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AlphaGo

• Milestone AI achievement

• Algorithm was specific to Go:
– Used human data
– Used expert features



AlphaZero

• A single algorithm that plays
Chess, Go, and Shogi

• Very general technique:
– No human data
– No expert features

• Limited to perfect-information games



Imperfect-Information Games

Perfect-Information 
Games



No-Limit Texas Hold’em Poker 

• Long-standing challenge problem in AI and game theory

• 2017: AI surpasses top humans in two-player no-limit hold’em

• 2019: AI surpasses top humans in six-player no-limit hold’em

• Techniques used in poker AIs have been very different from AlphaGo/AlphaZero



ReBeL

• Can a single algorithm work for both perfect- and imperfect-
information games?

• ReBeL (Recursive Belief-based Learning)
– Provably converges to Nash in two-player zero-sum games
– Superhuman in two-player no-limit hold’em poker
– Uses far less domain knowledge than prior poker bots
– In perfect-info games, ReBeL reduces to an algorithm similar to AlphaZero



A Simplified Overview of AlphaZero



What is a “state” in a game?

• A state must be a sufficient statistic
– Must contain all relevant info needed to 

compute the optimal next move

• Board configuration alone might not be 
enough (e.g., ko rule in Go)
– AlphaZero uses last 8 board configurations

• Worst case: “state” in a perfect-info game 
is the entire sequence of actions



Search in Perfect-Information Games

• In perfect-information games, the 
value of a state is the unique value 
resulting from both players playing 
optimally from that point forward

• A value network takes a state as 
input and outputs an estimate of 
the state value
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Search in Perfect-Information Games

• Where does the value network 
come from?
– It can be a handcrafted heuristic 

function [Deep Blue]

– It can be learned by training on expert 
human games [AlphaGo]

– It can be learned through self play 
[AlphaZero]
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Search in Perfect-Information Games

• In principle, backward induction 
alone can solve Chess

• But this would be far too 
expensive in practice

Whole game is too 
large to solve



Search in Perfect-Information Games
• Instead, chess AI’s do search:

1. Look ~5 moves ahead
2. Estimate those state values using 

the value network
3. Do backward induction using 

those state values (ignore the 
game below those states)

• In other words, solve a subgame

• If the value network is perfect, 
this computes the optimal action

Solve with
search

SubgameLeaf node



Search in Perfect-Information Games
• In AlphaZero, the subgame grows in 

size as it is solved

• In principle, ReBeL can do the same

• For simplicity, we assume 
subgames are fixed in size
– Imagine subgames as containing every 

state reachable within 5 actions

Solve with
search

SubgameLeaf node



AlphaZero (Simplified)
• Whenever an agent acts, generate a 

subgame and solve it
– Set leaf node values based on value net

Start of game



AlphaZero (Simplified)
• Whenever an agent acts, generate a 

subgame and solve it
– Set leaf node values based on value net

Solve with
search

Leaf node
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AlphaZero (Simplified)
• Whenever an agent acts, generate a 

subgame and solve it
– Set leaf node values based on value net

• Choose next action based on 
solution to subgame

• Repeat until end of game

• Final value is used as a training 
example for all encountered states

Blue wins!



AlphaZero (Simplified)
• With some random exploration, 

AlphaZero will eventually encounter 
every state and learn every state’s 
true value

Blue wins!



Why doesn’t AlphaZero work in
imperfect-information games?

Because perfect-info “world states” don’t have
unique values in imperfect-info games
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Critical assumption: Our entire policy is common knowledge, but 
the outcomes of random processes are not common knowledge
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• One solution: define an imperfect-information game “state” as a probability 
distribution over infosets [Nayyar et al. IEEE-13]
• 𝑣 𝑅𝑜𝑐𝑘 is not well-defined
• 𝑣 0.8 𝑅𝑜𝑐𝑘, 0.1 𝑃𝑎𝑝𝑒𝑟, 0.1 𝑆𝑐𝑖𝑠𝑠𝑜𝑟𝑠 = −0.6
• In more complex games, need to include probability distribution for both players



Belief Representation

Converting imperfect-info games
to continuous-state perfect-info games

I bet.

♠ K

K  ♠

♦ A

A ♦

If I have a 2 I bet 50% prob.
If I have a 3 I fold with 100% prob.
…
If I have a A I bet with 100% prob. ♠ K

K  ♠

♦ A

A ♦

Player 1 bets.

Referee

I don’t have a 3Discrete Representa>on

Player 1 doesn’t 
have a 3
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♠ 3
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♠ A
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Converting imperfect-info games
to continuous-state perfect-info games

I bet with my 2 with 50% prob.
I fold with my 3.
…
I bet with my A.
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Conver>ng imperfect-info games
to con>nuous-state perfect-info games
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Update weights with Bayes’ Rule
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Public Belief State

I bet with my 2 with 50% prob.
I fold with my 3.
…
I bet with my A.
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I bet with my 2 with 50% prob.
I fold with my 3.
…
I bet with my A.



