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Abstract

We propose a new family of market-based distributed planning algorithms for multi-agent
systems, in particular for the problem of allocating indivisible resources or tasks among agents.
Market-based algorithms have become popular in collaborative multi-agent planning due to
their intuitive and simple distributed paradigm as well as their success in planning in domains
such as robotics and software agents. However, they suffer from two main drawbacks: 1. it
is somewhat of an art to create a reasonable pricing in each domain, requiring a human de-
signer and parameter tuning, and 2. they rarely guarantee optimality. Also, most existing algo-
rithms require a central trusted auctioneer, or require the domain to be collaborative, where all
agents are cooperating towards a common goal without conflicting interests. This thesis aims
to provide the solution to both problems, and extends the existing market-based paradigm to
non-collaborative settings with potentially adversarial agents, while also distributing the auc-
tioneer’s computation to the agents. Our algorithms are based on a decomposition method for
mixed integer programs, and compute resource prices automatically, and does so to guarantee
optimality at termination. The completed preliminary work shows the promise of our approach
in the collaborative setting; our proposed thesis work includes extending the algorithm to the
fully distributed non-collaborative setting by employing no-regret learning for each agent. We
hope to show that our algorithm leads to a notion of social optimum and plan to conduct empir-
ical evaluations in domains such as robot path planning and task allocation.

1 Introduction

Multi-agent planning is often naturally formulated as a mostly factored combinatorial optimization
problem: each agent has its own local state, constraints, and objectives, while agents interact by
competing for scarce, shared resources. Such a problem is usually intractable as a single centralized
optimization, as the joint state space over all agents is exponential in the number of agents. Hence,
given the natural factorization of the planning problem it is beneficial to seek a distributed planning
solution. In the ideal setting, each agent will solve its individual planning problem mostly indepen-
dently of other agents, with little complication imposed by the shared global constraints, using a
fast single-agent planning algorithm such as those which already exist in many domains.

Market-based planning has become a popular approach to collaborative multi-agent distributed plan-
ning, thanks to its intuitive paradigm of agents bidding for tasks or resources through a market while
solving their local problems independently. It has proven successful in a number of domains with
robotic and software agents, in particular task allocation [Dias, 2004] [Gerkey, 2003] [Zheng and
Koenig, 2009]. However, there are several well-known limitations. First, to set up a good market is
something of an art: a human designer must choose carefully a strategy for pricing commodities for
every new problem domain, balancing planning effort against suboptimality, which often involves
extensive parameter tuning or guessing. Also, the task-oriented nature of these algorithms mean
that they cannot handle additional constraints, for example on limited resources, in a general and
efficient manner, adding to the design effort. And even with careful engineering, most market-based
planners cannot offer guarantees on the final overall plan quality.

This thesis will explore the use of mixed integer linear program (MILP) formulation and a family of
decomposition-based distributed algorithms for multi-agent planning in both the traditional collab-
orative setting as well as non-collaborative setting with self-interested agents. The decomposition
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machinery solves the difficulty of designing resource prices by automatically pricing the resources
given any domain, and guarantees a globally optimal joint plan at termination. Our method is most
suited for domains with largely individual planning problems coupled by a set of shared resources,
such that even when the agents are self-interested, their costs are coupled with other agents’. Popu-
lar such domains include task allocation and supply-chain optimization, both of which are usually
considered under fully cooperative agents, but one can easily consider a non-collaborative setting
by having companies competing for tasks or production. The MILP representation lets us easily
generalize the usual task-allocation setting to those with complex constraints over multiple agents,
such as deadlines for tasks or limited resources.

Moreover, mixed integer programming has become a common approach in many planning domains.
In operations research, a common approach to solving multi-stage planning problems under un-
certainty is stochastic programming with recourse (e.g., [Powell, 1996]); or more specifically in
artificial intelligence and cooperative control, MILPs have been successfully used for problems
such as UAV task allocation [Richards et al., 2002] [Alighanbari and How, 2005] and for general
STRIPS-style planning [Vossen et al., 1999], and under a game-theory framework for reasoning
about uncertainty due to the actions of other agents in a nonzero-sum game [Sandholm et al., 2005].
Such popularity of MILPs makes our methods readily applicable since for many problems a MILP
formulation already exists; and we expect an immediate impact as the distributed nature of our
methods alone will enable larger problems to be solved than previously possible.

However, a common concern with using the MILP formulation is that while it lets us compute global
joint plans optimally, it may not provide the level of efficiency and robustness required in domains
such as field robotics. It is not yet clear that our algorithms can meet the demands of such fields;
however, they do provide partial solutions to different challenges of distributed planning. First,
our methods do not always guarantee a feasible plan under communication or machine failure,
but they are anytime: feasible joint plans can, and mostly like will, be generated before the final
optimal joint plan is found, and in case of failure, the agents can execute the last chosen joint
plan. Second, we hope that by distributing computation among agents we can arrive at a good joint
solution quickly. Last, while we do not focus on communication complexity, our algorithms incur
only a small communication cost by communicating information about only relevant resources or
tasks in contention. And as with most distributed planning algorithms, an individual agent’s local
problem and constraints never need to be communicated to other agents or to a central server.

