CS 15-888 Computational Game Solving

Lecture 1

Tuomas Sandholm Computer Science Department Carnegie Mellon University

Main focus of the course:

Multi-step imperfect-information games

Why?

Most real-world games are incomplete-information games with sequential (& simultaneous) moves

- Negotiation
- Multi-stage auctions (e.g., FCC ascending, combinatorial auctions)
- Sequential auctions of multiple items
- A robot facing adversaries in uncertain, stochastic envt
- Card games, e.g., poker
- Currency attacks
- International (over-)fishing
- Political campaigns (e.g., TV spending in each region)
- Ownership games (polar regions, moons, planets)
- Allocating and timing troops/armaments to locations
 - US allocating troops in Afghanistan & Iraq
 - Military spending games, e.g., space vs ocean
 - Airport security, air marshals, coast guard, rail
 - Cybersecurity ...

So...

• Techniques for perfect-information games such as checkers, chess, and Go don't apply

- because there are additional issues:
 - Private information
 - Need to understand signals and how other players will interpret signals
 - Need to understand deception
 - Need to deceive

Game representations, game-theoretic solution concepts, and complexity

The heart of the problem

- In a 1-agent setting, agent's expected utility maximizing strategy is well-defined
- But in a multiagent system, the outcome may depend on others' strategies also
 - => the agent's best strategy may depend on what strategies the other agent(s) choose, and vice versa

Terminology

- Agent = player
- Action = move = choice that agent can make at a point in the game
- Strategy s_i = mapping from history (to the extent that the agent i can distinguish) to actions
- Strategy set S_i = strategies available to the agent
- Strategy profile (s₁, s₂, ..., s_{|A|}) = one strategy for each agent
- Agent's utility is determined after each agent (including nature that is used to model uncertainty) has chosen its strategy, and game has been played: u_i = u_i(s₁, s₂, ..., s_{|A|})

Agenthood

- Agent attempts to maximize its expected utility
- Utility function u_i of agent i is a mapping from outcomes to reals
 - Incorporates agent's risk attitude (allows quantitative tradeoffs)
 - E.g. outcomes over money

Risk aversion => insurance companies

 Often in game theory we just talk about expected payoff or expected value (EV)

Utility functions are scale-invariant

• Agent i chooses a strategy that maximizes expected utility

 $\max_{\text{strategy}} \Sigma_{\text{outcome}} p(\text{outcome} \mid \text{strategy}) u_i(\text{outcome})$

- If $u_i'() = a u_i() + b$ for a > 0 then the agent will choose the same strategy under utility function u_i' as it would under u_i
 - (u_i has to be finite for each possible outcome; otherwise expected utility could be infinite for several strategies, so the strategies could not be compared.)
- Inter-agent utility comparison would be problematic

Game representations

Extensive form (aka tree form)

Matrix form (aka normal form aka strategic form)

player 2'	S	strategy
-----------	---	----------

		Left, Left	Left, Right	Right, Left	Right, Right
player 1' strategy	, Up	1, 2	1, 2	3, 4	3, 4
	Down	5,6	7, 8	5, 6	7, 8

Potential combinatorial explosion

Dominant strategy "equilibrium"

- Best response s_i^* : for all s_i' , $u_i(s_i^*,s_{-i}) \ge u_i(s_i',s_{-i})$
- Dominant strategy s_i*: s_i* is a best response for all s_{-i}
 - Does not always exist
 - Inferior strategies are called "dominated"
- Dominant strategy "equilibrium" is a strategy profile where each agent has picked its dominant strategy
 - Does not always exist
 - Requires no counterspeculation

Nash equilibrium [Nash50]

- Sometimes an agent's best response depends on others' strategies: a dominant strategy does not exist
- A strategy profile is a Nash equilibrium if no player has incentive to deviate from his strategy given that others do not deviate:

for every agent i, $u_i(s_i^*,s_{-i}) \ge u_i(s_i^{'},s_{-i})$ for all $s_i^{'}$

- Dominant strategy equilibria are Nash equilibria but not vice versa
- Defect-defect is the only Nash eq. in Prisoner's Dilemma
- Battle of the Sexes game
 - Has no dominant strategy equilibria

