing the two rule sets inducedratgha from each data subset. Since rule sets
offer a convenient means for human interpretabditknowledge entailed by the associated data
subset, a comparison between two rule sets isbieas assess the similarity in knowledge, and

consequently in target hypotheses representedediyvitn data subsets.
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No preprocessing is performed on the KDD data se&nsure that the rules are created
without any bias from scaling and other transforarest, while noting that rules created from the

original KDD data set will tend to be more inteilige.

4.1 C4.5 Decision Tree Algorithm Performance on KDD Data Set for U2R and R2L
Attack Categories

The C4.5 algorithm [16] creates a decision treenfrmaining data, while trying to
maximize the probability of detection and reduc®mrsr for each class in training data. In this
study, two separate trees were created using the H&la set. One decision tree was created
using the KDD training data subset and the secordusing the KDD testing data subset. The
decision tree created using the KDD training daitiaset was tested on the KDD testing data
subset and vice versa. After creating the decisiea models for the U2R and R2L attack
categories, optimized rules were extracted usie@ith 5r ul es utility, which is provided with
the C4.5 decision tree software tool [17]. Thesrenapproximately 1000 nodes in the unpruned
decision trees for the R2L models and 300 nodet®U2R models.

Table 1 compares models for the U2R category with ¢lasses, U2R and Not U2R.
Model 1 used the KDD training data subset for é¢ngathe decision tree and Model 2 used the
KDD testing data subset. Similarly, Table 2 conegamodels to detect two classes, R2L and
Not R2L. The following notation is used in theables: ‘KDD-R’ — KDD training data subset,

‘KDD-T’ — KDD testing data subset. Similar notatics used in Table 2.
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Model 1 Model 2
Training | Testing | Training | Testing
Data Subset KDD-R KDD-T KDD-T KDD-R
Number of Not-U2R Records 1074988 310797 310782 1073987
Not-U2R Record Detection Rate 99.99% 99.99%| 99.99%| 99.91%
Number of U2R Records 40 14 222 23
U2R Record Detection Rate 76.92% 6.14%| 97.37%| 44.23%

Table 1. Comparison of C4.5 Decision Tree Performancefor the U2R Attack Category

Modd 1 Modéd 2
Training | Testing | Training | Testing
Data Subset KDD-R KDD-T KDD-T KDD-R
Number of Not-R2L Records 1073988 294720 292987 1060386
Not-R2L Record Detection Rate 99.99% 99.96%| 98.79%| 98.73%
Number of R2L Records 986 876 11859 43
R2L Record Detection Rate 98.70% 5.41%| 73.25% 4.30%

Table 2: Comparison of C4.5 Decision Tree Performancefor the R2L Attack Category

Tables 1 and 2 indicate that most of the non-att@dords are detected with high
probability. This result is expected because tlaeeea large number of records in this class. For
attack records, it can be seen that there are langations between the performances of the two
models. For example, Model 1 for U2R detects M98 attack records in the training data
subset and detects only 6.14% in the testing ddiaes. Model 2 for the U2R category detects
97.37% of attack records in the training data subsd detects only 44.23% in the testing data
subset. A similar observation can be made for tBe Bategory. These results show that the
model built from the KDD training data subset failsen tested on the KDD testing data subset.
Similarly, the model built on the KDD testing databset fails when tested with the KDD
training data subset. This failure happens onlgmthe attack-specific information or signature
present in training and testing data subsets reptesufficiently dissimilar hypotheses for the

target concept or function to be learned. If assiker model shows promising results for
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training data, it should perform reasonably welkesting data if training and testing data subsets
represent reasonably similar hypotheses.

When performance of the two models, Model 1 and M&] are evaluated within the
same context, the results suggest that the U2RR&hdattack signatures in the KDD training
and testing data subsets are not similar. Thisiremapfinding is also justified by the way the
KDD data set was created. One of the featureBeoKDD data set is that the testing data subset
consists of many U2R and R2L attack signaturesdhamnot present in the KDD training data
subset. This feature exists to facilitate perfarogaassessment of anomaly detection algorithms.
However this feature is so prominently establisimethe KDD data set that traditional pattern
recognition and machine learning algorithms arevigied with diminished and (highly) distorted
attack signatures in the training data subset, hwifédls to offer a reasonable framework for
training. A fairly representative class samplesraquired to exist in the training data subset for
pattern recognition and machine learning algorithtos achieve acceptable classification

accuracy on the testing data subset.