In the following, we first describe related work, then present our preliminary work on a simplified
version of the branch-and-price-and-cut algorithm [Barnhart et al., 1996] for solving MILPs, which
we show to be simple and effective as a distributed algorithm. The algorithm is based on Dantzig-
Wolfe decomposition for linear programs, which we extend to solve MILPs by incorporating the
Gomory cutting plane algorithm, while retaining its optimality guarantees. We show experimentally
that the algorithm is efficient in comparisons against CPLEX [ILOG, 2010], a highly optimized
commercial MILP solver, in both centralized and distributed implementations. As we will see, the
algorithm follows a standard model in market-based planning where a trusted central “auctioneer”
allocates resources to the bidding agents. We propose to further extend the basic algorithm by 1.
distributing the central computation of pricing resources for faster computation and more robustness,
and 2. providing a mechanism under which even non-collaborative agents, with possibly conflicting
interests, will reach a socially optimal joint solution. We hope to show that the agents converge to
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at least a boundedly-rational equilibrium, an equilibrium for agents not capable of computing an
incentive to change their strategy due to computational limitations. We aim to show that the agents
also converge to a good global solution, possibly through a statement on the price of anarchy of the
mechanism. We conclude the document with a proposed time schedule for finishing the thesis.

2 Related Work

2.1 Market-Based Planning and Optimization-Based Distributed Planning for Co-
operative Agents

Various forms of market-based distributed planning have been studied for collaborative domains,
notably by Dias [2004], Gerkey [2003], and Koenig et al. [2010] for task allocation with robotic
agents. A common feature in market-based algorithms is the central trusted auctioneer that assigns
tasks based on agents’ bids, which may be used alone (e.g. [Koenig et al., 2007], [Koenig et al.,
2008], [Tovey et al., 2005]), or in conjunction with agent-to-agent negotiation to improve the so-
lution quality after the central initial allocation (e.g. [Zheng and Koenig, 2009], [Dias and Stentz,
2002], [Lemaire et al., 2004]).

Otherwise, most existing market-based algorithms can be classified into two categories; those based
on single-item auctions and those based on combinatorial auctions. In a single-item auction, each
agent bids for each item separately, and the items are allocated independently of each other to the
agents. Most work has been in this setting, including recent papers that have presented algorithms
with approximation guarantees on the cost of the global solution, namely Lagoudakis et al. [2005]
for sequential single-task auctions, Koenig et al. [2008] for sequential single-task auctions with
regret clearing, Zheng and Koenig [2010] for an improved version of sequential single-task auctions
using hill climbing, and Gerkey [2003] for one-task-per-robot domains. Most algorithms employ
a greedy algorithm for the auctioneer to allocate tasks (i.e., to the highest bidder), and thus are
extremely fast.

However, complex constraints often found in more realistic problems such as those for collision
avoidance or task deadlines cannot be considered naturally in the single-item auction framework
as the constraints will force allocation of some tasks to depend on others’. Combinatorial auc-
tions [Cramton et al., 2005] allow for such constraints by letting agents bid on bundles of resources,
and have been studied in the collaborative setting for robot exploration [Berhault et al., 2003], role
assignment [Hunsberger and Grosz, 2000], and task allocation [Nair et al., 2002], among others.
However, the bundles render the auctioneer’s computation to be potentially exponential in the num-
ber of resources, and yet the handcrafted bidding strategies lead to suboptimal solutions. Hence, for
settings without such coupling constraints, one may prefer the fast single-item auction algorithms,
especially if real-time performance is expected.

Like combinatorial auctions, our algorithms naturally handle constraints coupling resources. How-
ever, unlike most work using combinatorial auction in collaborative domains, our algorithm uses
iterative bidding on small sets of bundles and price feedback from the auctioneer, which allows the
agents to rebid in subsequent iterations toward a globally optimal solution. Hence the agents may
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not need to communicate their preferences on exponentially many bundles as may be the require-
ment under combinatorial auctions in some settings. Our mechanism is most similar to iterative
combinatorial auctions [Parkes, 2001], which have been mainly studied for non-collaborative set-
tings; we discuss them further in Section 2.3.

We again stress that our method automatically provides resource prices without domain knowledge,
and to optimality, whereas most studies under either auction paradigm engineer markets and re-
sources specifically for each problem domain, and often without theoretical guarantees. Our method
may be combined with problem-specific approaches to yield additional resources that are more spe-
cialized but principled and easier to design. In our general version, such additional resources are
based on bundles of resources, created to compensate for inefficiencies in the bundles currently
available to the agents.

Potentially to automate resource pricing, machine learning techniques have been applied to learn
bidding strategies. The most relevant work is by Schneider et al. [2005], which uses the notion
of opportunity cost, based on rewards for each task, to learn the bidding strategies for each agent.
However, this method in effect still requires the human designer to price resources, or tasks, through
rewards. In contrast, learning can be effective for automatic pricing in scenarios such as over-
subscribed domains where not all tasks are expected to be completed but a penalty is defined for
unfinished tasks [Jones et al., 2007], since the penalty represents a natural quantity to be learned
and minimized. Also, learning would be useful if uncertainty existed in the global cost function;
however this setting is not considered by this thesis or the learning-based market-based algorithms
mentioned above. Hence, in the mentioned papers learning is used simply as a substitute for opti-
mization, which may be sensible if efficiency is more important than the quality of the solution, as
it may require many iterations until a good predictor is learned.

2.2 Decomposition-Based Optimization and Planning

Distributed planning algorithms based on decomposition methods have been explored in the ma-
chine learning and planning communities. The most relevant works include [Guestrin and Gordon,
2002] for hierarchically factored Markov decision processes (MDPs), [Bererton et al., 2003] for a
class of loosely coupled MDPs, and [Calliess and Gordon, 2008] which frames the market-based
interactions as a game between adversarial agents computing resource prices and learning agents
that represent the agents in the original problem. However, existing work, including the aforemen-
tioned, can be seen as applying a decomposition for linear or convex programs, which limits them to
infinitely divisible resources only (although the infinitely divisible solution can often be a reasonable
approximation even in the presence of discrete resources). Note that Calliess and Gordon [2008]
consider self-interested agents; we will discuss in Section 4 how we plan to extend our work to the
non-collaborative setting with similar ideas.

