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Main focus of the course:

Multi-step imperfect-information games

Why?



Most real-world games are incomplete-information games

with sequential (& simultaneous) moves
Negotiation
Multi-stage auctions (e.g., FCC ascending, combinatorial auctions)
Sequential auctions of multiple items
A robot facing adversaries in uncertain, stochastic envt
Card games, e.g., poker
Currency attacks

International (over-)fishing

Political campaigns (e.g., TV spending in each region)
Ownership games (polar regions, moons, planets)

Allocating and timing troops/armaments to locations
— US allocating troops in Afghanistan & Iraq

— Military spending games, e.g., space vs ocean

Ticket Required Beyond This Point




SO...

* Techniques for perfect-information games
such as checkers, chess, and Go don’t apply

 because there are additional 1ssues:
— Private information

— Need to understand signals and how other
players will interpret signals

— Need to understand deception

— Need to deceive



Game representations,
game-theoretic solution concepts,
and complexity



The heart of the problem

 In a 1-agent setting, agent’ s expected utility
maximizing strategy is well-defined

« But in a multiagent system, the outcome may
depend on others’ strategies also

=> the agent’s best strategy may depend on what
strategies the other agent(s) choose, and vice
versa



Terminology

Agent = player

Action = move = choice that agent can make at a point in
the game

Strategy s; = mapping from history (to the extent that the
agent i can distinguish) to actions

Strategy set S; = strategies available to the agent

Strategy profile (s;, S,, ..., Sj5) = One strategy for each
agent

Agent’ s utility is determined after each agent (including
nature that is used to model uncertainty) has chosen its
strategy, and game has been played: u; = ui(s;, S,, ..., Sjp)



Agenthood

* Agent attempts to maximize its expected utility

 Utility function u; of agent i iIs a mapping from outcomes to reals
— Incorporates agent’s risk attitude (allows quantitative tradeoffs)
* E.g. outcomes over money

Ui a
Lottery 1: $0.5M w.p. 1

1 Risk averse
Lottery 2: $1M  w.p. 0.5

0 w.p.05 05
3 i Risk seeking
Agent’s strategy is the 0 > M$
choice of lottery 0 0.5 1

Risk aversion => insurance companies

« Often in game theory we just talk about expected payoff or
expected value (EV)



Utility functions are scale-invariant

Agent 1 chooses a strategy that maximizes expected utility

max 2 utcome P(OUtCOmMe | strategy) u.(outcome)

strategy

If u’()=au()+Dbtfora>0 then the agent will choose the
same strategy under utility function u;’ as it would under u.

— (u, has to be finite for each possible outcome; otherwise expected utility could
be infinite for several strategies, so the strategies could not be compared.)

Inter-agent utility comparison would be problematic



Game representations

| Matrix form
Extensive form (aka normal form

(aka tree form) aka strategic form)

player 2’ s strategy

Left ~ 1.2 . :
© Left, Left, Right, Right,

Left Right TLeft Right

3,4 , U 1.2 1.2 3 4 3.4
player 1" s P ’ ’ ’ ’

5.6 strategy
Down| 56 | 7.8 56 | 7.8

Right

Potential combinatorial explosion

—



Dominant strategy “equilibrium”

Best response s*: foralls;’, u(s*s.)2u(s, ,s.)
Dominant strategy s;*: s;* IS a best response for all s
— Does not always exist

— Inferior strategies are called “dominated”

Dominant strateqy “equilibrium?” is a strategy profile where
each agent has picked its dominant strategy

— Does not always exist
— Requires no counterspeculation

E.g., Prisoners’ Dilemma: cooperate  defect

Pareto optimal?

coope rate O, 5
Social welfare

maximizing?
defect 5,0 @




Nash equilibrium
[Nash50]

« Sometimes an agent’ s best response depends on others’
strategies: a dominant strategy does not exist
« A strategy profile is a Nash equilibrium if no player has
Incentive to deviate from his strategy given that others do
not deviate:
for every agent i, u,(s*,s;) 2 u,(s,’ ,s;) forall s;’
— Dominant strategy equilibria are Nash equilibria but not vice versa