4.2 Performance of Classifierson Merged Data Set Using A Cross-Validation Approach
Recognizing the lack of similarity between atta@jnatures in the KDD training and
testing data subsets, reported in Section 4.1waexperiment was designed to further validate
this empirical finding. In this experiment, the RDtraining and testing data subsets were
merged into one data set. This merged data separiioned into five subsets such that each
subset contained approximately equal number ofrdscaandomly selected, from different

classes of the merged data set.
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Five-fold cross-validation approach was appliedest the performance of the classifier
algorithms on the merged data set. To build di@ssnodels for the U2R attack category, the
records were labeled as either U2R or Not U2R. RIB® training and testing data subsets were
merged together and then re-sampled into five eguald sets (called cross-validation folds).
These folds had almost equal numbers of records fitke U2R and the Not U2R classes.
Models were then built using any four of the fiwdds of data and tested on the fifth fold. This
means that the training data had 80% of records ftte merged KDD data set and the testing
data had 20%. Five sets of results, corresponttintpe five folds, were obtained for each
classifier algorithm. The same approach was usedréate R2L classifier models. The
motivation of using a cross-validation methodoleggs to determine whether or not 80% of the
merged KDD data set (randomly sampled) containcgarit information about the U2R and
R2L attack categories to build high performancesifeer models.

Three algorithms including a trainable neural nekwolassifier (Neural), which is a
multi layer perceptron network[18], a probabilistiassifier (Gaussian) [19], and a decision tree
classifier (Binary Tree) [20] were tested using ttress-validation approach. These three
algorithms represent a diverse set of algorithrpigreaches to pattern classification. All three
algorithms, as implemented in the LNKnet [21] pattelassification software, were applied to
build classifiers for the U2R and R2L attack categg The Binary Tree algorithm ensures that
the classifier models created are not under or tvaered, as could be the case with a multi layer
perceptron network. Both the Neural and Gausslassification algorithms have limitations
with respect to the KDD data set. As there wawal@ation data subset, there was no precise
stopping criterion for the Neural classifier. Diteuneven distributions of patterns in various

attack classes, the Gaussian classifier might eoalile to accurately model the KDD attack
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categories in the KDD data set. Neither of thesstdtions is applicable to the Binary Tree
classifier algorithm.

For each classification algorithm, five-fold tegfivas used. Five models were built,
each having one distinct fold for testing. For teural classifier, a three layer feed-forward
neural network topology was instantiated. The olaipsigmoidal transfer function with slope
value of 1.0 was utilized for every neuron in btite hidden and the output layers. The learning
algorithm was stochastic gradient descent with amsxjuared error function. There were 41
neurons in the input layer (i.e., 41 features im ithput pattern), 60 neurons in the hidden layer
(an empirically determined value), and 2 neuronsghim output layer (2 class detection). A
constant learning rate of 0.1 along with a weigharge momentum of 0.6 was applied.
Randomly selected initial weights were used; theyeauniformly distributed in the range [-0.1,
0.1]. Each epoch consisted of 200,000 patterndoraty selected from the training data subset.
Gaussian classifier was built using a quadratissifeer having a separate tilted covariance
matrix for each class to be detected. For thergiaee algorithm, a single feature was used for
splitting the data subset among child nodes. Téewas expanded until no errors were found
on the training data subset. No pruning of theisiige tree was performed and the complete
binary decision tree was used for testing.

For U2R attack detection, each fold consisted af, P48 patterns not belonging to the
U2R category and 56 patterns belonging to the U&Bgory. For the R2L attack category, each
fold consisted of 273,766 patterns not belongingtte R2L category and 3,438 patterns
belonging to the R2L category. Table 3 shows #sellt obtained by using these three classifier
models for the U2R and Not U2R categories. Theselts present the average number of

records detected in the testing data subset fdr efithe five models. Standard deviation values
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for the average values are shown in parenthesest tHe R2L category, Table 4 shows
equivalent results obtained for the three algorghested.

As shown in Table 3, the U2R class detection irsgdato almost 90% for any of the
three algorithms tested. Similarly for the R2Laak category (Table 4), the detection rate was
more than 97%, which represents highly superiofoperance. Gaussian classifier performed
the best with 96.43% for the U2R category. For R category, both the Neural and the
Binary Tree algorithms performed well, with moranh99% detection rate. Little deviation was
presented in the results (as shown in parenthesd®n any of the five folds were used as

testing, which suggests that the class pattereacdh fold represent similar target hypotheses.

