Combining Deep Reinforcement Learning
and Search for Imperfect-Information Games

Noam Brown*, Anton Bakhtin®*, Adam Lerer, Qucheng Gong
Facebook Al Research

*Equal Contribution

FACEBOOK Al

AlphaGo

e Milestone Al achievement

* Algorithm was specific to Go:
— Used human data

— {0 AlphaGo Lee Sedol
Used expert features oot
2 S

AlphaZero

* Asingle algorithm that plays

Chess Shogi Go
Chess, Go, and Shogi

L & D
(.it» }{' , ~"“n‘:\ \‘f,.“ £’€
& 7 2 e,
\Q S N “E ST
\\"_ -, N -
N SN =
NN
o

o Ve ry ge n e ra I tec h n iq u e : AlphaZero vs. Stockfish AlphaZero vs. EImo

W:29.0% D:70.6% L:0.4%

— No human data o\ e E—

W:98.2% D:0.0% L:1.8%

AlphaZero vs. AGO

2.0% D:97.2% L:0.8%

— No expert features

W:53.7% L:46.3%

AZwins [l AZdraws AZ loses AZ white () AZblack @

* Limited to perfect-information games

Imperfect-Information Games

No-Limit Texas Hold’em Poker

Long-standing challenge problem in Al and game theory
2017: Al surpasses top humans in two-player no-limit hold’em
2019: Al surpasses top humans in six-player no-limit hold’em

Techniques used in poker Als have been very different from AlphaGo/AlphaZero

ReBel

e Can asingle algorithm work for both perfect- and imperfect-
information games?

* ReBel (Recursive Belief-based Learning)
— Provably converges to Nash in two-player zero-sum games
— Superhuman in two-player no-limit hold’em poker
— Uses far less domain knowledge than prior poker bots
— In perfect-info games, ReBel reduces to an algorithm similar to AlphaZero

A Simplified Overview of AlphaZero

What is a “state” in a game?

e A state must be a sufficient statistic

— Must contain all relevant info needed to
compute the optimal next move

* Board configuration alone might not be
enough (e.g., ko rule in Go)

— AlphaZero uses last 8 board configurations

* Worst case: “state” in a perfect-info game
is the entire sequence of actions

- N w & o il N (e

i Do -
b o [
Pee

nnnnnnnnnnnnnnnnnnn

¢
|

uuuuuuuuuuuuuuuuuuu

Search in Perfect-Information Games

* |n perfect-information games, the
value of a state is the unique value
resulting from both players playing
optimally from that point forward

A value network takes a state as
input and outputs an estimate of
the state value

fwhite(

- N w & o i

E oo [mi|-

b fo -
e |-

Search in Perfect-Information Games

e Where does the value network
come from?

— |t can be a handcrafted heuristic
function [Deep Blue]
fwhite(

— |t can be learned by training on expert
human games [AlphaGo]

— |t can be learned through self play
[AlphaZero]

Search in Perfect-Information Games

* In principle, backward induction
alone can solve Chess

Whole game is too
large to solve

e But this would be far too
expensive in practice

Search in Perfect-Information Games

* |nstead, chess Al’s do search:

1. Look ~5 moves ahead

2. Estimate those state values using Leaf node
the value network

3. Do backward induction using
those state values (ignore the
game below those states)

Subgame

y Y
y Y
#
Y
Y
Y
)
%
Y
A}
\!
Y
»

* |In other words, solve a subgame

* If the value network is perfect,
this computes the optimal action

Search in Perfect-Information Games

In AlphaZero, the subgame grows in
size as it is solved

In principle, ReBel can do the same

For simplicity, we assume
subgames are fixed in size

— Imagine subgames as containing every
state reachable within 5 actions

Leaf node

%
X
o)
%
%
.
%
%
\
\
)
»

Subgame

AlphaZero (Simplified)

