
Combining Deep Reinforcement Learning
and Search for Imperfect-Information Games

Noam Brown*, Anton Bakhtin*, Adam Lerer, Qucheng Gong
Facebook AI Research

*Equal Contribution

AlphaGo

• Milestone AI achievement

• Algorithm was specific to Go:
– Used human data
– Used expert features

AlphaZero

• A single algorithm that plays
Chess, Go, and Shogi

• Very general technique:
– No human data
– No expert features

• Limited to perfect-information games

Imperfect-Information Games

Perfect-Information
Games

No-Limit Texas Hold’em Poker

• Long-standing challenge problem in AI and game theory

• 2017: AI surpasses top humans in two-player no-limit hold’em

• 2019: AI surpasses top humans in six-player no-limit hold’em

• Techniques used in poker AIs have been very different from AlphaGo/AlphaZero

ReBeL

• Can a single algorithm work for both perfect- and imperfect-
information games?

• ReBeL (Recursive Belief-based Learning)
– Provably converges to Nash in two-player zero-sum games
– Superhuman in two-player no-limit hold’em poker
– Uses far less domain knowledge than prior poker bots
– In perfect-info games, ReBeL reduces to an algorithm similar to AlphaZero

A Simplified Overview of AlphaZero

What is a “state” in a game?

• A state must be a sufficient statistic
– Must contain all relevant info needed to

compute the optimal next move

• Board configuration alone might not be
enough (e.g., ko rule in Go)
– AlphaZero uses last 8 board configurations

• Worst case: “state” in a perfect-info game
is the entire sequence of actions

Search in Perfect-Information Games

• In perfect-information games, the
value of a state is the unique value
resulting from both players playing
optimally from that point forward

• A value network takes a state as
input and outputs an estimate of
the state value

𝑓!"#$%() = 1

Search in Perfect-Information Games

• Where does the value network
come from?
– It can be a handcrafted heuristic

function [Deep Blue]

– It can be learned by training on expert
human games [AlphaGo]

– It can be learned through self play
[AlphaZero]

𝑓!"#$%() = 1

Search in Perfect-Information Games

• In principle, backward induction
alone can solve Chess

• But this would be far too
expensive in practice

Whole game is too
large to solve

Search in Perfect-Information Games
• Instead, chess AI’s do search:

1. Look ~5 moves ahead
2. Estimate those state values using

the value network
3. Do backward induction using

those state values (ignore the
game below those states)

• In other words, solve a subgame

• If the value network is perfect,
this computes the optimal action

Solve with
search

SubgameLeaf node

Search in Perfect-Information Games
• In AlphaZero, the subgame grows in

size as it is solved

• In principle, ReBeL can do the same

• For simplicity, we assume
subgames are fixed in size
– Imagine subgames as containing every

state reachable within 5 actions

Solve with
search

SubgameLeaf node

AlphaZero (Simplified)
• Whenever an agent acts, generate a

subgame and solve it
– Set leaf node values based on value net

Start of game

AlphaZero (Simplified)
• Whenever an agent acts, generate a

subgame and solve it
– Set leaf node values based on value net

Solve with
search

Leaf node

AlphaZero (Simplified)
• Whenever an agent acts, generate a

subgame and solve it
– Set leaf node values based on value net

• Choose next action based on
solution to subgame

AlphaZero (Simplified)
• Whenever an agent acts, generate a

subgame and solve it
– Set leaf node values based on value net

• Choose next action based on
solution to subgame

AlphaZero (Simplified)
• Whenever an agent acts, generate a

subgame and solve it
– Set leaf node values based on value net

• Choose next action based on
solution to subgame

• Repeat until end of game

AlphaZero (Simplified)
• Whenever an agent acts, generate a

subgame and solve it
– Set leaf node values based on value net

• Choose next action based on
solution to subgame

• Repeat until end of game

AlphaZero (Simplified)
• Whenever an agent acts, generate a

subgame and solve it
– Set leaf node values based on value net

• Choose next action based on
solution to subgame

• Repeat until end of game

AlphaZero (Simplified)
• Whenever an agent acts, generate a

subgame and solve it
– Set leaf node values based on value net

• Choose next action based on
solution to subgame

• Repeat until end of game

Blue wins!

