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1 Introduction to Active Learning

Machine Learning methods usually require supervised data to learn a concept. Labeling
data is time consuming, tedious, error prone and expensive. The research community has
looked at semi-supervised (Chapelle et al., 2006) and unsupervised learning leachniques
in order to obviate the need of labeled data to a certain extent. In addition to the above
mentioned problems with labeled data, all examples are not equally informative or equally
easy to label. For instance, the examples similar to what the learner has already seen are
not as useful as new examples. Moreover, different examples may require different amount
of user’s labeling effort, for instance, a longer sentence is likely to have more ambiguities
and hence would be harder to parse manually. Active learning is the task of reducing the
amount of labeled data required to learn the target concept by querying the user for labels
for the most informative examples so that the concept is learnt with fewer examples.

An active learning problem setting typically consists of a small set of labeled examples
and a large set of unlabeled examples. An initial classifier is trained on the labeled
examples and/or the unlabeled examples. From the pool of unlabeled examples, selective
sampling is used to create a small subset of examples for the user to label. This iterative
process of training, selective sampling and annotation is repeated until convergence.

In this literature review, we present the research done in active learning applied to
natural language processing (NLP). Active learning has been applied to two types of
problems in NLP, classification tasks such as text classification (McCallum and Nigam,
1998) or structured prediction task such as named entity recogonition (Shen et al., 2004),
semantic role labeling (Roth and Small, 2006), and parsing (Hwa, 2000). The main focus
of this literature survey is on structured prediction. The orgranization of the literature
review is as follows: we start by discussing the different evaluation meassures used for
active learning in NLP (section 2). In section 3, we discuss the various selective sam-
pling approaches for active learning. Broadly these can be classified as uncertainty-based
sampling and query-by committee. We also discuss some other approaches used based on
diversity and representativeness of an example. Section 6 concludes and discusses some
open issues in active learning for NLP.

2 Evaluation Measures for Active Learning

An active learning experiment is usually described by five properties: number of bootstrap
examples, batch size, supervised learner, data set and a stopping criterion. The supervised
learner is trained on the bootstrap examples which are labeled by the user initially. Batch
size is the number of examples that are selectively sampled from the unlabeled pool and
added to the training pool in each iteration. The stopping criterion can be either a desired
performance level or the number of iterations. Performance is evaluated on the test set in
each iteration.

Active learners are usually evaluated by plotting a learning curve of performance vs.
number of labeled examples as shown in figure 1. Success of an active learner is demon-
strated by showing that it achieves better performance than a traditional learner given the
same number of labeled examples; i.e., for achieving the desired performance, the active
learner needs fewer examples than the traditional learner.

To measure the actual effort a user puts in labeling the data he is presented, it is very
important to define an appropriate performance measure for the annotation effort. This
is especially important for structured outputs, such as named entities, semantic roles,
parsers etc., as each example is not equally difficult to annotate and examples might
require different number of user actions (e.g. clicks). Kristjannson et al. (2004) introduce
an efficiency measure called Expected Number of User Actions (ENUA) defined as the
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Figure 1: Active learning curve: f-measure with 150 examples and active learning is same
as the f-measure with 270 random examples. This represents a saving of 120 examples, or
44% (Thompson et al., 1999).

number of user actions, such as clicks, required to correctly label all the fields. They use
this measure for evaluting user’s effort on a sequence prediction task.

There can be many ways to calculate ENUA. Kristjannson et al. (2004) express ENUA
in terms of P;(j) - probability distribution over the number of errors j after ¢ manual cor-
rections. For the case when user is presented with the result of automatic field assignment
and has to correct all the errors, ENUA would be defined as:

ENUA = inPo(n) (1)

n=0

where Py(n) is the distribution over the number of incorrect fields. This can be esti-
mated from the number of incorrect fields in a record as shown in figure 2
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Figure 2: Histogram where records fall into bins depending on the number of incorrect
fields in a record. Solid bar - CRF with no correction, shaded bar - CRF with one random
correction. These can be used to estimate Py(n) and P;(n) (Kristjannson et al., 2004).

For another case when the model has an initial automatic field assignment, followed
by a single manual correction by the user, the ENUA is defined as:

ENUA; = (1 - Py(0)) + Y _nPy(n) (2)

where Py(0) is the probability that all fields are correctly assigned initially and Pj(n)



is the distribution over the number of incorrect fields in a record after one field has been
corrected. The distribution P; will depend on which incorrect field is corrected, e.g. a
random incorrect field or the least confident incorrect field. Thus, this measure can be
used to compare selective sampling strategies for active learning.

The ENUA (Expected Number of User Action) measure does not distinguish between
boundary detection and classification. Segmenting and labeling an entity is considered as
one single task.

Culotta and McCallum (2005) define four types of user actions: START and END for
identifying the span of the annotation, TYPE for labeling an annotation and CHOICE for
choosing the correct prediction from the top k predictions recommended by the system.
They assume that each atomic action has a unit cost; however START and END actions
may require more hand-eye coordination.

The measures for user effort defined in literature do not take into account the effort
involved in reading the text (including the surrounding context) for labeling. There is
a need for some formal user studies to identify and accurately quantify the user effort
involved in the annotation task.

ENUA is a more direct measure of reduction in human effort. However, not much work
in literature has reported results in ENUA.

3 Active Learning by Selective Sampling

Active learning aims at reducing the number of examples required to achieve the desired
accuracy by selectively sampling the examples for user to label and train the classifier with.
Several different strategies for selective sampling have been explored in the literature. In
this review, we present some of the selective sampling techniques used for active learning
in NLP.

3.1 Uncertainty-based sampling

Uncentainty-based sampling selects examples that the model is least certain about and
presents them to the user for correction/verification. A lot of work on active learning has
used uncertainty-based sampling. In this section, we describe some of this work.

3.1.1 Parsing and rule-based Information Extraction

Thompson et al. (1999) applied active learning techniques to two natural language learn-
ing systems CHILL (Zelle and Mooney, 1996) and RAPIER (Califf, 1998). CHILL uses
inductive logic programming (ILP)(Muggleton and Raedt, 1994) to learn a parser that
maps sentences to their semantic representation. The labeled data in form of sentences
paired with their meaning representation is used to learn rules for parsing. They used the
CHILL system with a geographical database interface to learn a parser that maps natural
language questions into Prolog queries which can be used to retrieve an answer from the
database. RAPIER is a rule-based information extraction system that uses a sequence of
patterns to identify relevant phrases in the document. The task is to extract information
about computer-related job postings on the web to develop a jobs database.

In CHILL, the parser may get stuck and not complete the parse. If a sentence cannot
be parsed, the model is definitely uncertain about it and it’s a good candidate for showing
to the user. From the list of sentences that cannot be parsed, most uncertain examples
are selected for presenting to the user. Uncertainty is calculated as the maximum number
of sequential operators/rules successfully applied while attempting to parse the sentence
and dividing it by the number of words in the sentence to give an estimate of how close
the parser came to completing a parse. Sentences with a lower value for this metric are



selected for annotation. For a sentence that can be parsed completely by the model, the
certainty is calculated using the certainty of the rules applied to parse it. Certainty of the
rule is estimated as the number of examples that induce the rule in the training data.
The certainty of a slot in RAPIER’s IE task is calculated from the certainty of the
rules that fill it. In the case where a single rule fills a slot, the certainty for the slot is
simply the certainty of the rule that filled it; otherwise, the certainty of the slot is defined
as the minimum of the certainties of the rules that produced these fillers. The certainty of
an individual extraction rule is based on its coverage of the training data: pos — 5 * neg,
where pos is the number of correct fillers generated by the rule and neg is the number of
incorrect ones. Rules that account for fewer examples are viewed as less certain.