 Whenever an agent acts, generate a
subgame and solve it

— Set leaf node values based on value net

AlphaZero (Simplified)

 Whenever an agent acts, generate a
subgame and solve it
— Set leaf node values based on value net Leaf node

AlphaZero (Simplified)

 Whenever an agent acts, generate a
subgame and solve it Q

— Set leaf node values based on value net

* Choose next action based on
solution to subgame Q0000

AlphaZero (Simplified)

 Whenever an agent acts, generate a
subgame and solve it &

— Set leaf node values based on value net

e Choose next action based on
solution to subgame

AlphaZero (Simplified)

Whenever an agent acts, generate a
subgame and solve it &

— Set leaf node values based on value net

Choose next action based on
solution to subgame

OO 0OOP®
Repeat until end of game

AlphaZero (Simplified)

Whenever an agent acts, generate a
subgame and solve it ;

— Set leaf node values based on value net

Choose next action based on
solution to subgame

OO 0OOP®
Repeat until end of game

AlphaZero (Simplified)

Whenever an agent acts, generate a
subgame and solve it
— Set leaf node values based on value net

Choose next action based on
solution to subgame

Repeat until end of game

AlphaZero (Simplified)

Whenever an agent acts, generate a
subgame and solve it
— Set leaf node values based on value net

Choose next action based on
solution to subgame

Repeat until end of game

Blue wins!

AlphaZero (Simplified)

Whenever an agent acts, generate a
subgame and solve it

— Set leaf node values based on value net

Choose next action based on
solution to subgame

Repeat until end of game

Final value is used as a training Blue wins!
example for all encountered states

AlphaZero (Simplified)

* With some random exploration,
AlphaZero will eventually encounter
every state and learn every state’s

true value

Blue wins!

Why doesn’t AlphaZero work in
imperfect-information games?

Because perfect-info “world states” don’t have
unique values in imperfect-info games

Search in Imperfect-Information Games

Rock-Paper-Scissors+

Search in Imperfect-Information Games

Rock-Paper-Scissors+ Depth-Limited Rock-Paper-Scissors+

Search in Imperfect-Information Games

Rock-Paper-Scissors+ Depth-Limited Rock-Paper-Scissors+

Search in Imperfect-Information Games

Rock-Paper-Scissors+ Depth-Limited Rock-Paper-Scissors+

Search in Imperfect-Information Games

Rock-Paper-Scissors+ Depth-Limited Rock-Paper-Scissors+

Critical assumption: Our entire policy is common knowledge, but
the outcomes of random processes are not common knowledge

Search in Imperfect-Information Games

Rock-Paper-Scissors+ Depth-Limited Rock-Paper-Scissors+

* One solution: define an imperfect-information game “state” as a probability

distribution over infosets

* v(Rock) is not well-defined
* v(]0.8 Rock, 0.1 Paper, 0.1 Scissors]) = —0.6
* |In more complex games, need to include probability distribution for both players

Converting imperfect-info games
to continuous-state perfect-info games

| bet.

| don’t have a 3

9

If | have a 2 | bet 50% prob.)
If | have a 3 | fold with 100% prob.

Player 1 doesn’t
have a 3

\ |f | have a

Referee

Player 1 bets.]

Converting imperfect-info games
to continuous-state perfect-info games

w2) == w@)=— w(4) = —

)))

62 & 3 & A

2 & 3 & A&

- — 2s P(fold|s)w(s)

Referee P(fold) = 0.08 =

| bet with my 2 with 50% prob.) 2.sw(s)

| fold with my 3.

% P(bet|s)w(s)
\| bet with my A.) P(bet) = 0.92 = > w(s)

3 3
& 2 & 3 & A
2 & 3 & A&

Converting imperfect-info games
to continuous-state perfect-info games

Update weights with Bayes’ Rule

'

w(2) = %

| bet with my 2 with 50% prob.)

| fold with my 3.