AlphaZero (Simplified)
• Whenever an agent acts, generate a

subgame and solve it
– Set leaf node values based on value net

• Choose next action based on
solution to subgame

• Repeat until end of game

• Final value is used as a training
example for all encountered states

Blue wins!

AlphaZero (Simplified)
• With some random exploration,

AlphaZero will eventually encounter
every state and learn every state’s
true value

Blue wins!

Why doesn’t AlphaZero work in
imperfect-information games?

Because perfect-info “world states” don’t have
unique values in imperfect-info games

Search in Imperfect-Information Games
Rock-Paper-Scissors+

𝑷𝟏

Rock Scissors

Scissors

𝑷𝟐

Ro
ck

Paper

0 -1 2

Scissors

𝑷𝟐

Ro
ck

Paper

Scissors

𝑷𝟐

Ro
ck

Paper

Paper𝑃 = 0.4 𝑃 = 0.2𝑃 = 0.4

1 0 -2 -2 2 0

Search in Imperfect-Information Games
Rock-Paper-Scissors+

𝑷𝟏

Rock Scissors

Scissors

𝑷𝟐

Ro
ck

Paper

0 -1 2

Scissors

𝑷𝟐

Ro
ck

Paper

Scissors

𝑷𝟐

Ro
ck

Paper

Paper𝑃 = 0.4 𝑃 = 0.2𝑃 = 0.4

1 0 -2 -2 2 0

Depth-Limited Rock-Paper-Scissors+

𝑷𝟏

Rock Scissors
Paper

0 0 0

Search in Imperfect-Information Games
Rock-Paper-Scissors+

𝑷𝟏

Rock Scissors

Scissors

𝑷𝟐

Ro
ck

Paper

0 -1 2

Scissors

𝑷𝟐

Ro
ck

Paper

Scissors

𝑷𝟐

Ro
ck

Paper

Paper

1 0 -2 -2 2 0

Depth-Limited Rock-Paper-Scissors+

𝑷𝟏

Rock Scissors
Paper

0 0 0
𝑷 = 𝟎. 𝟖 𝑷 = 𝟎. 𝟏𝑷 = 𝟎. 𝟏 𝑷 = 𝟎. 𝟖 𝑷 = 𝟎. 𝟏𝑷 = 𝟎. 𝟏

Search in Imperfect-Information Games
Rock-Paper-Scissors+

𝑷𝟏

Rock Scissors

Scissors

𝑷𝟐

Ro
ck

Paper

0 -1 2

Scissors

𝑷𝟐

Ro
ck

Paper

Scissors

𝑷𝟐

Ro
ck

Paper

Paper𝑷 = 𝟎. 𝟖 𝑷 = 𝟎. 𝟏𝑷 = 𝟎. 𝟏

1 0 -2 -2 2 0

Depth-Limited Rock-Paper-Scissors+

𝑷𝟏

Rock Scissors
Paper

-1 0 2

𝑷 = 𝟎. 𝟖 𝑷 = 𝟎. 𝟏𝑷 = 𝟎. 𝟏

0 0 0

Search in Imperfect-Information Games
Rock-Paper-Scissors+

𝑷𝟏

Rock Scissors

Scissors

𝑷𝟐

Ro
ck

Paper

0 -1 2

Scissors

𝑷𝟐

Ro
ck

Paper

Scissors

𝑷𝟐

Ro
ck

Paper

Paper𝑷 = 𝟎. 𝟖 𝑷 = 𝟎. 𝟏𝑷 = 𝟎. 𝟏

1 0 -2 -2 2 0

Depth-Limited Rock-Paper-Scissors+

𝑷𝟏

Rock Scissors
Paper

-1 0 2

𝑷 = 𝟎. 𝟖 𝑷 = 𝟎. 𝟏𝑷 = 𝟎. 𝟏

0 0 0

Critical assumption: Our entire policy is common knowledge, but
the outcomes of random processes are not common knowledge