Experiments and Results: To evaluate parser acquisition in CHILL, they used the
corpus containing 250 questions about U.S. geography and their corresponding prolog
queries. To calculate performance, the answers retrieved from queries generated by the
model and answers from gold labeled queries were compared and percentage of correct
answers was used as the performance measure. They used 25 bootstrap examples (initial
training data) and in each iteration, 25 examples were selectively sampled and added to
the training pool. The results are shown in figure 3. With active learning, the CHILL
system requires 29% fewer training examples to reach within 5% of the final accuracy
levels.
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Figure 3: Parser acquisition results for Geography Corpus (CHILL system) (Thompson
et al., 1999)

To evaluate active learning in RAPIER, they used the computer-related job-posting
corpus consisting of 300 postings to the local newsgroup austin.jobs. With 10 bootstrap
examples and selectively sampling one example at a time from 260 examples, F-measure
performance at 150 examples (with active learning) was same as that with 270 examples
(without active learning). This represents a savings of 44%.

3.1.2 Application to Interactive Information Extraction

Kristjannson et al. (2004) apply active learning to an interactive system with an interface
for user to make corrections and view results of active learning applied to Information
Extraction. They present their work on the task of extracting contact addresses from
on-line sources such as email messages or web pages. A contact address consists of more
than 20 fields such as last name, first name, address, city, state, phone etc. State of the art



automatic systems for this task have low error rate (about 10%). The goal of an interactive
information extraction system is to provide an interface for the user to make corrections
to the errors made by the trained model, with minimal effort. The fields extracted in this
task are interdependent. Given a name “Charles Stanley”, if the system makes a mistake
and classifies ‘Stanley’ as the first name and ‘Charles’ as the last name, a naive correction
system would require two corrections from the user, whereas an interactive interface would
require only one correction and would automatically correct the other one. The authors
call this capability correction propagation.

They model the task as a sequence labeling task with begin, inside and outside (BIO)
labels for each field such as B — FirstName, I — LastName etc. Several statistical
approaches have been used for information extraction. Any such technique can be used
in this paradigm as long as it gives confidence for its predictions. Maximum entropy is
one of the popular techniques used information extraction, since it allows use of arbitrary
overlapping features. However, maximum entropy estimates each field independently and
hence potential for correction propagation is minimal. Conditional Random Fields (CRFs)
are well suited for the interactive information task since the confidence of fields can be
estimated and it provides a natural framework for optimally propagating user corrections.

Conditional Random fields (CRFs) (Lafferty et al., 2001) are discriminative proba-
bilistic models used for labeling sequence data. Like Markov Random Fields, CRFs are
undirected graphical models that define a log-linear distribution over label sequences given
a particular observation sequence. Let 0 =< 01,09, ...,0r > be the observed sequence of
words in a document, and s =< s1, $2, ..., S7 > be the hidden label sequence (such as the
label lastname). CRF's define the probability of a state sequence given the observation as:

T
s 10) = (3" 3 Aufulsr1,s00,1) 3
t=1 k&
where Z, is the normalization factor over all state sequences for a given observation
sequence o. fx(s¢—1,S¢,0,t) is an arbitrary feature function and Ay is the learned weight
vector for k' feature function. Belief propagation using dynamic programming can be used
to calculate Z, efficiently. Maximum aposteriori training is performed efficiently using hill-
climbing methods such as conjugate gradient or limited memory BFGS (Sha and Pereira,
2003). Most likely sequence is calculated using dynamic programming method similar
to Viterbi’s algorithm. For Hidden Markov Models (HMMs), Viterbi (Rabiner, 1989)
algorithm is used to find the most likely state sequence to have generated the observation
sequence (sequence that maximizes the joint probability). Since CRFs are conditional
model, Viterbi algorithm for CRF's instead gives us the most likely state sequence given
the observation sequence:

s* = argmaxp(s | o) (4)
S

Viterbi algorithm stores the most likely path (through the state sequence) at time t,
which accounts for the first ¢ observations, and ending in state s;. The probability of this
path is given as:

Ser1(si) = n}sz}x[ét(s’)exp(z AeSfr(se-1,8¢,0,1))] (5)
k

where dy(s;) is the probability of starting in state s;. The probability of the most likely
state sequence is given as:

p* = arg m?X[5T(si)] (6)



The most likely state sequence can be recovered by back tracking through the dynamic
programming table.

To support the user interaction model, some of the hidden variables are clamped to
the corrections provided by the user. These values are called constraints and the inference
algorithm is called constrained Viterbi algorithm for CRFs. In constrained Viterbi algo-
rithm, the path is constrained to pass through some sub-path C' =< s¢, s¢41... >. Based
on these constraints, the probability of the path at time (¢ + 1) ending in state i is given
as:

(7)

dit1(si) =

maxy [0 (s")exp(D -, Mo fie(st—1, 8¢, 0,1)] if 8; = e
otherwise

The user may correct the whole instance (i.e. all the fields - first name, last name,
address etc.) or only one field. The user’s corrections are immediately propagated using
the constrained Viterbi algorithm. In addition to correcting the field, the constrained
Viterbi algorithm may also change the predicted states for other variables because with
the recursive formulation in Viterbi, the constraints can affect the optimal paths before and
after the time steps specified in C. This is known as correction propagation. An interesting
question here is whether to propagate corrections after single manual annotation or after
a batch of annotations.

To reduce the human effort, examples that would benefit the learner the most should
be presented to the user. Since, the fields the learner is most uncertain about, would pro-
vide it most information, examples with least confidence from the model are presented to
the user. For confidence estimation of the extracted field, constrained Forward-Backward
algorithm (Culotta and McCallum, 2004) is used. Constrained Forward-Backward algo-
rithm calculates the probability of any sequence passing through a set of constraints where
constraints are the assignment of labels to the extracted fields identified by the model.

The positive constraints correspond to labels inside the identified fields and the negative
constraints correspond to the boundary of the field. For example, if labels B-JOBTITLE
and [-JOBTITLE are used to label tokens that begin and continue a JOBTITLE field, and
a given sequence < 09, ...., 05 > is labeled as JOBTITLE, then the constraint corresponds
to s =B —JOBTITLE,s3=..=s5=1—JOBTITLE s¢ #1— JOBTITLE. The
assignment with the least confidence score is recommended to the user for verification/
correction.

Experiments and Results: Kristjannson et al. (2004) used a collection of 2187 records
from web pages and emails, hand-labeled with 25 classes of data fields. The baseline uses
the learned model to populate the fields and the user corrects all the errors (Model 1).
Model 2 asks the user to correct one random error and correction propagation is used to
correct the other errors. This reduces the ENUA by 13.9% i.e. the user has to correct
13.9% lesser examples compared to the baseline with no correction propagation. Model 3
asks the user to correct the least confident field followed by correction propagation. This
model reduces the ENUA by 11.3%. Interestingly, correcting a random field is slightly
more informative than correcting the least confident field which could be surprising at
first. However, at a closer look, a field will have low confidence if the posterior probability
of the competing classes is close to the score for the chosen class. Thus, it requires
a small amount of extra information to boost the posterior of one of the other classes
and change the classification. On the other hand, by getting the correction from the
user for a randomly selected field with higher confidence which is incorrect, the classifier
would gain more knowledge from the user and hence would be more suitable for correction
propagation.