\ | bet with my A,

!

w(3) = %

))
& 2 & 3

2 & 3 &

——/ ——/
J

w2) == w@)=-—
))
& & 3
2 3 &
——/ ——/

W(A)Z%
)
& A

A&

——/

2s P(foldls)w(s)

Referee P(fold) = 0.08 = S w(s)
B _ XsP(bet|s)w(s)
P(bet) = 0.92 = S w(s)

Player 1 bets. J

Converting imperfect-info games
to continuous-state perfect-info games

| bet with my 2 with 50% prob.)

| fold with my 3.

\ | bet with my A,

w(2)=% w(3) =0
))
S 2 é& 3
2 & 3 &
———/ ———/
J
w2) == w@)=-—
))
& é& 3
2 3 &
———/ ———/

2s P(foldls)w(s)

Referee P(fold) = 0.08 = S w(s)
B _ XsP(bet|s)w(s)
P(bet) = 0.92 = S w(s)

Player 1 bets. J

Converting imperfect-info games
to continu perfect-info games

Public Belief State

2.s P(fold|s)w(s)
| bet with my 2 with 50% prob.) Referee P(fold) = 0.08 = 3 w(s)
| fold with my 3.
Y. P(bet|s)w(s)
\ | bet with my A, P(bet) =0.92 = 2 w(s)

Player 1 bets. J

Converting imperfect-info games
to continu perfect-info games

Public Belief State
Public Belief

2.s P(fold|s)w(s)
| bet with my 2 with 50% prob. Referee P(fold) = 0.08 = 3 w(s)
| fold with my 3.
Y. P(bet|s)w(s)
| bet with my A. P(bet) =0.92 = 2 w(s)

Player 1 bets. J

Search in ReBel

* We’'ve shown all imperfect-information games can be converted
into perfect-information games! Can we now run AlphaZero?

* In practice, no.
— Action space is continuous with potentially thousands of dimensions
— AlphaZero’s Monte Carlo tree search would be completely intractable

Search in ReBel

* But! The continuous action space has special structure
— Basically, it’s convex

— Technically a “bilinear saddle point problem”

* We can efficiently solve the imperfect-information subgames
using CFR

— Other equilibrium-finding algorithms also work

ReBel
Initial PBS of the game

 Whenever an agent acts, generate a
subgame and solve it

ReBel

 Whenever an agent acts, generate a
subgame and solve it

— Solve using CFR Leaf node

Initial PBS of the game

One more modification...
Initial PBS of the game

 Whenever an agent acts, generate a
subgame and solve it

— Solve using CFR Leaf node

 CFRis an iterative algorithm, so value
net must be accurate on every iteration

X
o)
%
%
.
%
%
\
\
)
»

* To ensure proper exploration, we stop
CFR on a random iteration

ReBel

* Whenever an agent acts, generate a
subgame and solve it
— Solve using CFR
— Stop on a random iteration
— Take next action

ReBel

* Whenever an agent acts, generate a
subgame and solve it
— Solve using CFR
— Stop on a random iteration
— Take next action

ReBel

Whenever an agent acts, generate a
subgame and solve it

— Solve using CFR

— Stop on a random iteration

— Take next action

Repeat until end of game

ReBel

Whenever an agent acts, generate a
subgame and solve it

— Solve using CFR

— Stop on a random iteration

— Take next action

Repeat until end of game

ReBel

Whenever an agent acts, generate a
subgame and solve it

— Solve using CFR

— Stop on a random iteration

— Take next action

Repeat until end of game

ReBel

* Whenever an agent acts, generate a
subgame and solve it
— Solve using CFR
— Stop on a random iteration
— Take next action

* Repeat until end of game

Blue wins!

ReBel

Whenever an agent acts, generate a
subgame and solve it

— Solve using CFR

— Stop on a random iteration

— Take next action
Repeat until end of game

Final value is used as a training
example for all encountered PBSs

Blue wins!