Search in Imperfect-Information Games
Rock-Paper-Scissors+

𝑷𝟏

Rock Scissors

Scissors

𝑷𝟐

Ro
ck

Paper

0 -1 2

Scissors

𝑷𝟐

Ro
ck

Paper

Scissors

𝑷𝟐

Ro
ck

Paper

Paper𝑷 = 𝟎. 𝟖 𝑷 = 𝟎. 𝟏𝑷 = 𝟎. 𝟏

1 0 -2 -2 2 0

Depth-Limited Rock-Paper-Scissors+

𝑷𝟏

Rock Scissors
Paper

-1 0 2

𝑷 = 𝟎. 𝟖 𝑷 = 𝟎. 𝟏𝑷 = 𝟎. 𝟏

0 0 0

• One solution: define an imperfect-information game “state” as a probability
distribution over infosets [Nayyar et al. IEEE-13]
• 𝑣 𝑅𝑜𝑐𝑘 is not well-defined
• 𝑣 0.8 𝑅𝑜𝑐𝑘, 0.1 𝑃𝑎𝑝𝑒𝑟, 0.1 𝑆𝑐𝑖𝑠𝑠𝑜𝑟𝑠 = −0.6
• In more complex games, need to include probability distribution for both players

Belief Representation

Converting imperfect-info games
to continuous-state perfect-info games

I bet.

♠ K

K ♠

♦ A

A ♦

If I have a 2 I bet 50% prob.
If I have a 3 I fold with 100% prob.
…
If I have a A I bet with 100% prob. ♠ K

K ♠

♦ A

A ♦

Player 1 bets.

Referee

I don’t have a 3Discrete Representa>on

Player 1 doesn’t
have a 3

♠ 2

2 ♠

♠ 3

3 ♠

♠ A

A ♠

Converting imperfect-info games
to continuous-state perfect-info games

I bet with my 2 with 50% prob.
I fold with my 3.
…
I bet with my A.

♠ 2

2 ♠

Referee

♠ 3

3 ♠

♠ A

A ♠
…

…

w 2 = !
!"

w 3 = !
!"

w 𝐴 = !
!"

w 2 = !
!"

w 3 = !
!"

w 𝐴 = !
!"

𝑃 𝑏𝑒𝑡 = 0.92 =
∑# 𝑃 𝑏𝑒𝑡 𝑠 𝑤(𝑠)

∑#𝑤(𝑠)

𝑃 𝑓𝑜𝑙𝑑 = 0.08 =
∑# 𝑃 𝑓𝑜𝑙𝑑 𝑠 𝑤(𝑠)

∑#𝑤(𝑠)

♠ 2

2 ♠

♠ 3

3 ♠

♠ A

A ♠

Conver>ng imperfect-info games
to con>nuous-state perfect-info games

♠ 2

2 ♠

♠ 3

3 ♠

♠ A

A ♠
…

…

Update weights with Bayes’ Rule

w 2 = !
!"

w 3 = !
!"

w 𝐴 = !
!"

w 2 = !
!"

w 3 = !
!"

w 𝐴 = !
!"

Referee

𝑃 𝑏𝑒𝑡 = 0.92 =
∑# 𝑃 𝑏𝑒𝑡 𝑠 𝑤(𝑠)

∑#𝑤(𝑠)

𝑃 𝑓𝑜𝑙𝑑 = 0.08 =
∑# 𝑃 𝑓𝑜𝑙𝑑 𝑠 𝑤(𝑠)

∑#𝑤(𝑠)

Player 1 bets.

I bet with my 2 with 50% prob.
I fold with my 3.
…
I bet with my A.