No of Records Detected | % of Records Detected
Not-U2R U2R Not-U2R U2R
Neural 276906 50 99.91 89.2¢
(172.04 (2.59 (0.039 (4.622
Gaussian 272534 54 98.34 96.47
(568.06 (1.14 (0.206 (2.036
Binary Tree 277057 49 99.94 87.5(
(13.09 (3.21 (0.006 (5.731

Table 3: Cross Validation Resultsfor the U2R Category: Mean and Standard Deviation
Values

No of Records Detected | % of Records Detected

Not-R2L R2L Not-R2L R2L

Neural 271126 3419 99.04 99.44
(101.745 (5.385 (0.415 (0.177

Gaussian 266253 3368 97.24 97.9¢
(449.215 (4.930 (0.165 (0.151

Binary Tree 272174 3410 99.47 99.19
(51.885 (4.930 (0.882 (0.168

Table4: Cross Validation Resultsfor the R2L Category: Mean and Standard Deviation Values
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These results demonstrate that classifier modalsel using any four folds acquire
sufficient information to achieve high detectionesaif the fifth fold is employed for testing.
Algorithms tested in the literature were able thiage only approximately a detection rate of 10
to 20% for the U2R and the R2L attack categorié&DD training and testing data subsets are
merged and re-sampled with 80% of records in thieitrg data subset and 20% of records in the
testing data subset, the detection rates for thHe &l R2L attack categories rise to 90%. This
clearly indicates that the original KDD trainingdatesting data subsets represent dissimilar

target hypotheses for the U2R and the R2L attatdgoaies.

4.3 Qualitative Comparison of Rule Sets Induced from the KDD Training and Testing
Data Subsetsthrough C4.5

In this section, the decision trees, or equivajethie rule sets, induced by the C4.5
algorithm separately on the KDD training and testilata subsets are qualitatively compared for
U2R and R2L attack categories. Observations adenraterms of features utilized, how many
records are classified using the C4.5 rules, andthen the knowledge extracted from the
training and the testing data subsets is “similag,, whether the two data subsets represent
similar target hypotheses.

The C4.5 decision tree algorithm creates rulesdasethe training data. Two decision
trees or rule sets were created using the C4.5itdgg one using the KDD training data subset
and the other using the KDD testing data subsées@ two rule sets are compared qualitatively
to assess “similarity” between them for both théRUthd the R2L attack categories.

All records in the KDD training and testing databsets were relabeled as either

belonging or not belonging to the U2R/R2L attackssl Table 5 shows the significant rules
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(which detect more than 80% of the U2R attack mspgenerated for the U2R attack category.
Significant rules, which detect more than 85% @& RRL attack records, are presented in Table
6.

Table 5 indicates that for the U2R category, 24 afudl features were used by rules
created using the KDD training and testing datasstdfo Among these 24 features, many exist in
either the rules created using the training datéherrules induced from testing data, but not
both. There were a total of nine featurdsgded in, num root, num file creations,
num_compromised, num_access files, count, same _srv_rate, dst_host_srv_diff_host_rate, and
dst_host_same srv_rate) only present in the rules created using the KDIhiimg data subset
and not in those rules created using the KDD tgsiaita subset. These features are not used by
the rules created from the KDD testing data subgeain there were a total of nine features
(is_hot_login, is guest login, dst_host diff srv rate, flag, srv_count, dst _host rerror_rate,
rerror_rate, urgent, and dst_host_srv_rerror_rate) only present in the rules induced from the
KDD testing data subset. Hence out of 24 featusesl by rules created using both KDD data
subsets, only six featureds{_host_same srv_port_rate, service, src_bytes, dst_bytes, hot, and
root_shell) were common to both sets of rules.

Similar observations are applicable for the R2lacktcategory. Table 6 indicates that
for R2L attack category, a total of 17 out of 4attees were used by rules created using the
KDD training and testing data subsets. Five femtufot, dst host same srv_port rate,
logged in, dst_host_srv_diff_host_rate, and num failed login) were only present in the rules
created through the KDD training data subset ancewet present in rules induced from the
KDD testing data subset. Similarly, six featunesduest_login, count, dst_host_same srv_rate,

srv_count, srv_diff_host_rate, anddst_host_srv_count) were only present in rules created by the
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KDD testing data subset. The remaining six featugeration, service, src_bytes, dst_bytes,
same_srv_rate, anddst_host_diff_srv_rate) were common for both rule sets.

Tables 5 and 6 suggest that the included featusefisen the KDD training and testing
data subsets are not similar. Tables 5 and 6iradscate that for the features that are common to
both sets of rules created using the KDD training #sting data subsets, the range of values for
which the rules assume the logic truth value issawiilar. Although the features are common,
the rules are applicable in different ranges leqdim a conclusion that rule sets represent
different knowledge from the domain. Hence, fag th2R and the R2L attack categories, any
classifier algorithm trained on the KDD traininggting) data subset will not be able to detect a
significant set of attacks in the KDD testing (tiag) data subset. This observation, once more,
strongly suggests and validates that the two da#taets, the KDD training and testing, do not

represent similar target hypotheses for the U2Rth@dR2L attack categories.