So, given that the field selected for showing to the user is incorrect, randomly selected



examples are more useful than least confident examples. However, it is also important
to consider how many randomly selected or least confident fields were actually incorrect.
Kristjannson et al. (2004) found that a least confident field was truly incorrect 81.9% of
the times whereas randomly chosen fields are incorrect only 29.0% of the time. Thus,
confidence estimates are more effective in directing the user to incorrect fields.

3.1.3 Local margin vs. Global margin, Complete labels vs. Partial labels

Roth and Small (2006) present a margin-based method for active learning in structured
outputs such as semantic roles, where the interdependencies between output variables are
described as a general set of constraints that can be used to represent any structural
form. Automatic semantic role labeling (Carreras and Marques, 2004), also called shallow
semantic parsing, is the task of identifying and labeling the semantic arguments of a
predicate. This helps us in extracting information such as who did what to whom, when
and how, from the sentence. The semantic arguments for a predicate have two categories,
core arguments and adjunctive arguments. Core arguments are labeled ARGO to ARG5,
where ARGO is generally the prototypical agent and ARG1 is the prototypical patient. No
generalization is made for higher numbered arguments. Examples of Adjunctive arguments
(ARG-Ms) are ARG-LOC for location, ARG-TMP for time etc. In semantic role labeling,
the structural constraints could be that no two semantic roles for a single verb can overlap
or other linguistic constraints that yield a restricted output space. The paper presents
results for active learning techniques applied to semantic role labeling.

Roth and Small (2006) model the semantic role labeling problem with input X as a set
of natural language features and output Y as the position and type of a semantic-role in
the sentence. To learn semantic roles, one can either learn a set of local functions such as
“ phrase is an argument of run”, or a global classifier to predict all semantic-roles at once.

Given an assignment x € X" to a collection of input variables, X = (Xi,..., Xp,,)
X, € R%_ the structured classification problem involves identifying the best assignment
y € C(Y"™) to a collection of output variables Y = (Y1,..., Yy, ); ¥; € {w1, ..., wy, } that are
consistent with a defined structure on Y. The structure can be thought of as constraining
the output space to a smaller space C(Y"™) C Y™, where C : 2" — 29" constraints the
output space to be structurally consistent.

The learning algorithm takes as input m training instances, S = {(x1,y1), ---, (Xm, ¥m)}
drawn i.i.d. over X x C(Y") and returns a classifier h : X" — C(Y"™). Let f : X" x
Y™ — R be the global scoring function such that, given an instance x, the resulting
classification is given by

Yo = h(x) = argmazx f(x,y’) (8)
y'ec(ymv)

Global scoring function might be decomposable into local scoring functions fy,(x,y)
such that f(x,y) = f(X, (y1,---Un,)) = Sor2q fy(x,t). If it is, then with a set of local
classifiers, each of which outputs a local distribution ¥;, and an optimization procedure
(combined with constraints) we can generate a global prediction ..

Given a classifier f € H, an instance can be locally learnable/separable, globally learn-
able/separable or exclusively globally learnable/separable. In the locally learnable case,
the identity function is a sufficient ‘optimization procedure’ to learn the global predictions
i.e. structural constraints are not necessary to learn the desired function. A classifier
[ € H, locally separates the data D, if for all examples (x,y) € D, fy,(x,t) > fy(x,t) for
all y € Y\ y, and all y” € Y™ \ y. Classifier f globally separates the data D, if for all
examples (x,y) € D, f(x,y) > f(x,y’) for all y/ € Y™ \ y.

Instances that are globally learnable but not locally learnable are called exclusively
globally learnable. In the exclusively globally learnable case, the local predictions will



be incorrect, but the global prediction following optimization will be correct (once learn-
ing is complete). Local learnability implies global learnability, but not exzclusively global
learnability since we require constraints to learn the required function (the local classifiers
alone are not sufficient). For a locally learnable instance, y¢ = § = y and for an exclusively
globally learnable instance, y¢ # 37 =y.

For margin-based classifiers, uncertainty translates to distance from the hyper-plane.
Examples with the smallest margin and thereby least certainty are presented for user’s
input. For the multi-class classification, the examples with minimum difference of margin
for the predicted label and other labels are selected. The multi-class margin can be defined
as:

pmulticlass(xa Y f) = f(Xv y) - f(LU, y) (9)

where y represents the true label and g represents the highest activation value such
that g # y.

Roth and Small (2006) explore the tradeoff between selecting instances based on a
global margin or a combination of the margin of local classifiers. Let Q be a querying
function which given unlabeled data &, and the learner, it returns a set of unlabeled
examples Sgeiect C Sy. Using the global margin as defined in the above equation, the
querying function Q can be written as:

Qgiobal + T* = a?"gggin[f (x,9¢) — f(x,5¢)] (10)
TEOy

where y¢ represents the predicted label(under constraints) and y¢ represents the second
highest activation value(under constraints). Here, the scoring function f(x,y) doesn’t need
to be decomposable into local scoring functions. However, for many structured learning
problems, it’s possible to decompose the global learning function into local classification
problems. Also, local classification problems have lower sample complexity. A querying
function for optimizing local predictions would be to select examples with a small average

local multi-class margin defined as,

Lok . E?il[fyé,t (X7 t) B fﬂc,t (X? t)]
Qlocal(C) - L= argnan

€Sy Ty

(11)

where yc ; represents the local predicted label consistent with the global constraints and
yc,+ represents the second highest local prediction consistent with the global constraints.

So far, the user was given the complete structure to label. However, in querying for
complete labels, we are hindered by cases where for an instance, one output variable is very
informative but other output variables associated with the same instance are minimally
useful. Thus, it could be useful to query only very informative partial labels. The querying
function for partial labels is defined as:

Qlocal(C) : (X7 t)* = argmm[fyé,t <X7 t) - fﬂc,t (X7 t)] (12)
(x,yt)ESu

In using the partial labels, a notion similar to correction propagation (Culotta et al.,
2006), explained in section 3.1.2 can be applied here. In addition to the global constraints,
the partial labels would reduce the output space size for remaining local variables.

This work uses classifiers with linear representation where parameters are learned using
the perceptron algorithm. The linear local classifier is associated with linear functions,
fy(x,t) = a¥ - ¢Y(x,t), where o¥ € R% is the learned weight vector and ¢¥(x,t) € R%
is the feature vector for local classification. The global scoring function, f(x,y) = « -
P(x,y) where a = (a!,...,all) is a concatenation of the local a¥ vectors and ¢(x,y) =
(¢ (x,¥), ..., Y I(x,¥)) is a concatenation of the local feature vectors, ¢¥(x,y). Where,



Y(x,y) = Sp¥, ¥ (x,t)I{y,—y) is an accumulation over all output variables of features
occurring for class y.