General frameworks for Dantzig-Wolfe decomposition for mixed integer programming have been
explored, particularly in the operations research community (e.g., Vanderbeck [2000], Vanderbeck
and Savelsbergh [2006]). Known as branch-and-price or branch-and-price-and-cut, these frame-
works typically focus on sequential or tightly-coupled parallel execution. They use branch-and-
bound for solving integer programs, and at each node of the search tree, employ Dantzig-Wolfe
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decomposition (and in some cases cutting planes) to solve a linear program relaxation and obtain
bounds. (See [Barnhart et al., 1996, Ch. 6.7] for a good overview.) If we added branching to our al-
gorithm, it would fit nicely into this line of research; however, it is not clear how to do so efficiently
and robustly in a distributed framework. Much attention has been drawn to the implementation
details of branch-and-price algorithms Vanderbeck [2005] which would need to be resolved in the
distributed setting; in particular, keeping track of the branch tree can be tricky, and it is an art to find
good branching strategies.1 In contrast, our algorithm is simple to implement and intuitively dis-
tributed, and we demonstrate distributed operation over simple socket-based communication links.
In addition, cuts considered in branch-and-price-and-cut papers are often problem-specific, most
prevalently for the vehicle routing problem with time windows Petersen et al. [2008].

Thus our main contribution in the collaborative setting is twofold: first, removing branch-and-bound
from the combination leads to an algorithm that is much more naturally distributed, without much
loss in efficiency as we will see in our experiments. Second, previous work has not applied such
algorithms to distributed multi-agent planning; we draw the connection to market-based planning,
where our algorithm provides a principled way to introduce new resources and set prices of re-
sources (in contrast to previous heuristic methods).

While not based on a decomposition, distributed constraint optimization (DCOP) is a popular dis-
tributed planning method that frames planning problems as constraint satisfaction problems and
solve them in a fully-distributed fashion by having disjoint sets of variables assigned to each agent
and using a search algorithm to find an assignment on which all agents agree [Modi et al., 2005],
[Yeoh et al., 2008]. No definitive definition seems to exist in the multi-agent planning literature for
DCOP, but most consider DCOP to be defined for discrete variables, to assume that each constraint
only involves two agents, and to not allow hard constraints. On the other hand, distributed constraint
satisfaction problems (DisCSP) [Yokoo et al., 1998] allow hard constraints but do not optimize a
cost function. Hence both DCOP and DisCSP solve simpler problems than general MILPs.

2.3 Distributed Planning in Non-Collaborative Domains

There have been significant work in distributed planning in non-collaborative domains with divis-
ible resources. As discussed in the previous section, no-regret learning has been used by Calliess
and Gordon [2008] for settings with a finite number of agents and divisible resources. Also, no-
regret learning has been studied in particular in routing with infinitesimal agents ([Blum et al.,
2006],[Roughgarden, 2007]), with results in strong performance guarantees and price of anarchy
statements. Price of anarchy is a useful concept in the analysis of mechanisms without dominant
strategies, revealing their (in)efficiency in terms of social welfare. Blum et al. [2008] define price
of total anarchy to be the price of anarchy achieved at the equilibrium reached by agents playing
no-regret algorithms, which is a possible solution concept for our proposed work.

Mechanism design is the study of creating systems that achieve desired global behavior (such as a
socially optimal outcome) under strategic agents. Distributed mechanism design has been stud-
ied prevalently in the area of routing and for divisible resources otherwise [Feigenbaum et al.,

1One possibility is to extend the techniques used to maintain search trees in distributed constraint optimization, al-
though DCOP are much simpler problems than general MILPs.
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2005], [Feigenbaum et al., 2001]. Indivisible resources have been also considered, for example for
task allocation, with some success in approximation algorithms [Feigenbaum and Shenker, 2002].

Combinatorial auctions are a natural formulation for planning with indivisible resources in non-
collaborative domains. However, little work exists on distributed combinatorial auctions, perhaps
because majority of work on combinatorial auctions is concerned with finding incentive-compatible
mechanisms (see [Conitzer, 2010] for a good overview).

Iterative combinatorial auctions [Parkes, 2001] are particularly relevant as their general form is
equivalent to our collaborative algorithm: agents sequentially reveal preferences, by bidding on a
small set of bundles at each round and receiving feedback on the current prices of the resources from
the auctioneer, which enables them to change their bids in the next rounds. Although the algorithms
are not distributed and the form of bundles allowed are often limited, iterative combinatorial auctions
have been studied for non-collaborative settings under various valuations and forms of bundles,
with results of convergence to equilibria [Cramton et al., 2005, Ch.2]. One particularly interesting
algorithm is iBundle by Parkes and Ungar [2000] for XOR bids, which uses a primal-dual algorithm
for LPs to price resources and is guaranteed to achieve bounded inefficiency.

3 Preliminary Work

In this section we present two sets of completed work. The first describes the preliminary work on
collaborative agents, on which we will build our proposed fully distributed planning algorithm for
non-collaborative agents, and the second provides a possible representation for efficiently describing
the planning problems.