— Defect-defect is the only Nash eq. in Prisoner’ s Dilemma
— Battle of the Sexes game

« Has no dominant strategy equilibria

Woman
g attie o € dexes boxmg ballet

boxing 2,1) <
Man

— 0,0
ballet 0,0 ——>@,D*



http://upload.wikimedia.org/wikipedia/commons/9/91/John_f_nash_20061102_3.jpg

Criticisms of Nash equilibrium

Not unigque in all games, e.qg., Battle of the Sexes

— Approaches for addressing this problem

* Refinements (=strengthenings) of the equilibrium concept
— Eliminate weakly dominated strategies first
— Choose the Nash equilibrium with highest welfare
— Subgame perfection ...

» Focal points

« Mediation

« Communication

« Convention

« Learning

Does not exist in all games

1,0 =9 0,1

—

0,14 1,0 *




Existence of (pure-strategy) Nash equilibria

e Thrm.
— Any finite game,
— where each action node i1s alone In its information set

* (i.e., at every point in the game, the agent whose turn it is to move
knows what moves have been played so far)

— IS dominance solvable by backward induction (at
least as long as ties are ruled out)

« Constructive proof: Multi-player minimax search



Rock-scissors-paper game

Sequential moves



Rock-scissors-paper game

Simultaneous moves



Mixed-strategy Nash equilibrium

Mixed strategy = agent’ s chosen probability
distribution over pure strategies from its strategy set

move of ock__ 0,0
agent 2 scissors
1,-1
aper
-1, 1
-1, 1
move of SCISSsOors sScissors 0.0
agent 1 baper paper
1, -1
1, -1
Information set SCISSOrS
(the mover does not -1, 1

know which node of the aper

set she is in)

(Bayes-)Nash equilibrium:
Each agent uses a
best-response strategy
and has consistent beliefs

Rock-paper-scissors
game has a symmetric
mixed-strategy Nash
equilibrium where each
player plays each pure
strategy with probability
1/3

Fact: In mixed-strategy
equilibrium, each
strategy that occurs in
the mix of agent i has
equal expected utility to i



Existence & complexity of
mixed-strategy Nash equilibria

« Every finite player, finite strategy game has at least one Nash
equilibrium if we admit mixed-strategy equilibria as well as pure

— (Proof is based on Kakutani’ s fix point theorem)

 May be hard to compute
— Complexity of finding a Nash equilibrium in a normal form game:

« 2-player 0-sum games can be solved in polytime with LP

» 2-player games are
— PPAD-complete (even with 0/1 payoffs)

— NP-complete to find an even approximately good Nash equilibrium

« 3-player games are FIXP-complete



Properties of 2-player 0-sum games

* Swappability: if (x,y) and (x’,y’) are equilibria, then so are (x’,y) and (x,y’)
— =>no equilibrium selection problem: player is safe playing any one of her equilibrium strategies
* A player’s equilibrium strategies form a bounded convex polytope
* Any convex combination of a player’s equilibrium strategies is an equilibrium strategy
*  The set of Nash equilibria are exactly the set of solutions to the minmax problem max, min, u,(x,y)
*  Minmax theorem [von Neumann 1928]:
Let X ¢ R® and Y < R™ be compact convex sets. If f: X x ¥ — R is a continuous function that is concave-convex, ie.

f(-,y) : X —+ R is concave for fixed y, and The function f(x,y)=y2-x2 is concave-convex.
f(z,-) : Y — Ris convex for fixed .

Then we have that

magx min flz,y) = min max flz,v).

Example

it f(x,y) = «7 Ay for a finite matrix A € R™™  we have:

max min ’ Ay = min maxz® Ay.
#eX yeY yEY 2eX

* Amazing in multi-step imperfect-information games:

— By playing a non-equilibrium strategy, our opponent can cause our beliefs to be wrong, but not by so much that the opponent’s
expected value increases!

* Solvable in polynomial time in the size of the game tree using LP
—  But what if the tree has 10'% nodes?