♠ 2

2 ♠

♠ 3

3 ♠

♠ A

A ♠

Conver>ng imperfect-info games
to con>nuous-state perfect-info games

♠ 2

2 ♠

♠ 3

3 ♠

♠ A

A ♠
…

…

w 2 = !
#"

w 3 = 0 w 𝐴 = #
#"

w 2 = !
!"

w 3 = !
!"

w 𝐴 = !
!"

Referee

Player 1 bets.

𝑃 𝑏𝑒𝑡 = 0.92 =
∑# 𝑃 𝑏𝑒𝑡 𝑠 𝑤(𝑠)

∑#𝑤(𝑠)

𝑃 𝑓𝑜𝑙𝑑 = 0.08 =
∑# 𝑃 𝑓𝑜𝑙𝑑 𝑠 𝑤(𝑠)

∑#𝑤(𝑠)I bet with my 2 with 50% prob.
I fold with my 3.
…
I bet with my A.

♠ 2

2 ♠

♠ 3

3 ♠

♠ A

A ♠

Conver>ng imperfect-info games
to con>nuous-state perfect-info games

♠ 2

2 ♠

♠ 3

3 ♠

♠ A

A ♠
…

…

w 2 = !
#"

w 3 = 0 w 𝐴 = #
#"

w 2 = !
!"

w 3 = !
!"

w 𝐴 = !
!"

Referee

Player 1 bets.

𝑃 𝑏𝑒𝑡 = 0.92 =
∑# 𝑃 𝑏𝑒𝑡 𝑠 𝑤(𝑠)

∑#𝑤(𝑠)

𝑃 𝑓𝑜𝑙𝑑 = 0.08 =
∑# 𝑃 𝑓𝑜𝑙𝑑 𝑠 𝑤(𝑠)

∑#𝑤(𝑠)

Public Belief State

I bet with my 2 with 50% prob.
I fold with my 3.
…
I bet with my A.

♠ 2

2 ♠

♠ 3

3 ♠

♠ A

A ♠

Conver>ng imperfect-info games
to con>nuous-state perfect-info games

♠ 2

2 ♠

♠ 3

3 ♠

♠ A

A ♠
…

…

w 2 = !
#"

w 3 = 0 w 𝐴 = #
#"

w 2 = !
!"

w 3 = !
!"

w 𝐴 = !
!"

Referee

Player 1 bets.

𝑃 𝑏𝑒𝑡 = 0.92 =
∑# 𝑃 𝑏𝑒𝑡 𝑠 𝑤(𝑠)

∑#𝑤(𝑠)

𝑃 𝑓𝑜𝑙𝑑 = 0.08 =
∑# 𝑃 𝑓𝑜𝑙𝑑 𝑠 𝑤(𝑠)

∑#𝑤(𝑠)

Public Belief State
Public Belief

Ac:on

I bet with my 2 with 50% prob.
I fold with my 3.
…
I bet with my A.

Search in ReBeL

• We’ve shown all imperfect-informaKon games can be converted
into perfect-informaKon games! Can we now run AlphaZero?

• In pracKce, no.
– AcGon space is conGnuous with potenGally thousands of dimensions
– AlphaZero’s Monte Carlo tree search would be completely intractable

Search in ReBeL

• But! The conKnuous acKon space has special structure
– Basically, it’s convex
– Technically a “bilinear saddle point problem”

• We can efficiently solve the imperfect-informaKon subgames
using CFR
– Other equilibrium-finding algorithms also work

ReBeL
• Whenever an agent acts, generate a

subgame and solve it

IniTal PBS of the game

ReBeL
• Whenever an agent acts, generate a

subgame and solve it
– Solve using CFR

Solve with
CFR

Leaf node

IniTal PBS of the game

One more modificaOon…
• Whenever an agent acts, generate a

subgame and solve it
– Solve using CFR

• CFR is an iteraAve algorithm, so value
net must be accurate on every iteraGon

• To ensure proper exploraGon, we stop
CFR on a random iteraGon

Solve with
CFR

IniTal PBS of the game

Leaf node

ReBeL
• Whenever an agent acts, generate a

subgame and solve it
– Solve using CFR
– Stop on a random iteraQon
– Take next acQon