Search in ReBeL

• We’ve shown all imperfect-informaKon games can be converted 
into perfect-informaKon games! Can we now run AlphaZero?

• In pracKce, no.
– AcGon space is conGnuous with potenGally thousands of dimensions
– AlphaZero’s Monte Carlo tree search would be completely intractable



Search in ReBeL

• But! The conKnuous acKon space has special structure
– Basically, it’s convex
– Technically a “bilinear saddle point problem”

• We can efficiently solve the imperfect-informaKon subgames 
using CFR
– Other equilibrium-finding algorithms also work
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ReBeL
• Whenever an agent acts, generate a 

subgame and solve it
– Solve using CFR

Solve with
CFR

Leaf node

IniTal PBS of the game



One more modificaOon…
• Whenever an agent acts, generate a 

subgame and solve it
– Solve using CFR

• CFR is an iteraAve algorithm, so value 
net must be accurate on every iteraGon

• To ensure proper exploraGon, we stop 
CFR on a random iteraGon

Solve with
CFR

IniTal PBS of the game

Leaf node
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ReBeL
• Whenever an agent acts, generate a 

subgame and solve it
– Solve using CFR
– Stop on a random iteraQon
– Take next acQon

• Repeat unGl end of game

• Final value is used as a training 
example for all encountered PBSs Blue wins!



ReBeL
As with AlphaZero, ReBeL chooses a 
random acGon with 𝜖 probability to 
ensure proper exploraGon

Theorem: With tabular tracking of PBS 
values, ReBeL will converge to a &

'
-

Nash equilibrium in finite Gme, where 
𝑇 is the number of CFR iteraGons

Blue wins!
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• Our soluQon: Stop CFR on a random iteraQon and assume beliefs from that iteraQon
• Opponent will not know our beliefs, so cannot predict in what way our policy will be pure
• The algorithm will be a Nash equilibrium in expecta>on
• This is the exact same algorithm that is used during training



Results in Two-Player No-Limit Texas Hold’em

Slumbot Baby Tartanian8 Local Best Response Top Humans

DeepStack 383 ± 112
Libratus 63 ± 14 147 ± 39
Modicum 11 ± 5 6 ± 3
ReBeL 𝟒𝟓 ± 𝟓 𝟗 ± 𝟒 𝟖𝟖𝟏 ± 𝟗𝟒 𝟏𝟔𝟓 ± 𝟔𝟗



Results in Two-Player Liar’s Dice

1 die, 4 faces 1 die, 5 faces 1 die, 6 faces 2 dice, 3 faces

Tabular Full-Game FP 0.012 0.024 0.039 0.057
Tabular Full-Game CFR 0.001 0.001 0.002 0.002
ReBeL with FP 0.041 0.020 0.040 0.020
ReBeL with CFR 𝟎. 𝟎𝟏𝟕 𝟎. 𝟎𝟏𝟓 𝟎. 𝟎𝟐𝟒 𝟎. 𝟎𝟏𝟕

Source code available at github.com/facebookresearch/rebel



Key takeaways

• ReBeL provably converges to a Nash equilibrium in two-player 
zero-sum games (both perfect-info and imperfect-info)

• ReBeL achieves superhuman performance in poker while using 
far less domain knowledge than any prior poker bot

• ReBeL reduces to an algorithm similar to AlphaZero in
perfect-informaBon games



Remaining Challenges:
More Hidden Informa>on

• The input to ReBeL’s state value 
function is all the possible action-
observation histories

• In Texas hold’em poker there are 
1,326 possible hands, so the input is 
2,652 probabilities

• What if there is far more hidden 
information?



Remaining Challenges:
More Hidden Informa>on

• Two recent papers addressing this:
– “Scalable Online Planning via 

Reinforcement Learning Fine-Tuning” 
Fickinger, Hu, Amos, Russell, Brown 
NeurIPS-21

– “A Fine-Tuning Approach to Belief 
State Modeling” Sokota, Hu, Wu, 
Kolter, Foerster, Brown (Under Review)



Remaining Challenges:
Learning Without a Simulator

• MuZero extends AlphaZero to 
work without a known simulator

• Can we extend ReBeL to work 
without a simulator as well?

• Can we make a single algorithm 
that can play all two-player zero-
sum games without a simulator?



Remaining Challenges:
Going Beyond Two-Player Zero-Sum

• Life isn’t zero sum: AIs are sIll 
bad at cooperaIon, negoIaIon, 
and coaliIon formaIon

• Self play isn’t enough!
– Given infinite )me and resources, a 

self-play chess bot will learn the 
Sicilian Defense

– Given infinite )me and resources, a 
self-play nego)a)on bot will not
learn the English language



Thank You!
Noam Brown

www.noambrown.com