They used inference based training (IBT) proposed by (Punyakanok et al., 2005) for
learning. The IBT algorithms as described by (Punyakanok et al., 2005) for online local
and global learning are shown in Figure 4. While learning the local classifier, for each
example (x,y) € D, the learning algorithm must ensure that fy,(x,t) > f,/(x,t), for all
t =1,..,ny and all ¥ = . The online perceptron style algorithm for local learning
(Har-Peled et al., 2002) is presented in figure 4(a). For learning a global classifier that
produces the correct global classification, feedback from the inference process determines
which classifiers to modify so that together, the classifier and the inference procedure yield
the desired result. Training is done for a global criterion as in (Collins, 2002) (Carreras
and Marquez, 2003). Figure 4(b) presents the perceptron like algorithm for learning with
inference feedback.

Roth and Small (2006) modified the inference based training for partial labels by
updating only local components with visible labels. To ensure large margin, they require
the separation between class activations to be above certain threshold +. The modified
algorithm by (Roth and Small, 2006) is shown in Figure 5.

Algorithm ONLINELOCALLEARNING
IveuT: DX e (X7 YT
OUTPUT: {fy}, ey €H Algorithm ONLINEGLOBALLEARNING
‘ INpUT: DXV 2 (A < Y3
Tnitialize o € RI®*! for yey OUTPUT: {fy}ygqy cH
Repeat until converge
for each (x,y) € D¥Y do Initialize o« € RI®!
fort=1,...,ny do Repeat until converge
Y = argmax, a¥ - ®Y(x, t) for each (x,y) € DV do
if i+ # v then ¥ = argmaxyoymyy @ - B(x,y)
a¥t = a¥ + ¥ (x, 1) if ¥ # y then
a¥t = alt — % (x, t) a=a+dx,y)— bx,3)
(a) Online Local Learning with Percep- (b) Online Global Learning with Percep-
trons trons

Figure 4: Online Global and Local Learning with Perceptrons (Punyakanok et al., 2005)
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Figure 5: Online Local Learning with thick separation (Roth and Small, 2006)

Experiments and Results: The experiments for active learning were run on synthetic
data and data for semantic role labeling from the CoNLL-2004 (Carreras and Marques,
2004) shared task. Here, we discuss the results on semantic role labeling task only. The



testing was restricted to sentences with greater than five arguments to increase the number
of instances with interdependent variables. The learner is bootstrapped with 100 examples
and batch size of 100 examples is used for first 500 training examples and a larger batch
size of 1000 examples is used after 6000 examples, since initially adding small amounts of
examples to training set makes a more visible difference than adding small amounts at a
later stage when the learner’s performance is reasonably good.

Roth and Small (2006) show that when the data is completely locally separable, com-
bination of local margins performs better than the global margin. For the semantic role
labeling task, both functions Qgiobar and Qjocqi(c) perform better than random selection,
reducing labeling effort by 35% i.e. to achieve the maximum performance achieved by
random, 35% lesser data is required for active learning strategies.

Roth and Small (2006) demonstrate that in cases where local labels can be queried
independently, labeling effort can be drastically reduced using partial label queries. For
semantic role labeling task, querying partial labels reduced the amount of labeled data
required by 50%. But querying local variables may not be feasible for all structured output
problems. For example, in parsing, where we try to learn a parse tree for a given sentence,
a sequence of productions is applied to the sentence. To select the next production, one
must have the entire sequence of productions preceding the prediction.

In querying for partial labels, the user is shown the entire sentence for context. The
user spends sometime reading and analyzing the sentence. So, should we ask the user to
label all the words in the sentence he is shown (since he is reading the whole sentence
anyways) or for just the most informative one. How do we compare the effort in reading a
word vs. classifying it. These questions call for some user studies to understand the real
user effort involved.

3.1.4 Reducing annotation effort for Grammar Induction

Grammar induction (Hwa, 1999) is the task of inferring grammatical structure of a lan-
guage by learning from example sentences in the language. (Charniak, 1996) show that
grammar can be easily constructed if we have sentences labeled with their parse trees.
Grammar induction using raw sentences in the language is difficult as shown in (Gold,
1967). Greedy approach using EM (Dempster et al., 1977), as in inside-outside algorithm
(Baker, 1979), induces locally optimal grammar with aim to minimize entropy of the
training data. Hwa (2000) use a variant of inside-outside algorithm to induce grammar
expressed in Probabilistic Lexicalized Tree Insertion Grammar representation (Schabes
and Waters, 1993),(Hwa, 1998)

Given enough labeled data with good quality annotations, grammar induction can be
done with reasonable accuracy. However, like grammar induction is a difficult learning
task, same is true for creating labeled data for learning grammars i.e. creating hand-
parsed sentences. Hwa (2000) use selective sampling to minimize the amount of annotation
needed for corpus based grammar induction. There are two possible ways to minimizing
the annotation effort for the user: 1) reducing the amount of annotations in each sentence,
2) reducing the number of training sentences.

Hwa (2000) focus on the later and select examples from the unlabeled pool using Train-
ing Utility Value (TUV). They used uncertainty based evaluation function for estimating
TUV by quantifying grammar’s uncertainty about assigning a parse tree to this sentence.
They consider two functions as a measure of grammar’s uncertainty: 1) sentence length
2) tree entropy of the sentence. The intuition behind using sentence length as a utility
measure is that longer sentences tend to have complex structures and ambiguities. This
measure has a major advantage that it is easy and fast to compute.

Selective sampling based on sentence length does not take into account the hypothesis
grammar. The tree-entropy selection criterion considers the classifier’s distribution over
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all possible parse trees which tells us about the uncertainty of the grammar. A uniform
distribution implies highest uncertainty. Entropy is used as a measure to quantitatively
characterize a distribution. Entropy H (V') is the expected negative log likelihood of a
random variable V:

HWV) == 3 p(o)logs (p(v)) (13)
veV

Entropy definition can be applied to the probability distribution of parses for a sentence
s in grammar G to calculate the tree entropy TE(s,G) as the expected number of bits
needed to encode the distribution of possible parses. To compare the entropy of sentences
of different lengths, we need to normalize TE. TE can be normalized using the uniform
distribution over all parses for a sentence of that length. For a sentence s of length [, the
number of all possible parses is O(2') and with uniform distribution, its entropy is O(l)

bits. Hence, the normalized tree entropy can be defined as:

TE(s,G)

fte(st) = I

(14)
where, TE(s, Q) is derived as:

> vey Pr(v|G)loga Pr(v|G)
Pr(s|G)

where V is the set of all possible parses G generates for s. Inside probabilities are used to

compute the other probabilities Pr(s|G) and Pr(v|G).

TE(s,G) = —

+ loga Pr(s|G) (15)

Experiments and Results: Hwa (2000) used selected training sentences from the Wall
Street Journal (WSJ) corpus (Marcus et al., 1993) for inducing grammars and results
were reported on unseen sentences. To reduce the vocabulary size, they replaced words
with their part-of-speech tags. Two candidate pool sizes of training data were used, 3500
sentences and 900 sentences. The second experiment was used to study how scarcity
of training data affects the evaluation function. Annotation effort is measured in terms
of number of brackets user adds, which is a more appropriate measure than number of
sentences because it more accurately quantifies the effort by the human annotator. The
performance of the parser is measured in terms of the consistent bracketing metric com-
monly used for evaluating parsers. The results for two selective sampling methods were
compared with random sampling. The learner was bootstrapped with 100 examples and
in every iteration 100 examples were selected from the pool and added to the training set.