5. Conclusions

This paper demonstrated that the KDD training aeskiig data subsets represent
dissimilar target hypotheses for the U2R and the &Pack categories. In light of the extensive
analyses performed in Section 4, it is reasonableohclude that it is not possible for any
trainable pattern classification or machine leagrafgorithm to demonstrate an acceptable level
of misuse detection performance on the KDD testlatp subset if classifier models are built
using the KDD training data subset for the U2R #mel R2L attack categories. Therefore,
researchers are advised not to employ the KDDitrgiand testing data subsets in this context.

The KDD data set, on the other hand, might be aitea for anomaly detection algorithms since
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the testing data has substantial new attacks wgthagires that are not correlated with similar
attacks in the training data.

It is possible to generalize the findings in thegper by stating that any training and
testing data subset pair can be validated for semteng similar target hypotheses through the
methodology proposed in this paper. This shouldidr@e in the event substantial attempts to
develop classifiers or function approximators tlgioa suite of trainable pattern classification or

machine learning algorithms fail.
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(service = telnefl root_shell = 10
hot > 200 num_root <=5)
= A U2R attack

(service = ftp_datdllogged_in = 1
dst_bytes > 2930
dst_host_srv_diff_host_rate <= 0.03)
= A U2R attack

(service = ftp_datallogged_in = 1
dst_bytes > 2930 count > 1)
= A U2R attack

(src_bytes <= 538 num_file_creations > 0l
num_access_files <=0
dst_host_same_srv_port_rate > 0.11)

= A U2R attack

(dst_bytes <= 11970 root_shell = 1
hot <= 20 num_root > 1
num_file_creations > 0)

= A U2R attack

(num_file_creations > O
same_srv_rate <= 0.41
dst_host_same_srv_rate > 0.89)
= A U2R attack

(num_compromised > 1

root_shell = @I num_root > 0
dst_host_same_srv_port_rate > 013
dst_host_srv_diff_host_rate <=0.33)
= A U2R attack

(service = otheflflag = REJO
rerror_rate > 0.991dst_host_rerror_rate <=0.19)
= A U2R attack

(service = telnefl hot > 00 root_shell = 10
is_hot_login = 0J
dst_host_same_srv_port_rate <= 0.02)
= A U2R attack

(service = otheflflag = SFOI
dst_host_srv_rerror_rate > 0.61)
= A U2R attack

(srv_count <= I1dst_host_diff_srv_rate <= 0.02
dst_host_rerror_rate <= 0.12
dst_host_srv_rerror_rate > 0.61)

= A U2R attack

(urgent > Q0 root_shell = 1)
= A U2R attack

(service = ftpllis_guest_login = @
src_bytes <= 2208l dst_bytes > 195]
is_hot_login = 0)

= A U2ZR attack

(service = ftp_datal dst_bytes > 195)
= A U2ZR attack

(a) Training Data Subset

(b) Testing Data Subset

Table5: Significant C4.5 Rulesto Detect U2R Attack Recordsin the KDD Data Set

Page 23 of 24




(dst_bytes <= 3298 hot > 25)
= A R2L attack

(service = ftp_datal src_bytes > 338l
src_bytes <= 334)
= A R2L attack

(service = ftp_datal same_srv_rate > 0.87
dst_host_same_srv_port_rate > 0099
dst_host_srv_diff_host_rate > 0.11)

= A R2L attack

(logged_in = 10 duration > 31
src_bytes > 338ldst_bytes <= 68
dst_host_same_srv_port_rate > 0.99)
= A R2L attack

(num_failed_logins > @
dst_host_diff_srv_rate <= 0)
= A R2L attack

(service = privatél duration <= 2
src_bytes > 401 src_bytes <= 104]
count <=5)

= A R2L attack

(service = pop_B8lsrc_bytes > 111
src_bytes <= 37)
= A R2L attack

(duration > 881is_guest_login = 1)
= A R2L attack

(duration > 1441 service = ftp_data)
= A R2L attack

(service = ftp_datalsrc_bytes > 111
src_bytes <= 141 dst_host_srv_count <= 34)
= A R2L attack

(service = privatéldst_bytes > 125
srv_count <= Idst_host_srv_count <= 252
dst_host_diff_srv_rate <= 0.01)

= A R2L attack

(duration <= Z0src_bytes > 111
src_bytes <= 138 dst_bytes > 128]
srv_count <= 31
dst_host_same_srv_rate <= 0.99)
= A R2L attack

(src_bytes > 1T1src_bytes <= 138l

dst_bytes > 521srv_count <= Z]

same_srv_rate > 0.98srv_diff_host_rate <= 0.0
dst_host_diff srv_rate >0
dst_host_same_srv_port_rate <= 0)

= A R2L attack

(a) Training Data Subset

(b) Testing Data Subset

Table 6: Significant C4.5 Rulesto Detect R2L Attack Recordsin the KDD Data Set
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