3.1 Price-and-Cut: A Market-Based Planning Algorithm for Collaborative Domains

For the collaborative setting, we designed and tested price-and-cut market-based planning (or price-
and-cut for short). The algorithm automatically prices resources and furthermore designs new
resources, correcting pricing imbalances by adding “derivative securities” based on the original
resources to the market. Note that the collaborative setting can be framed purely as a global opti-
mization problem, which we represent as a MILP. Our algorithm is based on Dantzig-Wolfe (D-W)
decomposition, a classical column generation technique (see e.g. [Bertsimas and Tsitsiklis, 1997,
Ch. 6]), in which the problem is reformulated and decomposed into a master program enforcing
shared constraints over individual plans and subproblems for individual agents’ problems. Among
the plans generated by the subproblems so far, the master program finds the best set of plans, then
“prices” the shared resources, or constraints, based on the corresponding dual multiplier values.
Subproblems then adjust their objectives based on the constraint prices, which leads to better plans
with respect to the shared constraints by incurring lower cost in the dual program. Since the sub-
problems are solved independently of each other, all computation can be distributed: agents plan
in their local problems and communicate only when they might contend for resources. Hence our
algorithm is well-suited for situations where it is costly to communicate large sets of constraints and
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objectives from individual problems to a server, or where centralized computation is not desirable
for robustness.

As the individual plans are computed independently by each agent, the decomposition lets us take
advantage of fast single-agent planning algorithms. For example, if the individual agents must plan
motions in a continuous space, they can use fast randomized tree-growing algorithms (e.g. [Kara-
mana and Frazzoli, 2010]); or, if the individual problems are network flow or path planning prob-
lems, they can use fast combinatorial algorithms. In some cases the best subproblem planner will
be a mixed integer linear program (MILP) solver, as there has also been a great deal of research on
using general-purpose MILP solvers for planning [Vossen et al., 1999]; in these cases we still gain
greatly from factorization since the individual problems are typically much smaller than the joint
problem.

While D-W decomposition provides factorization and distributed computation, it is originally de-
fined only for linear programs (LPs). We extend the formulation to MILPs using Gomory cuts [Go-
mory, 1958], a general cutting-plane algorithm, while retaining optimality and finite-time guaran-
tees of the D-W decomposition algorithm for LPs. Our algorithm can be seen as a special case of
the branch-and-price-and-cut framework [Barnhart et al., 1996], and its simpler structure makes it
much more naturally distributed than the general version. Constraints created by Gomory cuts can
be interpreted as additional, derivative resources, whose pricing can be communicated to subprob-
lem solvers just as for the original resources, maintaining the market-based distributed nature of
D-W decomposition. As the Gomory cuts are constraints on nonlinear functions of multiple origi-
nal resource consumption levels, their prices can represent ideas like discounts on particular baskets
of resources, or penalties for exceeding a certain level of resource consumption.

Note that in the current algorithm, the master program is not solved in a distributed fashion. Two
possible implementations exist: one is to have a trusted central server that performs the master
program computations, and another is for every agent to solve the master program. The former may
be less robust as the server can be a single point of failure, but communication cost at each iteration
is linear in the number of agents. The latter is more robust, but with an added communication cost
as every agent needs to communicate with every other agent about their current resource usages. In
this section we assume the former implementation and do not address machine and communication
failures. It is worth noting, however, that even with a central server, the algorithm is not hopeless
against system and communication failure. The algorithm is anytime; it may (and typically will)
generate feasible but suboptimal global solutions before terminating with an optimal solution, and
the agents can execute the last feasible plan picked if they lose the central server during planning.

In the following sections, we describe the price-and-cut algorithm, and illustrate how new resources
are formed and how one may interpret them. We then show experimental results comparing its per-
formance against the CPLEX MIP solver on a set of synthetic problems that show its effectiveness
in both centralized and distributed settings.
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3.1.1 Dantzig-Wolfe decomposition

Consider the following mixed integer program (MIP) in the standard form, factored over n agents:

min
∑

i=1:n

c(xi) (3.1)

s.t.
∑

i=1:n

Aixi = b (3.2)

xi ∈ Ci, i = 1, . . . , n (3.3)

where xi represents the plan for agent i, Ci its domain, i.e., the set of plans satisfying agent i’s
individual constraints, and c(xi) its cost. Each xi is a mixed integer vector (its elements may be
integers or reals); we assume that Ci is bounded2. (3.2) defines the shared constraints, where each
Ai is a matrix with the same number of rows, i.e., the number of shared constraints. Note that even
if a natural multi-agent structure is not present, any MIP may be written in this form. The distributed
formulation becomes especially beneficial if the program contains structure, for example a partially
block-diagonal constraint matrix.

In Dantzig-Wolfe decomposition, we reformulate the program to consist of a master program and
n subproblems. The master program is defined in terms of the ni basic feasible solutions x1

i . . . x
ni
i

to each individual subproblem i. It includes variables wj
i which indicate whether the individual

solution xj
i ∈ Ci is part of the optimal joint solution:

min
∑

i=1:n

∑
j=1:ni

c(xj
i )w

j
i (3.4)

s.t.
∑

i=1:n

∑
j=1:ni

wj
iAix

j
i = b, wj

i ∈ {0, 1} (3.5)

∑
j=1:ni

wj
i = 1, i = 1, . . . , n. (3.6)

For LPs, Ci is convex, hence we can allow wj
i ∈ [0, 1], rendering the master program a linear

program. However, for MIPs, a convex combination of plans may not be a valid plan, thus we must
impose integrality constraints wj

i ∈ {0, 1}, rendering the master program an integer linear program.
In this section we work with the linear program (LP) relaxation of the master program; below, we
discuss how to use Gomory cuts to find an integer solution to the master.