Criticisms of Nash equilibrium

- Not unique in all games, e.g., Battle of the Sexes
 - Approaches for addressing this problem
 - Refinements (=strengthenings) of the equilibrium concept
 - Eliminate weakly dominated strategies first
 - Choose the Nash equilibrium with highest welfare
 - Subgame perfection ...
 - Focal points
 - Mediation
 - Communication
 - Convention
 - Learning
- Does not exist in all games

Existence of (pure-strategy) Nash equilibria

• Thrm.

- Any finite game,
- where each action node is alone in its information set
 - (i.e., at every point in the game, the agent whose turn it is to move knows what moves have been played so far)
- is dominance solvable by backward induction (at least as long as ties are ruled out)
- Constructive proof: Multi-player minimax search

Rock-scissors-paper game

Sequential moves

Rock-scissors-paper game

Simultaneous moves

Mixed-strategy Nash equilibrium

Mixed strategy = agent's chosen probability distribution over pure strategies from its strategy set

(Bayes-)Nash equilibrium: Each agent uses a best-response strategy and has consistent beliefs

Rock-paper-scissors game has a symmetric *mixed-strategy* Nash equilibrium where each player plays each pure strategy with probability 1/3

Fact: In mixed-strategy equilibrium, each strategy that occurs in the mix of agent i has equal expected utility to i

Existence & complexity of mixed-strategy Nash equilibria

- Every finite player, finite strategy game has at least one Nash equilibrium if we admit mixed-strategy equilibria as well as pure [Nash 50]
 - (Proof is based on Kakutani's fix point theorem)
- May be hard to compute
 - Complexity of finding a Nash equilibrium in a normal form game:
 - 2-player 0-sum games can be solved in polytime with LP
 - 2-player games are
 - PPAD-complete (even with 0/1 payoffs) [Chen, Deng & Teng JACM-09; Abbott, Kane & Valiant FOCS-05; Daskalakis, Goldberg & Papadimitriou STOC-06],
 - NP-complete to find an even approximately good Nash equilibrium [Conitzer & Sandholm GEB-08]
 - 3-player games are FIXP-complete [Etessami & Yannakakis FOCS-07]

Properties of 2-player 0-sum games

- **Swappability:** if (x,y) and (x',y') are equilibria, then so are (x',y) and (x,y')
 - => no equilibrium selection problem: player is safe playing any one of her equilibrium strategies
- A player's equilibrium strategies form a bounded convex polytope
- Any convex combination of a player's equilibrium strategies is an equilibrium strategy
- The set of Nash equilibria are exactly the set of solutions to the minmax problem $\max_x \min_y u_1(x,y)$
- Minmax theorem [von Neumann 1928]:

Let $X \subset \mathbb{R}^n$ and $Y \subset \mathbb{R}^m$ be compact convex sets. If $f: X \times Y \to \mathbb{R}$ is a continuous function that is concave-convex, i.e.

 $f(\cdot, y): X \to \mathbb{R}$ is concave for fixed y, and $f(x, \cdot): Y \to \mathbb{R}$ is convex for fixed x.

Then we have that

 $\max_{x \in X} \min_{y \in Y} f(x, y) = \min_{y \in Y} \max_{x \in X} f(x, y).$

Example

If $f(x, y) = x^T A y$ for a finite matrix $A \in \mathbb{R}^{n \times m}$, we have: $\max_{x \in X} \min_{y \in Y} x^T A y = \min_{y \in Y} \max_{x \in X} x^T A y.$

- Amazing in multi-step imperfect-information games:
 - By playing a non-equilibrium strategy, our opponent can cause our beliefs to be wrong, but not by so much that the opponent's expected value increases!
- Solvable in polynomial time in the size of the game tree using LP
 - But what if the tree has 10^{165} nodes?