ReBel

As with AlphaZero, ReBel chooses a
random action with € probability to
ensure proper exploration

Theorem: With tabular tracking of PBS

1

values, ReBel will converge to a N

Nash equilibrium in finite time, where
T is the number of CFR iterations

Blue wins!

Playing Nash at Test Time

Rock-Paper-Scissors+

Playing Nash at Test Time

Rock-Paper-Scissors+

Playing Nash at Test Time

Rock-Paper-Scissors+ Rock-Paper-Scissors+ Subgame

Playing Nash at Test Time

Rock-Paper-Scissors+ Rock-Paper-Scissors+ Subgame

Playing Nash at Test Time

Rock-Paper-Scissors+ Rock-Paper-Scissors+ Subgame

e Qur solution: Stop CFR on a random iteration and assume beliefs from that iteration
* Opponent will not know our beliefs, so cannot predict in what way our policy will be pure
* The algorithm will be a Nash equilibrium in expectation
* This is the exact same algorithm that is used during training

Results in Two-Player No-Limit Texas Hold’em

DeepStack 383+ 112
Libratus 63 + 14 147 + 39
Modicum 11+5 6+ 3

ReBel 45+ 5 9+4 881 + 94 165 + 69

Results in Two-Player Liar’s Dice

_ 1 die, 4 faces 1 die, 5 faces 1 die, 6 faces 2 dice, 3 faces

Tabular Full-Game FP 0.012 0.024 0.039 0.057
Tabular Full-Game CFR 0.001 0.001 0.002 0.002
ReBel with FP 0.041 0.020 0.040 0.020
ReBel with CFR 0.017 0.015 0.024 0.017

Source code available at github.com/facebookresearch/rebel

Key takeaways

* ReBel provably converges to a Nash equilibrium in two-player
zero-sum games (both perfect-info and imperfect-info)

* ReBel achieves superhuman performance in poker while using
far less domain knowledge than any prior poker bot

* ReBel reduces to an algorithm similar to AlphaZero in
perfect-information games

Remaining Challenges:
More Hidden Information

* The input to ReBel’s state value

function is all the possible action-
observation histories

* |In Texas hold’em poker there are

1,326 possible hands, so the input is
2,652 probabilities

e What if there is far more hidden
information?

Remaining Challenges:
More Hidden Information

* Two recent papers addressing this:

— “Scalable Online Planning via
Reinforcement Learning Fine-Tuning”

Fickinger, Hu, Amos, Russell, Brown
NeurlPS-21

— “A Fine-Tuning Approach to Belief
State Modeling” Sokota, Hu, Wu,
Kolter, Foerster, Brown (Under Review)

1]
1|
M
J
W.
a
o
H
B

Remaining Challenges:
Learning Without a Simulator

 MuZero extends AlphaZero to
work without a known simulator

e Can we extend ReBel to work
without a simulator as well?

* Can we make a single algorithm
that can play all two-player zero-
sum games without a simulator?

Knowledge

AlphaGo becomes the first program to master Go using
neural networks and tree search
(Jan 2016, Nature)

Go

AlphaGo Zero learns to play completely on its own,
without human knowledge
(Oct 2017, Nature)

Go Chess Shogi

AlphaZero masters three perfect information games
using a single algorithm for all games
(Dec 2018, Science)

— c 3

0 52
* 35

Go Chess Shogi Atari

MuZero learns the rules of the game, allowing it to also
master environmen ts with unknown dynamics.
(Dec 2020, Nature)

Remaining Challenges:
Going Beyond Two-Player Zero-Sum

e Life isn’t zero sum: Als are still
bad at cooperation, negotiation,
and coalition formation

e Self play isn’t enough!

— Given infinite time and resources, a
self-play chess bot will learn the
Sicilian Defense

— Given infinite time and resources, a
self-play negotiation bot will not
learn the English language

Thank You!

Noam Brown
www.noambrown.com