The number of constraints in the master program may be much smaller than in the original formu-
lation, as the master does not include the individual constraints. However, the number of variables
in the master program may be prohibitively large, as it is equal to the number of possible individual
basic plans for all agents. We thus define and solve the restricted master program, whose variables
include only a subset of all possible plans. Suppose we have a basic feasible solution to the re-
stricted master program. As in the simplex method for linear programming (see e.g. [Bertsimas and
Tsitsiklis, 1997, Ch.3]), to determine whether our current solution is optimal, we can observe the

2We expect the extension to unbounded domains to be analogous to the extention for Dantzig-Wolfe decomposition
for linear programs, which employs an additional set of master variables to denote extreme rays.
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reduced cost of each non-basic variable in the solution. The reduced cost of a variable wj
i can be

written as

c(xj
i )− q

TAix
j
i − µi, (3.7)

where q corresponds to the values of dual variables for shared constraints (3.5) at the current basic
solution, and µi to the value of the dual variable for the convexity constraint (3.6) for agent i. To
find the variable wj

i with the least reduced cost, we can solve

min c(xi)− qTAixi (3.8)

s.t. xi ∈ Ci, (3.9)

which defines the subproblem for agent i. Note that we have altered the subproblem only in its
objective vector, so domain-specific solution algorithms will typically still be able to solve the
altered subproblem. Now we can add a new variable to the restricted master, corresponding to
the solution found by the subproblem, guaranteeing progress when the restricted master is solved
again.

In more detail, suppose the restricted master constains k variables. Given a new subproblem solu-
tion xj

i , we add a corresponding variable wk+1 to w, the term c(xj
i )wk+1 to the restricted master’s

objective, and the column Aix
j
i as the (k + 1)-th column in the shared constraint matrix Â corre-

sponding to the shared constraints (3.5). The restricted master thus has the following form after k
columns have been generated:

min cTw (3.10)

s.t. Âw = b̂, w ∈ {0, 1}k (3.11)

Here, we have incorporated the convexity constraints (3.6) into the shared constraints for conve-
nience: we define b̂ = (1, . . . , 1, bT)T.

Recall that in the market-based view, each shared constraint is considered a resource. The dual
values q communicated to subproblems then can be interpreted as resource prices, and Âij as the
usage level of resource i by plan j, as can be seen from the subproblem objective (3.8). If a constraint
is heavily violated by plans currently known to the restricted master, the corresponding resource
should have a high price, leading to new individual plans that avoid heavy usage of the resource.
Note that we assume that resource usages can be counted in “units”, allowing usage levels that are
integer or rational, and rational coefficients in Ai. From here on, we only consider integer resource
usages for notational simplicity.

Algorithm 1 shows an outline of the generic Dantzig-Wolfe decomposition algorithm (D-W). For
linear programs, the master program and all subproblems are linear programs, and steps 1 and 2
can be solved by a linear program solver; in the following sections, we describe how to incorporate
Gomory cuts to handle integer linear master programs.
As presented, Algorithm 1 may not terminate in a finite number of iterations when degeneracy is
present; however, anticycling rules may be employed to ensure finite-time termination, as typically
done in the simplex method. We refer the reader to [Dantzig, 1963, Ch. 23-1] for a discussion of
anticycling rules applicable to the Dantzig-Wolfe decomposition algorithm.
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Algorithm 1 Dantzig-Wolfe decomposition algorithm (D-W)
0. Create the restricted master program using subproblem solutions with 0 resource prices.
Repeat:

1. Solve the restricted master program, returning dual values q, µ.
2. Solve subproblems using the new resource prices q.
3. For each subproblem i’s returned solution xi,

If the subproblem solution’s objective value c(xi)− qTAixi < µi,
Generate the new column and variable in the restricted master.

4. If no new column has been generated in this iteration, terminate.

3.1.2 Incorporating a cutting plane algorithm

Cutting plane algorithms are designed to solve a mixed integer program by adding cuts, or additional
constraints, to its LP relaxation, thereby “cutting off” fractional solutions and eventually reaching
an integral optimal solution in the LP relaxation. Here we will use a cutting plane algorithm to solve
the master program to optimality; for each set of cuts, we can use D-W decomposition to solve the
LP relaxation of the master program. The process is summarized as Algorithm 2. This algorithm is
naturally distributed: in the original Dantzig-Wolfe decomposition method, subproblems are solved
independently by each agent, while the restricted master program is solved either by a designated
agent, or by all agents simultaneously using a deterministic algorithm. Then, cuts can be created by
a designated agent, or by all agents simultaneously using a deterministic algorithm.

Algorithm 2 The main algorithm: price-and-cut market-based planning
Repeat:

1. Perform m iterations of steps 1-4 in Dantzig-Wolfe decomposition algorithm (D-W), or per-
form the algorithm to termination (m =∞), and return its optimal solutionw to the restricted
master LP relaxation. Report whether w is optimal for the full master LP relaxation; i.e.,
whether any new column was generated in step 4.

2. If w is integral, and is optimal for the full master LP relaxation, terminate.
3. Ifw is not integral, perform Gomory cuts and add constraints to the restricted master program,

until k cuts have been made or no more cuts are available (k =∞) for the current LP solution
w.

The main algorithm, price-and-cut, admits two parameters, and this flexibility allows different
schedules over iterations of D-W and Gomory cuts. Different schedules may lead to varying op-
timality guarantees, and in practice, to different execution times. One particularly illuminating
schedule is m = 1 and k =∞ used in our experiments. This version of price-and-cut is equivalent
to the D-W decomposition algorithm (Algorithm 1) where the restricted master program in step 1 is
solved to its integer optimal solution, and it is guaranteed to terminiate in finite time with a globally
optimal solution for IPs. On the other extreme is m =∞ and k = 1, in which we solve the master
LP relaxation exactly and introduce a single cut at each iteration. This latter schedule guarantees
optimality in a finite number of iterations, but in practice may prove less efficient than other sched-
ules, since we must find the optimal solution to the full master program at each iteration. In general,
one may choose a particular schedule depending on the domain to balance between the number of
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columns and the number of cuts generated.