ReBeL
• Whenever an agent acts, generate a

subgame and solve it
– Solve using CFR
– Stop on a random iteraQon
– Take next acQon

ReBeL
• Whenever an agent acts, generate a

subgame and solve it
– Solve using CFR
– Stop on a random iteraQon
– Take next acQon

• Repeat unGl end of game

ReBeL
• Whenever an agent acts, generate a

subgame and solve it
– Solve using CFR
– Stop on a random iteraQon
– Take next acQon

• Repeat unGl end of game

ReBeL
• Whenever an agent acts, generate a

subgame and solve it
– Solve using CFR
– Stop on a random iteraQon
– Take next acQon

• Repeat unGl end of game

ReBeL
• Whenever an agent acts, generate a

subgame and solve it
– Solve using CFR
– Stop on a random iteraQon
– Take next acQon

• Repeat unGl end of game

Blue wins!

ReBeL
• Whenever an agent acts, generate a

subgame and solve it
– Solve using CFR
– Stop on a random iteraQon
– Take next acQon

• Repeat unGl end of game

• Final value is used as a training
example for all encountered PBSs Blue wins!

ReBeL
As with AlphaZero, ReBeL chooses a
random acGon with 𝜖 probability to
ensure proper exploraGon

Theorem: With tabular tracking of PBS
values, ReBeL will converge to a &

'
-

Nash equilibrium in finite Gme, where
𝑇 is the number of CFR iteraGons

Blue wins!