For experiment 1, with larger candidate-pool, to achieve same performance as random
selective sampling, tree entropy based method requires 36% lesser annotations and sen-
tence length based method requires 9% lesser annotations than random (baseline). For
experiment 2, with a smaller candidate-pool, tree entropy based method requires 27%
lesser annotations and length based method requires 15% lesser annotations. It was ob-
served that the three methods give different results when all the sentences in the pool have
been added to the pool. Thus, presenting the training examples in different order affects
the search path of the induction process. With the smaller pool size, gain with TE based
selective sampling is lesser but the order in which training examples are presented helped
in inducing slightly better grammars. The results are shown in figure 6 (a) and 6(b).
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Figure 6: The learning rates for three selective sampling techniques: baseline(random),
uncertainty-based (tree-entropy) and length-based (Hwa, 2000)

3.1.5 Uncertainty-based Online Active Learning

The work presented so far discusses pool-based active learning i.e. we have a pool of unla-
beled examples from which examples are selected for user’s annotation. However, in certain
application such as spam-filtering, task of classifying email messages as spam(unwanted or
harmful electronic messages) and ham(legitimate electronic messages), pool-based learning
is not feasible. The messages come in a stream and the decision to recommend the exam-
ple for user’s analysis has to be made in real time. Moreover, pool-based active learning
methods are computationally expensive requiring many passes over the entire unlabeled
data. Sculley (2007) present a confidence based selective sampling method in an online
learning scenario for spam filtering task.

In their approach they use a linear classifier L with weight vector w. A value p; is
defined for each x; as p; = w.7, and the prediction by L for example x; is given by
sign(pt). | p; | signifies the distance of x; from the classification hyper-plane. In this
paper, they used three linear classifiers: classical perceptron, perceptron with margins
and linear online SVMs.

The classical perceptron algorithm, an online linear classifier, was introduced in 1958 by
Rosenblatt (Rosenblatt, 1958). The online training method for classical perceptron starts
by initializing weight vectors to 0 (w «— 0). For each example x; in training data, compute
pi = w.T, predict y. as the sign(p;). If y; # yi, update the weights as w «— w + yinz;,
where 77 is the learning rate. Perceptron with margin is a variant of classical perceptron
that tries to maintain an approximate margin between the data classes (Gentile, 2002), has
good tolerance to noise (Khardon and Wachman, 2007) and performs well on spam filtering
task (Schulley et al., 2006). The update algorithm changes such that, when y;pi < m,
weights are updated, w < w + y;nz; (m is the required margin).

Support Vector Machines(SVMs) (Scholkopf and Smola, 2001) is a maximum margin
classifier that finds a separating hyper-plane that maximizes the distance between two
data classes. In the soft margin case (i.e. allowing noise), given m training examples, in
n — dimensional feature space, and the slack variable C' > 0, the hypothesis vector w and
slack vector £ is calculated to minimize:

1 m
rw,€) = Sl +C & (16)
=1

subject to the constraints (Scholkopf and Smola, 2001) that & > 0 and y;p; > 1 — &
for ¢ from 1 to m. An expensive but straightforward way of converting batch-mode SVMs
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to online SVM is to re-train each time an example is classified poorly i.e. y;p; < 1. By
using old hypothesis as the starting point, this process can be made less expensive using
iterative solvers such as sequential minimal optimization(SMO) (Platt, 1998). The online
SVM performs well on spam filtering task as shown in (Sculley and Wachman, 2007) with
appropriate setting for C' parameter.

Online active learning is sometimes also referred to as label efficient learning (Helmbold
and Panizza, 1997), at the end of each online classification, the learner chooses whether
or not to ask for the correct classification. Sculley (2007) present three uncertainty based
sampling algorithms for online active learning and compare them with a uniform sub-
sampling algorithm where all samples are equally likely to be selected. First method is
a randomized label efficient method for linear classifiers such as classical perceptron and
Winnow. Given a sampling parameter ‘b’ (b-sampling (Cesa-Bianchi et al., 2006)), label
for an example x; is requested with probability:

b
b+ | pi |

As | p; | approaches zero, the probability of a label request for z; approaches 1 i.e.
closer an example is to the hyper-plane, less confidence the classifier has in its classification
and hence it should be presented to the user. The parameter b defines a function relating
the sampling probability P; to the classification confidence | p; |. Figure 7 shows how P;
varies with | p; | for difference values of b. (Cesa-Bianchi et al., 2006) give theoretical
mistake bounds and expected sampling rates for b-sampling.

(17)

P =

! R T —
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Figure 7: b-sampling probabilities, sampling probability (F;) vs. distance from hyper-
plane (p;) (Sculley, 2007)

In the second method called Logistic Margin Sampling, another mapping from | p | to
P based on logistic model of confidence probabilities is used. For a given example, the
confidence of a learner in the classification can be modeled as a logistic function of p;, the
signed distance of x; from the classification hyper-plane. This approximation is reasonable
given the work of (Platt, 2000). Thus, the confidence of the learner in classification of an
example x; is given as:

1

1+ exp_’Y‘pil <18)

q; =

The label for z; is requested with probability P, = 1 — ¢;. On simplification, we get
the logistic margin sampling probability as
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expf’”pi|
v 1+ exp*’ﬂpi‘

Figure 8 shows how P; varies with | p; | for difference values of ~.
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Figure 8: Logistic margin sampling probabilities, sampling probability (F;) vs. distance
from hyper-plane (p;) (Sculley, 2007)

Third method uses fixed margin sampling, where an example x; is selected if | p; |< ¢,
where c is a fixed threshold. Unlike the previous two methods, fixed margin sampling does
not assign a non-zero sampling probability to all examples. Thus, theoretical guarantees
of b-Sampling do not apply here.

Experiments and Results: Three techniques for selective sampling described above
were evaluated against uniform sampling as the baseline. In uniform sampling, each ex-
ample is selected with a fixed probability q. For b-sampling, b was varied from 0.001 to
1, for logistic margin sampling v was varied from 1 to 16, for fixed margin sampling, the
confidence threshold ¢ was varied from 0.001 to 2.4 and lastly for uniform sampling, ¢
was varied from 0.001 to 0.512. These values were selected to ensure total label request is
always between 0 and 30,000. Results reported are based on average over 10 probabilistic
tests.

The data used for evaluation was TREC spam filtering data from 2005-06 (trecO5p-1:
92,189 messages, trec06p-37,822 messages). All three active learning strategies achieved
equivalent performance level using only 10% of the labels needed by uniform sampling
to achieve same performance level. As the quality of the learner improves, allowing the
learner to make more predictions with high confidence, the number of label requests re-
duces overtime. With the logistic margin and fixed margin methods, the number of labels
requested goes down to 1% of the examples by the end of the trial. The sampling rate
of b-Sampling decreases steadily, but less slowly over time. The sampling rate of uniform
sub-sampling remains constant. Although fixed margin sampling performs better than b-
sampling, it offers no theoretical guarantees and experiences some volatility between 1000
and 2000 label requests for the trecO5p-1 tests with perceptron with margins. Figure 9
shows the results for online-SVM on trecO6p. The performance is reported using the stan-
dard (1-ROCA)% measure (Cormack and Lynam, 2005). The graph shows (1-ROCHA)%
score achieved over the entire online test for the given number of labels requested.
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Figure 9: Online SVM on tecO6p data. Scores using all data is 0.025 (Sculley, 2007)

3.2 Query-by-committee

The query-by-committee(QBC) method of active learning selects/generates a committee of
hypotheses and selects the unlabeled examples on the basis of disagreement among different
hypotheses. It selects the examples on which the disagreement within the committee is
highest. A committee is usually generated by randomly sampling the hypothesis from the
version space. This method of active learning has been applied to many machine learning
algorithms such as perceptrons (Freund et al., 1997), Naive Bayes (McCallum and Nigam,
1998) and Winnow (Liere and Tadepalli, 1997). Many semi-supervised learning methods
have been used with Query-by-committee method of active learning to select the examples
to be shown to the user with the aim of improving performance of classifiers using minimum
amount of user labeling. Some of these techniques have been discussed below.