Two issues arise in applying cutting plane algorithms to D-W decomposition. First, since columns
are generated incrementally, when we generate a new cut, we do not want to compute all of its
elements immediately—else we lose the benefit of a small restricted master program. Thus we need
an efficient way to record our cuts and compute new columns for the cut constraints as more vari-
ables are generated. Second, the new constraints must be taken into account in the subproblems.
Intuitively, new constraints become new resources that can potentially be priced in the subproblems.
(We refer to these resources as derivative resources, to differentiate them from the resources corre-
sponding to the original constraints.) Derivative resource usages will be a function of original re-
source usages, since cuts are generated by performing operations on subsets of existing constraints.
However, the functions will typically be nonlinear with respect to the variables in the subproblem,
unlike the original resources in expression (3.8); depending on the form of the individual problems,
it may be easy or difficult to plan to optimize combined (original and derivative) resource usage.

As we will see, it is relatively straight-forward to solve both issues when using Gomory cuts, our
cutting plane algorithm of choice. Our choice of Gomory cuts is based on its simplicity and gen-
erality; but, the Gomory method is only one of many cutting-plane algorithms, and we expect that
other rules may be used in place of Gomory cuts, as long as the two issues above can be resolved.

3.1.3 The Gomory cutting plane algorithm

Suppose we have an optimal basic solution to the LP relaxation of the restricted master program,
associated with the basis B, which is composed of the columns of Â that correspond to the basic
variables in the solution.3 To make a cut on the constraints (3.11), we first choose a row of B−1,
say (B−1)k, such that (B−1)k b̂, the constant term in the constraint, is fractional. For example, one
may choose a row randomly based on the magnitude of the fractional component of (B−1)k b̂. The
cut then has the form: ∑

j

b(B−1)kÂ∗jcwj ≤ b(B−1)k b̂c, (3.12)

where Â∗j denotes the j-th column of Â. The cut is added to the constraint matrix Â, using a slack
variable to maintain the standard form.

The cut is a valid inequality: any integral point that satisfies all original constraints in (3.5) satisfies
the inequality. Also, the current LP optimal solution violates the new constraint, ensuring progress
(for details, see e.g. [Bertsimas and Tsitsiklis, 1997, Ch. 11]). Furthermore, when no more cuts are
available, we have an integral optimal solution. These properties guarantee that the Gomory cutting
plane algorithm is a finitely terminating algorithm for solving MILPs, including the integer master
program (3.4-3.6).

We now discuss how to resolve the two aforementioned issues under Gomory cuts.
3If we use the simplex method to solve the master LP relaxation, we automatically obtain the basis needed for making

Gomory cuts, which is another potential advantage of Gomory cuts.
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The cut recipe To solve the first issue of efficiently generating new columns for cut constraints,
we can simply store a “recipe” for each cut. Since a Gomory cut only requires a sum over the
columns, we can simply generate each coefficient as its column is generated. (Other coefficients are
multiplied by zero and therefore ignorable, since their corresponding variable is not in the restricted
master yet.) Let (B−1)k denote the row of the basis used to make the cut, and i refer to the row
number of the cut in Â. The coefficient for a new column j is

Âij = b(B−1)kÂ(1:i−1)jc, (3.13)

where Â(1:i−1)j denotes the first i − 1 rows of the j-th column of Â. Hence, if there exist multiple
constraints in Â arising from cuts, the coefficients must be generated iteratively, in the order in
which the cuts were added to Â. Note that for each cut, we need to store additionally only the row
(B−1)k used to make the cut, which is a vector the size of the basis set, or the number of rows (i.e.,
constraints) in Â at the time of the cut.

Formulating derivative resources in subproblems For subproblem i, define yi to be the usage
vector of original resources and zi to be the usage vector of derivative resources. Recall that the
usage for resource k for column j is equal to the element Âkj of the master program’s constraint
matrix. Accordingly, as we saw in the subproblem objective (3.8), original resource usage yi by a
plan xi is simply yi = Aixi. We can also write zik, the usage of derivative resource k, in terms of
yi and previous elements of zi. Let k′ denote the row number in A corresponding to the derivative
resource k, and let rk refer to the cut recipe as defined in (3.13). Then, for column j, rewriting
(3.13) in terms of yi and zi gives:

zik = brkuc, (3.14)

where u = (eTi yT
i zT

i(1:k−1))
T, with ei an n-dimensional unit vector whose i-th element is 1,

corresponding to the convexity constraints in the master program. Incorporating the new variables,
the subproblem objective now becomes

min c(xi)− qT(yT
i zT

i )T

and we add the expressions above for yi and zik as additional constraints. Furthermore, we can
encode the non-linear constraints (3.14) as integer linear constraints:

zik ≤ rku,

zik ≥ rku− (1− 1
2M

),

zik ∈ Z

where M is the least common multiple of the denominators of the coefficients in rk, which allows
us to use a general mixed integer program (MIP) solver to solve the subproblems.

Depending on the particular subproblem solver we are using, we may have to handle derivative
resources in a domain-specific way. In general, adding derivative resources to a subproblem can
increase the size of its state space, since the subproblem planner may now need to track resource
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usage where it didn’t before. For example, in a path planner, with resources representing tickets
which confer the right to pass through specific areas, the original subproblem planner can simply
add costs to edges which enter controlled areas, and buy tickets as needed without remembering
total resource usage. But, each derivative resource will correspond to a combination of tickets; so,
to make action costs Markov, we must keep track of which tickets we have bought so far, in order
to compute the proper charge or credit when we purchase a ticket involved in a combination.