Playing Nash at Test Time
Rock-Paper-Scissors+

𝑷𝟏

Rock Scissors

Scissors

𝑷𝟐

Ro
ck

Paper

0 -1 2

Scissors

𝑷𝟐

Ro
ck

Paper

Scissors

𝑷𝟐

Ro
ck

Paper

Paper𝑃 = 0.4 𝑃 = 0.2𝑃 = 0.4

1 0 -2 -2 2 0

Playing Nash at Test Time
Rock-Paper-Scissors+

𝑷𝟏

Rock Scissors

Scissors

𝑷𝟐

Ro
ck

Paper

0 -1 2

Scissors

𝑷𝟐

Ro
ck

Paper

Scissors

𝑷𝟐

Ro
ck

Paper

Paper𝑃 = 0.401 𝑃 = 0.199𝑃 = 0.4

1 0 -2 -2 2 0

Playing Nash at Test Time
Rock-Paper-Scissors+

𝑷𝟏

Rock Scissors

Scissors

𝑷𝟐

Ro
ck

Paper

0 -1 2

Scissors

𝑷𝟐

Ro
ck

Paper

Scissors

𝑷𝟐

Ro
ck

Paper

Paper

1 0 -2 -2 2 0

Rock-Paper-Scissors+ Subgame

𝑃 = 0.401 𝑃 = 0.199𝑃 = 0.4

Scissors

𝑷𝟐

Ro
ck

0 2

Scissors

𝑷𝟐

Ro
ck

Scissors

𝑷𝟐

Ro
ck

1 -2 -2 0

𝑃 = 0.401 𝑃 = 0.199𝑃 = 0.4

-1 0 2

Paper

Paper

Paper

Playing Nash at Test Time
Rock-Paper-Scissors+

𝑷𝟏

Rock Scissors

Scissors

𝑷𝟐

Ro
ck

Paper

0 -1 2

Scissors

𝑷𝟐

Ro
ck

Paper

Scissors

𝑷𝟐

Ro
ck

Paper

Paper

1 0 -2 -2 2 0

Rock-Paper-Scissors+ Subgame

𝑃 = 0.401 𝑃 = 0.199𝑃 = 0.4

Scissors

𝑷𝟐

Ro
ck

0 -1 2

Scissors

𝑷𝟐

Ro
ck

Scissors

𝑷𝟐

Ro
ck

1 0 -2 -2 2 0

𝑃 = 0.401 𝑃 = 0.199𝑃 = 0.4

Paper

Paper

Paper

Playing Nash at Test Time
Rock-Paper-Scissors+

𝑷𝟏

Rock Scissors

Scissors

𝑷𝟐

Ro
ck

Paper

0 -1 2

Scissors

𝑷𝟐

Ro
ck

Paper

Scissors

𝑷𝟐

Ro
ck

Paper

Paper

1 0 -2 -2 2 0

Rock-Paper-Scissors+ Subgame

𝑃 = 0.401 𝑃 = 0.199𝑃 = 0.4

Scissors

𝑷𝟐

Ro
ck

0 -1 2

Scissors

𝑷𝟐

Ro
ck

Scissors

𝑷𝟐

Ro
ck

1 0 -2 -2 2 0

𝑃 = 0 𝑃 = 1𝑃 = 0

Paper

Paper

Paper

• Our soluQon: Stop CFR on a random iteraQon and assume beliefs from that iteraQon
• Opponent will not know our beliefs, so cannot predict in what way our policy will be pure
• The algorithm will be a Nash equilibrium in expecta>on
• This is the exact same algorithm that is used during training

Results in Two-Player No-Limit Texas Hold’em

Slumbot Baby Tartanian8 Local Best Response Top Humans

DeepStack 383 ± 112
Libratus 63 ± 14 147 ± 39
Modicum 11 ± 5 6 ± 3
ReBeL 𝟒𝟓 ± 𝟓 𝟗 ± 𝟒 𝟖𝟖𝟏 ± 𝟗𝟒 𝟏𝟔𝟓 ± 𝟔𝟗

Results in Two-Player Liar’s Dice

1 die, 4 faces 1 die, 5 faces 1 die, 6 faces 2 dice, 3 faces

Tabular Full-Game FP 0.012 0.024 0.039 0.057
Tabular Full-Game CFR 0.001 0.001 0.002 0.002
ReBeL with FP 0.041 0.020 0.040 0.020
ReBeL with CFR 𝟎. 𝟎𝟏𝟕 𝟎. 𝟎𝟏𝟓 𝟎. 𝟎𝟐𝟒 𝟎. 𝟎𝟏𝟕

Source code available at github.com/facebookresearch/rebel

Key takeaways

• ReBeL provably converges to a Nash equilibrium in two-player
zero-sum games (both perfect-info and imperfect-info)

• ReBeL achieves superhuman performance in poker while using
far less domain knowledge than any prior poker bot

• ReBeL reduces to an algorithm similar to AlphaZero in
perfect-informaBon games

Remaining Challenges:
More Hidden Informa>on

• The input to ReBeL’s state value
function is all the possible action-
observation histories

• In Texas hold’em poker there are
1,326 possible hands, so the input is
2,652 probabilities

• What if there is far more hidden
information?

Remaining Challenges:
More Hidden Informa>on

• Two recent papers addressing this:
– “Scalable Online Planning via

Reinforcement Learning Fine-Tuning”
Fickinger, Hu, Amos, Russell, Brown
NeurIPS-21

– “A Fine-Tuning Approach to Belief
State Modeling” Sokota, Hu, Wu,
Kolter, Foerster, Brown (Under Review)

Remaining Challenges:
Learning Without a Simulator

• MuZero extends AlphaZero to
work without a known simulator

• Can we extend ReBeL to work
without a simulator as well?

• Can we make a single algorithm
that can play all two-player zero-
sum games without a simulator?

Remaining Challenges:
Going Beyond Two-Player Zero-Sum

• Life isn’t zero sum: AIs are sIll
bad at cooperaIon, negoIaIon,
and coaliIon formaIon

• Self play isn’t enough!
– Given infinite)me and resources, a

self-play chess bot will learn the
Sicilian Defense

– Given infinite)me and resources, a
self-play nego)a)on bot will not
learn the English language

Thank You!
Noam Brown

www.noambrown.com