3.2.1 QBC Semi-supervised learning using EM

McCallum and Nigam (1998) present a technique for combining QBC based active learning
with Expectation-Maximization (Dempster et al., 1977) for text classification. They use
naive bayes classifier with the assumption that the words in a document are generated
independently of the context and the probability of a word is independent of its position in
the document. The word probabilities conditioned on class are sampled from the posterior
Dirichlet distribution based on training data word counts. The parameters are sampled
k times to create a committee of k classifiers. Vote Entropy (Dagan and Engelson, 1995)
(entropy of the class label distribution obtained when each committee member vote with
probability 1/k for its winning class) and KL divergence to the mean (Pereira et al., 1993)
are the two metrics chosen to measure disagreement among the committee of classifiers.
The documents are selected on the basis of disagreement among committee members,
where disagreement is calculated using either of the two metrics.

McCallum and Nigam (1998) also present density-weighted pool-based sampling method
that prefers documents with high classification variance that are also similar to many other
documents in the pool. The density in a region around a particular document is approx-
imated by measuring the average distance from that document to all other documents.
The distance Y (d;, dy,) between documents d; and dy, is calculated by using:

Y(di, dp) = exp{=BD(P(W|dp)[[(AP(W|di) + (1 = A)P(W)))} (20)

where W is a random variable over the words in the vocabulary; P(W|d;) is MLE of words
sampled from document d;; P(W) is the marginal distribution over words; A determines
smoothing and 3 determines sharpness of distance metric. The density Z of a document
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d; is defined as

Z(d;) = exp |D‘ > In(Y(di, dy)) (21)
dn€D

This density metric is combined with disagreement by selecting the document with highest
product of density and disagreement.

One of the ways of combining active learning with EM is to run EM to convergence
after actively selecting examples to be labeled. In this manner, active learning helps in se-
lecting a better starting point for EM. McCallum and Nigam (1998) propose pool-leveraged
sampling which interleaves EM with Active Learning. In this approach, EM is run to con-
vergence on each committee member prior to disagreement calculations. This results in
avoiding the request of labels for examples that can be already reliably filled by EM, and
encouraging selection of those examples for users input that would help EM find a local
maximum with higher accuracy.

Experiments and results: McCallum and Nigam (1998) use UseNet and Reuters data-
sets in their experiments. An initial classifier was trained with one randomly-selected
labeled document per class. The QBC method uses a committee of 3 classifiers. Fig-
ure 10 shows the results for different disagreement metrics and selection strategies for
QBC with and without EM. The results for QBC without EM show that density-weighted
pool-based sampling with KL Divergence to the mean shows the best performance among
the disagreement metrics with an accuracy of 51% requiring only 30 labeled documents
compared to 40 labeled documents for unweighted measure and 59 labeled documents for
random sampling. The QBC-then-EM and interleaved QBC-with-EM show comparable
performance by requiring 30 and 32 labeled documents respectively for achieving an accu-
racy of 64%. Both the approaches do better than QBC-without-EM and random sampling
strategies which require 118 and 179 labeled documents respectively to achieve the same
performance. Thus, EM helps in boosting the performance of active learning a great deal.
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Figure 10: (a) Comparison of disagreement metrics and selection strategies for QBC shows
that density weighted pool-based KL sampling does better than other metrics, (b) com-
binations of QBC and EM outperform stand-alone QBC or EM (McCallum and Nigam,
1998)

3.2.2 Multi-view active learning

Muslea et al. (2006) discuss the active learning techniques for multi-view learning tasks.
Multi-view tasks are defined as ones which have disjoint subsets of features and each of
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these subsets is sufficient to learn the target concept. The subsets of features are known
as different views of the learning task. (Blum and Mitchell, 1998) describe the multiple
views with reference to web-page classification where the web-pages can be classified on
the basis of words in the document or the hyperlinks pointing to the documents.

Muslea et al. (2006) introduce Co-Testing, which is a two-stage iterative algorithm. It
takes a few labeled examples as input along with a large number of unlabeled examples.
In the first stage, Co-Testing uses the labeled examples to learn a hypothesis in each view
and in the second stage, the learned hypotheses are applied to unlabeled examples to find
a set of data points on which hypotheses predict different labels. Such data points are
known as contention points. In the final stage, it selects one of the contention points to
be labeled by the user and adds it to the training set. The above process is repeated to
select more examples for user labeling. After the allowed number of queries are made, this
algorithm creates a final output hypothesis to make actual predictions. The above process
is common to a whole family of Co-Testing algorithms which differ from each other in the
strategies used to select the next unlabeled training examples from the contention points
and the process by which the output hypothesis is constructed.

Muslea et al. (2006) discuss three types of strategies for query selection.

1. naive: This strategy chooses a query point randomly from the set of contention
points. This is useful for the learners which cannot estimate confidence for their
predictions reliably. This strategy is independent of domain and learner, so it can
be used with any multi-view learning task.

2. aggressive: This strategy selects the contention point on which least confident of the
hypotheses makes the most confident prediction.

Q= arg max { min  Confidence(h;(x)) } (22)

z€ ContentionPoints (1€{1,2,...,k}

where h;,1 < i < k are k hypotheses. This is useful for domains which are of high
accuracy with little noise.

3. conservative: This strategy chooses the contention point on which the confidence of
prediction by the different hypotheses is as close as possible.

= arg min max Confidence(f(x)) — min Confidence(g(x
Q r€ ContegntionPoints <f€{h1,h2,. .he} ﬁ (f( )) ge€{h1,ha,. .. by} ﬁ (g( )))
(23)

where h;, 1 < i < k are k hypotheses. This strategy is useful for high noise domains
where aggressive strategy would select mostly noisy examples.

Three strategies have been discussed for creating the output hypothesis.

1. weighted vote: The hypotheses’ votes are combined using the confidence weights of
their predictions

hour(z) = arg max Z Confidence(g(z)) (24)
le Labels g€{hiha,. . . hy}
g(x)=l

where h;, 1 < i < k are k hypotheses.
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2. majority vote: The predicted label is the one that was predicted by most of the
hypotheses learned in k views.

hour(x) = argmax (25)

L€ Labels

>, 1
g€{h1,h2,. .. hy}
g(x)=l
where h;,1 < i < k are k hypotheses. This strategy is applicable only in the case of
three or more views and its useful when the learners cannot estimate the confidence
reliably.