A more complete examination of a variety of subproblem solvers is future work. However, we point
out here that there is a limit to the possible increase in state space size, since at worst we need
to keep track of our usages of all of the original resources: usage of any derivative resource is a
deterministic function of the original resource usages. Furthermore, depending on the domain, a
subproblem solver may already keep track of some or all of the original resource usages, in which
case the state space increase is limited still further.

3.1.4 An Example: Derived Resources

In addition to automatically pricing existing resources, our algorithm creates derivative resources
that guide the agents towards creating plans that will lead to a global integer solution in the master.
Before we show experimental results on real-sized problems in Section 3.1.5, here we present a
simple example to provide intuition for the form of derivative resources and their interpretation.

Consider a small grid world consisting of four positions and two agents, as shown in Figure 1. Agent
1 starts in position 1, and must to go to position 4; agent 2 must do the opposite. At each time step,
an agent can move to a neighboring position, with constraints: 1. agents cannot occupy the same
position at the same time and 2. agents cannot “swap” positions, effectively occupying the same
“edge” between two positions at the same time. It is easy to see that there is a bottleneck at position
2, and one agent must wait in position 3 for the other to pass through position 2.

!" #" $"

%"

Figure 1: A grid world with four positions

In a typical run, our algorithm creates five cuts before termination, some of which we will examine
here. Let our variables be binary, such that if xi

jt = 1 then agent i is at position j at time t.
The discretizing (floor) operations in Gomory cuts make it possible for us to write the cut as a
combination of logical constraints between the position variables, which is quite natural to intepret.
For example, we will see conjunctions (variables connected by ∧), which will represent partial
paths, and are examples of “baskets” of resources. For convenience, we will use the convention that
true and false correspond to 1 and 0 respectively and write our cuts in mixed logic and arithmetic
notations. The first cut we obtain is of the form:

(x1
22 ∧ x1

43) + (x2
22 ∨ (x2

42 ∧ x2
23)) ≤ 1.
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First we see that, as expected, the cut heavily concerns position 2, which is the bottleneck resource.
Furthermore, this cut penalizes agent 1 for the partial path (2@t2, 4@t3) of being at position 2 at
time 2 and position 4 at time 3, and agent 2 for the partial path (4@t2, 2@t3), but the penalization
simply corresponds to the original constraint that the agents should not swap positions in a time
step. However, it also penalizes agent 2 being in position 2 at time 2, only if agent 1 tries to be
in position 2 at time 2 and in position 4 at time 3, quantifying the evident correlation between the
occupation of position 2 at time 2 and the movement of the two agents in the vicinity.

Perhaps the more interesting is the second cut, which is derived from the first cut as well as two of
the original constraints:

[(x1
12 ∧ x1

23) ∨ (x1
22 ∧ x1

43)] + (x2
22 ∧ x2

13)) ≤ 1.

This new constraint penalizes agent 1 for taking the partial path (2@t2, 4@t3). However, it does
not penalize agent 2 for taking the partial path (4@t2, 2@t3) and thus does not duplicate any of
the original constraints; the derivative resource provides a way to guide the agents that had been
previously unavailable. In the final solution agent 1 ends up yielding position 2 at time 2 to agent
2 partly due to this constraint; the constraint is tight at the final optimal solution, where we see the
partial path (1@t2, 2@t3) for agent 1.

3.1.5 Experiments

Here we demonstrate the effectiveness of our algorithm in both centralized and distributed settings
on randomly-generated factored zero-one integer programs. This domain is both difficult (general-
purpose solvers take 103–104 seconds) and relevant: for example, the method of propositional plan-
ning [Kautz and Selman, 1996] encodes a planning problem as a similar constraint-satisfaction
problem, with feasible points corresponding to feasible plans, and an objective corresponding to
plan cost. The experiments demonstrate that (1) when applicable, market-based planning can lead
to large efficiency gains, outperforming an industrial-strength MILP solver (CPLEX [ILOG, 2010])
for large problems, even if we force all computation to be sequential; and (2) the benefit can become
even greater in distributed settings, where we can take advantage of each agent’s computational re-
sources without a large communication overhead.

For each factored program, we partition our variables into subsets, and generate a set fraction of
our constraints among variables in the same subset; for the remaining shared constraints, we select
variables at random from all subsets at once. In our experiments we use random 3SAT constraints,
together with the objective “set as few variables to 1 as possible.” We picked SAT constraints
in order to set the ratio of constraints to variables near the well-known hardness threshold of 4.26;
however, the resulting problem is not a SAT instance due to the objective, and therefore SAT-specific
solvers are not directly applicable. Our implementation uses the CPLEX MIP solver [ILOG, 2010],
a widely-used commercial optimization package, for the integer program subproblems, and the
CPLEX simplex LP solver for the restricted master LP relaxation.

We compare the runtimes of the centralized and distributed versions of price-and-cut to those of
CPLEX’s MIP solver on the original formulation of the problem, using 4713 randomly generated
problems. The problem sizes varied between 2 to 10 subproblems, 10 to 200 variables, and 41 to
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900 total clauses, of which 0.11% to 17.65% were shared. The ratio of the number of clauses to
the number of variables was between 4.0 and 4.5. In the centralized version of price-and-cut (PC),
subproblems were solved sequentially on one CPU (alternating with the master program), incurring
no communication cost. The distributed runs (DPC) were performed on two 8-core machines, where
the subproblem solvers communicated with each other over sockets. One process was dedicated to
solving the restricted master LP and making cuts.
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Figure 2: (a) number of PC iterations performed, (b)–(d) runtime comparisons

Figure 2(a) shows the distribution of the number of iterations of PC (steps 1-3 in Algorithm 2)
to reach optimality. Most cases required only a few iterations, and only 34 cases out of 4713
required more than 10. In Figure 2(b), each point represents a problem; on the x axis is the runtime
of CPLEX, and on the y axis is the runtime of PC, both in log scale. The diagonal line is the
identity: any point below the line represents a problem instance where PC outperforms CPLEX.
Our observations suggest that CPLEX running time is heavily dependent on the number of total
clauses in the problem. We can see here that PC outperforms CPLEX handily for larger problem
sizes, as the advantage of market-based planning outweighs the overhead in our implementation:
PC outperformed CPLEX on 92.38% of the instances where CPLEX took more than 1 second.