3. winner-takes-all: The output hypothesis chosen is the one that makes smallest num-
ber of mistakes over N queries, learned in a view. If Mistakes(h;) is the number of
mistakes made by hypothesis h; learned in k views on N queries,

argmax Mistakes(g) (26)

g&€{h1,. .. hp}

hovr(x) =

Experiments and Results: The paper presents results over three domains: web-page
classification, discourse tree parsing and advertisement removal. The data-sets used are
as follows:

1. AD (Kushmerick, 1999): This is a classification problem where the web-pages are to
be classified as ads and non-ads. The data-set has 2 classes, 1500 attributes and
3279 examples. The views used are V;: textual features that describe the image e.g.,
1-gram and 2-gram from caption, from URL of the page etc., Va: properties of the
image itself: length, width, aspect ratio, etc.

2. COURSES (Blum and Mitchell, 1998): This problem classifies web-pages as course
home-pages and other pages. The data-set has 2 classes, 2206 features and 1042
examples. The views used are Vj:words that appear in the page and V5 words that
appear in hyperlinks pointing to them.

3. TF (Marcu et al., 2000): This classification problem, in the context of machine
translation system, uses shift-reduce paradigm to learn how to re-write Japanese
discourse trees as English-like discourse trees. The views used are Vi: features
specific to shift-reduce parser(elements in the input list and partial trees in stack)
and Va: features specific to Japanese tree given as input.

Co-Testing Single-view Algorithms
Domain L Query Output
Selection Hypothesis | QBC | qBag | gBst | US | Rnd
AD IB naive wrinner — v v Vv v
TF M4 naive winner — v v — v
Naive naive weighted
COURSES | Bayes || conservative vote v v v v v

Figure 11: The algorithms used for classification. The last five columns denote Query-by-
Committee/-Bagging/-Boosting, Uncertainty Sampling and Random Sampling. (Muslea
et al., 2006)

The base learners used for AD is IB (instance-based learning) (Aha, 1992), for COURSES
is naive bayes (Blum and Mitchell, 1998) and for TF is MC4(which is an implemen-
tation of C4.5 (Quinlan, 1993)). Five single-view algorithms are used for comparison
with co-testing, viz. random sampling, query-by-bagging, query-by-boosting, uncertainty
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sampling and query-by-committee. Here, we discuss the comparison of co-testing with
random-sampling, uncertainty-based sampling and query-by-committee. For comparison
with query-by-bagging and query-by-boosting, the reader is encouraged to refer to the pa-
per for details. Figure 11 presents an overview of the experiments done by (Muslea et al.,
2006). The single-view algorithms were trained using all available features (i.e. V3 U V3).
The uncertainty-based sampling is applied only on AD and COURSES because MC4, the
base learner for TF, does not provide confidence scores. Query-by-committee(QBC) se-
lects a committee of classifiers by randomly sampling hypotheses from the version space.
QBC cannot be applied to AD and TF because randomly sampling from IB or MC4 ver-
sion spaces is not possible. They applied QBC to COURSES by sampling the hypotheses
from the gamma distribution of parameters in naive bayes (McCallum and Nigam, 1998).

Given the limitations of base learners (not being able to estimate confidence) AD
and TF, naive co-testing with winner-takes-all output hypothesis is applied. For courses,
weighted vote of the classifiers learned in each view is used for output hypotheses. For
COURSES data, the two query selection strategies: naive and conservative are compared.
Aggressive query selection is not applicable here as one of views is significantly less accurate
than the other.

Performance is evaluated on 10-fold cross validation. For each of the algorithm tested
here, for AD, 150 randomly chosen examples are used initially followed by 10 queries in
each iteration. For COURSES, 6 randomly chosen examples are used at the start and one
query per iteration is made. Finally, for TF, initially 110 examples are chosen randomly
and 20 queries are made in each iteration.

Figure 12 shows the results for statistical significance tests(t-test confidence of atleast
95%) from the pair-wise comparison of algorithms. The experiment results show that
none of the tested single-view algorithm significantly outperforms co-testing on any of the
comparison points. The results could be understood in the following manner. The numbers
(0,0,19) in the first row show results of comparing naive co-testing and random sampling
on AD. This means that on all 19 comparison points, naive co-testing outperforms random
sampling significantly. In a similar manner, looking at the last row, conservative co-testing
significantly outperforms naive co-testing on 28 comparison points and the differences were
statistically insignificant on the 21 points other points where there is a tie between the
two. Figure 13 shows the learning curves of different algorithms used in experiments on
AD, TF and COURSES.

Naive Co-Testing Conservative Co-Testing

Algorithm AD TF COURSES

Loss | Tie | Win || Loss | Tie | Win || Loss | Tie Win
Random Sampling 0 0 19 0 21 70 0 0 49
Uncertainty Sampling 0 2 17 0 2 89 - - -
Query-by-Committee - - - 0 60 31 - - -
Query-by-Bagging 0 18 1 0 i 85 0 28 21
Query-by-Boosting 0 ] 4 0 0 01 0 0 49
Naive Co-Testing - - - - - - 0 21 28

Figure 12: Statistical significance results in the empirical (pair-wise) comparison of the
various algorithms on the three domains. (Muslea et al., 2006)

3.2.3 Bootstrapping Statistical Parsers

Steedman et al. (2003) present selection methods for co-training (Blum and Mitchell,
1998) and corrected co-training (Pierce and Cardie, 2001) where selected parse trees from
the bootstrapped examples are presented to the user for correction before adding them
to the training pool. This approach is motivated by the observation that the quality
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Figure 13: Empirical results on the AD and TF and COURSES problems (Muslea et al.,
2006)

of the bootstrapped data is the key factor in the convergence of co-training. Corrected
co-training is an extension to co-training where user corrects the training data selectively.
The goal for both parsers in co-training is to improve by learning from each others’
strengths. The examples added to the training set of one parser (referred to as the stu-
dent) are selected from those produced by the other parser (referred to as the teacher).
The selection mechanism is important for both co-training and sample selection for user
correction; however their selection methods focus on different criteria: co-training favors
selecting accurately labeled examples, while sample selection favors selecting examples
with high training utility, which are often not sentences that the parser already labeled
accurately. Steedman et al. (2003) propose selection methods and their experiments ex-
plore the trade-off between maximizing training utility and minimizing errors. Accuracy
and training utility are two selection criteria used for selecting documents to be added to
the training set. Training utility of a sentence is estimated by comparing the score the
student learner assigns to its parse against the score the teacher assigns to its own parse.
Sample selection is a two step process, where first each parser uses some scoring func-
tion to score the parses it generated on the unlabeled data and then the selection procedure
chooses a subset of these labeled sentences to add to the training data. An ideal scoring
function would be the true accuracy rate (e.g. Fl-score). In practice, the scoring function
can be approximated by a measure of confidence from the learner such as conditional
probability of the most likely parse. Steedman et al. (2003) experiment with two scoring
functions: 1) oracle scoring function fri_score (F1l-score of the parse as measured against
a gold-standard) 2) conditional probability of the parse given the sentence fpop-
Selection methods they used and compared are as follows:

1. Above-n : the score of the teacher’s parse (using its scoring function) > n. It
attempts to maximize the accuracy of the data.

2. Difference: the score of the teacher’s parse is greater than the score of student’s
parse by some threshold n. It attempts to maximize the training utility.

3. Intersection: shortlist a set of sentences such that teacher’s parse score on these sen-
tences is in top n percent of scored sentences. Similarly shortlist a set of documents
such that student’s parse score on these sentences is in lowest n percent of scored
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sentences. The intersection of these two sets is selected for addition to the training
set. It attempts to maximize the accuracy as well as training utility.