Figure 2(c) is an analogous plot for the distributed version of price-and-cut, and exhibits similar
trends, if not more pronounced. Finally, Figure 2(d) gives a similar comparison between PC and
DPC: DPC outperformed PC on 96.12% of the instances where PC took more than 1 second. It is
interesting to note that, even for problems which take only 1s to solve, the benefit of parallelism
outweighs communication overhead, despite our simple implementation.
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3.2 First-Order Mixed Integer Linear Programming

First-order programs, introduced in Gordon et al. [2009], are a generalization of MILPs and first
order logic that combine the representational and reasoning strengths of both languages. In essence,
first-order programs are lifted MILPs, where a group of constraints may be represented as one
constraint, modified by quantifiers analogous to first-order logic quantifiers for all and there exists.
These quantifiers not only serves as syntactic convenience but also gives first-order programs the
power to represent constraints over infinitely many objects or unknown objects. In Gordon et al.
[2009] we describe the language and a complete lifted inference algorithm based on Gomory cuts
that allows us to reason more efficiently when first-order constraints are present. It does so by
creating cuts based on the first-order constraints and in effect treating the set of potentially infinitely
many constraints as one; hence the lifting may benefit even ordinary MILPs with “lifted” constraints
over a finite set of objects.

While incorporating first-order reasoning into multi-agent planning is beyond the scope of our the-
sis, our work on first-order programs incorporates ideas for optimizing integer programs that we
believe will be useful in our proposed research. In addition, we plan to investigate whether first-
order programs can serve well as the representational language for our domains.

4 Proposed Research

Price-and-cut provides an optimal distributed market-based planning algorithm for collaborative
domains. However, the master program is a centralized sequential computation, whether in im-
plementation it is performed on one server or on multiple agents simultaneously. In this proposed
thesis, we will investigate distributing the master program among the agents for faster computation
and further robustness to failure, and do so for non-collaborative settings where agents may pos-
sess interests conflicting with the global objective of the system or the socially optimal joint plans.
(Whether adversarial or simply maximizing one’s utility, we will refer to agents in non-collaborative
settings as self-interested agents.)

Planning for collaborative agents can be seen as a global optimization problem, hence the solution
we have described so far is a general-purpose distributed solver for MILPs. However, when planning
for self-interested, possibly adversarial, agents, we desire a stronger guarantee: that the agents, given
our market mechanism, will act to converge to a socially optimal joint plan. One formalization of
a social optimum is a game-theoretic equilibrium: if agents know that following a certain strategy
will lead to an equilibrium, agents have no incentive to change their strategy. Another, weaker
formulation is a boundedly-rational equilibrium: agents can not discover an incentive to change
their strategy using some limited type of computation. The latter formulation may lead to a smaller
price of anarchy, and thus may be more appropriate for us, since our goal is to not only incentivize
the agents with a guarantee of equilibria but also seek some notion of social optimum, or a globally
good solution.

Our initial approach will be to exploit duality and no-regret learning in an analogous fashion to Cal-
liess and Gordon [2008], who addressed the simpler problem of divisible resources, leading to a
convex optimization problem. As in [Calliess and Gordon, 2008], we will extend the master LP
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computation in price-and-cut by assigning subsets of resources to the agents to be priced, and using
no-regret learning for every agent to solve their subproblems as well as resource pricing. We hope
to establish similar guarantees to [Calliess and Gordon, 2008], which gives asymptotic guarantees
on the cost of the average plan (Theorem 3.4, [Calliess and Gordon, 2008]) and its convergence to
a Nash equilibrium (Theorem 4.1, [Calliess and Gordon, 2008]).

Certainly, non-convexity comes with an additional set of challenges. The main challenge will be
to generate cuts in a distributed manner in addition to solving the master LP in a distributed fash-
ion. To do so, we must ensure that agents are given an incentive to only generate valid and useful
cuts. Also, for completeness, theoretically we need to be able to generate derivative resources
from arbitrary combinations of resources, which may require communication between every pair of
resource-pricing agents. To reduce communication, we may be able to perform further decomposi-
tion if such a structure is present in the problem, or we can explore strategies for finding good cuts
while minimizing communication, which could be implemented as agents discovering agents with
whom to communicate.

Finally, we will evaluate our proposed family of algorithms on various multi-agent planning do-
mains. In particular, we have begun work on applying price-and-cut to a wider variety of problems
such as robot motion planning in continuous domains, where the domains may yield specialized
individual planning algorithms that may be adapted as fast subproblem solvers. In the process we
will be able to test its performance in terms of solution quality and speed in practice under ap-
proximate subproblem solvers, various schedules, and early stopping. Other planning domains of
interest include production or task allocation, and cooperative control problems under limited re-
sources, where a MILP formulation of the problems is often available and thus our algorithms are
readily applicable. In such areas we hope that our distributed algorithm will enable us to scale the
problems to sizes that were previously impossible to solve with existing solvers.

5 Proposed Schedule

• Fall 2010: Proposal. A further empirical study of price-and-cut in robot path planning in a
continuous domain.

• Spring 2011: Distributed LP solving with incentives.

• Summer-Fall 2011: Distributed cut generation.

• Spring 2012: Finish writing thesis, defend.
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