This approach aims at reducing the number of corrections made by the human which dif-
fers from co-testing (Muslea, 2002), where the goal is to reduce the total number of labeled
training examples. Therefore, the selection methods must take into account the quality of
the parse produced by the teacher in addition to how different its parse is from the one
produced by the student. The intersection method precisely aims at selecting sentences
that satisfy both requirements.

Experiments and Results: The two parsers used in experiments are (1) Lexicalized
CFG parser (Collins, 2003) and (2) Lexicalized Tree Adjoining Grammar parser (Sarkar,
2002). A seed set size of 1000 sentences was used, taken from section 2 of the Wall Street
Journal (WSJ) Penn Treebank. The total pool of unlabeled sentences was the remainder
of sections 2-21 (stripped of their annotations), consisting of about 38,000 sentences. The
parsers were evaluated on unseen test sentences (section 23 of the WSJ corpus) and section
0 was used as a development set for determining parameters. The Parseval F1-score over
labeled constituents is used as the evaluation metric.

2x LR x LP
F1 — Score = IR+ LP (27)

where LP is labeled precision rate and LR is labeled recall rate.
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Figure 14: A comparison of selection methods for co-training with oracle scoring function
(Steedman et al., 2003)

Selection methods and co-training: To evaluate the selection methods using a reliable
scoring function, Steedman et al. (2003) use the oracle scoring function fpi_score as it
guarantees a perfect assessment of the parser’s output. However, in practice, a reliable
scoring function can assign a high score to an incorrect parse tree. Thus, for quality control,
the selection method’s parameters are chosen such that average accuracy rate for newly
labeled training data in each iteration is 85%. Three strategies that were evaluated are:
Sabove—70% Strategy (select examples with F'1 — score > 70%) adds 330 labeled sentences
(from the pool of 500 sentences) with an average accuracy rate of 85% per iteration on
training data. Sg;rr_10% strategy (select examples with difference in F'1 — score of teacher
and student learner > 10%) adds 50 labeled sentences with an average accuracy rate of
80% on training data and S;,;_go% (selects examples for which the teacher’s parse is in
its top 60% and student’s parse is in its bottom 60%) adds about 150 labeled sentences
with an average accuracy rate of 85% on training data. Figure 14 shows the results of
the proposed selection methods in co-training using the oracle scoring function fri_score-
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Sdiff—10% strategy improves the parser the most. This suggest that training utility is an
important criteria in selecting training examples for co-training.

The selection methods were also evaluated using the estimated scoring function, fporp-
The parameters for the selection methods were selected such that 30 — 50 examples were
added in each iteration. Three strategies that were evaluated are: S pope_70% (average
accuracy rate of the training data - 85%),S4¢r_30% (average accuracy rate of the train-
ing data - 75%) and S;,;_30% (average accuracy rate of the training data - 75%). As
expected, the parser performance with f,.,, was lower than fri_score as shown in 15.
However, Sg;f¢—30% and Sin:—30% selection methods helped in improving the parser with
5% reduction in error.
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Figure 15: A comparison of selection methods for co-training with conditional probability
scoring function(Steedman et al., 2003)

Selection methods and corrected co-training: Figure 16 shows the results of the proposed
selection methods in corrected co-training using the oracle scoring function fr_score. The
graphs show the amount of human effort in terms of number of sentences a human has to
check and number of constituents a human has to correct. The results show that S;,;_30%
improves the parser at the fastest rate and for the same performance level, it selects fewest
number of sentences for a human to check in addition to ensuring that human makes least
number of corrections.
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3.3 Other Criteria

Apart from uncertainty-based and query-by-committee based selective sampling tech-
niques, researchers have also explored other measures for selecting examples for presenting
to the user. We discuss some of these techniques here:

Diversity and Representativeness Based Selective Sampling

Shen et al. (2004) apply active learning to the named entity recognition task using support
vector machines (SVM) (Cortes and Vapnik, 1995). In this paper, they apply active
learning methods to a simple and effective SVM model to recognize one class of names at
a time, such as protein names, person names, etc. In addition to the uncertainty-based
techniques for selective sampling based on distance of a word’s feature vector from the
hyper-plane, they use diversity criterion to maximize the training utility of a batch of
examples. They demonstrate that a batch in which the examples have higher variance is
more useful for active learning. They propose two methods for diversity sampling, global
and local. For global consideration, they clusters (using k-means clustering (Kanungo
et al., 2002)) based on similarity and select examples from different clusters. For local
consideration, they select those examples which are most different from examples already
in the pool.

Shen et al. (2004) also suggest that the most informative examples are those which
are most representative of other examples. Representativeness of an example can be cal-
culated as the number of examples similar to it. Examples with high representativeness
are less likely to be an outlier and adding them to the training set will have an effect
on a large number of unlabeled examples. If the examples were clustered together based
on similarity, the centroids of the clusters would be the most representative examples.
To measure similarity, they used cosine similarity and Dynamic Time Warping (DTW)
algorithm (Rabiner et al., 1978) to find an optimal alignment between the words in the
sequences which maximizes the accumulated similarity degree between the sequences.

Experiments and Results: For evaluation, they apply their techniques to recognize
protein (PRT) names in biomedical domain using GENIA corpus V1.1 (Kim et al., 2003).
The learner was bootstrapped with 10 examples sentences and each active learning itera-
tion 50 examples were added to the training set. To achieve an F-score of 63.3, random
sampling requires 83k sentences where as their strategy based on representativeness and
uncertainty requires only 31k sentences (i.e. 39% fewer examples are needed).

4 Conclusion and Discussion

Active learning eases the burden of labeling data by selecting the most informative exam-
ples for the user to label. It is especially important in NLP where labeled data is usually
limited. In this literature review, we present different techniques that have been used
in active learning for NLP tasks such as named entity recognition, text categorization,
semantic role labeling, grammar induction and parsing; and machine learning techniques
such as SVM, CRFs, EM and perceptron algorithm. We show how active learning has
helped these tasks in reducing the required labeled data significantly. In this review, we
also discuss how the active learning approaches are evaluated. The main aim of active
learning is to reduce the user annotation effort. Expected Number of User Actions (ENUA)
(Kristjannson et al., 2004) is one direct measure of user effort. However, ENUA ignores
the variation in effort involved in different user tasks such as annotating and reading text.
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In structured outputs, Roth and Small (2006) discussed querying partial labels where the
whole sentence is presented for context. It is an open question as to whether reading the
whole sentence and labeling only one output is more efficient than reading and labeling
the whole sentence. The latter is more beneficial for the learner since we get more labels.
There is a need for effective user studies to analyze the real user effort involved which
would help us direct our research in the correct direction. Also, in NLP all examples are
not equal, a more difficult example would require more user effort. Hence, it is important
to understand how to effectively measure the complexity of an example and select those
examples which are beneficial for the classifier and also not so difficult to label.

In addition to selective sampling examples for user’s annotation, semi-supervised tech-
niques have been combined with active learning to make use of the large amount of un-
labeled data usually available in NLP. This literature review presents some of the work
where semi-supervised learning is combined with active learning.

A lot of interesting work has been done in active learning for NLP but as highlighted
in this review, there is scope for improvement and there are some issues to address. Also,
active learning can be applied to benefit more NLP problems. Each problem presents some
interesting challenges that should be addressed for significant gain from active learning.
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