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Perfect-information games
and single-agent search

Remaining game is too large



Perfect-information games
and single-agent search

Value substituted at leaf node is estimate 
of both players playing perfectly thereafter

If estimate is perfect, limited-lookahead
search finds optimal policy (equilibrium)

But state values are not well defined in imperfect-information games!



Depth-limited solving
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How to tackle this issue?
• Libratus: When solving a subgame, solves it to the end of the game 
• DeepStack: Solves depth-limited subgames, but is very expensive and relies on certain structure
• Our new approach: Solves depth-limited subgames, and is very cheap and general
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Depth-limited solving

• At leaf nodes, allow other player(s) one final action choosing among multiple policies for the remaining game
• Step 1: Solve subgame with current set of 𝑃2 leaf-node policies
• Step 2: Calculate a 𝑃2 best response
• Step 3: Add 𝑃2 best response to set of leaf-node policies
• Repeat
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Theorem. Converges to Nash equilibrium.
In practice, reaches very low exploitability in a small number of iterations.

There are also other ways 
to generate 
continuation policies 
for the opponent.

[Brown, Sandholm & Amos NeurIPS-18e]



Safe depth-limited solving starting later 
than the root [Brown, Sandholm & Amos NeurIPS-18e]

• In imperfect-information games, “subgames” are not independent
• However, techniques from Libratus’s endgame solving can be applied, but now 

the endgames are midgames that end in continuation strategy choices
– Have a blueprint strategy for the whole game 

• E.g., via abstraction+equilibrium computation, Deep CFR [Brown, Lerer, Gross & 
Sandholm, ICML-19c], or manual

– When determining our strategy for an endgame, give opponent the choice of 
model: blueprint or endgame model 
[Burch et al. AAAI-14; Jackson AAAI-14; Moravcik et al. AAAI-16; Brown & Sandholm NIPS-17; 
Moravcik et al. Science 2017; Brown & Sandholm Science 2018]
• Want to solve for our endgame strategy such that opponent isn’t better off choosing 

endgame model for any private type she may have => Theorem: safe
• Allow opponent to get back in the endgame the gifts she has given so far 

=> Theorem: safe [Brown & Sandholm NIPS-17 Best Paper; Science 2018]

• Can apply this recursively
– Can include the action that the opponent made
– Can use finer abstraction when endgame starts closer to end of the game
– Theorem: Safe [Brown & Sandholm NIPS-17 Best Paper; Science 2018]



Head-to-head performance
in 2-player no-limit Texas hold’em

[Brown, Sandholm & Amos NeurIPS-18e]

• Baby Tartanian8
[2016 champion]

– 2 million core hours

– 18 TB of memory

• Slumbot
[2018 champion]

– 250,000 core hours

– 2 TB of memory

• Modicum

– 700 core hours

– 16 GB of memory

– Plays in real time with 
a  4-core CPU in 20 
seconds per hand

Baby Tartanian8 Slumbot

Modicum (no real-time reasoning) −𝟓𝟕 ± 𝟏𝟑 −𝟏𝟏 ± 𝟖

Modicum (just one continuation strategy) −𝟏𝟎 ± 𝟖 −𝟏 ± 𝟏𝟓

Modicum (just a few continuation strategies) 𝟔 ± 𝟓 𝟏𝟏 ± 𝟗

Unit: milli-big-blinds / game



Key takeaways from this segment

• Planning is important in imperfect-information games, but different

• In real-time planning, you must consider how the opponent can 
adapt to changes in your strategy
– Except in perfect-information games and single-agent setting

• States don’t have well-defined values in imperfect-info games

• Our depth-limited solving algorithm:
– Is sound
– Enabled 2nd-best AI for heads-up no-limit Texas hold’em poker to be 

developed on a 4-core CPU with 16 GB of RAM



MULTI-PLAYER GAMES



Multi-player games

• All prior superhuman AI game-playing milestones have been in 
2-player games: 
– Checkers: Chinook 1994
– Othello: Logistello 1997
– Chess: Deep Blue 1997
– 2-player limit Texas hold’em: Polaris 2008
– Go: AlphaGo 2016
– 2-player no-limit Texas hold’em: Libratus 2017
– Starcraft II: AlphaStar 2019 and DOTA 2: OpenAI Five 2019 (if they 

are superhuman)

• Our research led to techniques that enabled us to develop a 
superhuman AI for multi-player no-limit Texas hold’em …



Multi-player poker

• Recognized AI, game theory, 
and OR milestone that has 
been open for decades

• Most popular variant in the 
world: 6-player no-limit Texas 
hold’em

• Very recently we developed a 
superhuman AI, Pluribus, for 
this game [Brown & Sandholm, 
Science 2019]
– Science Breakthrough of the 

Year runner-up, 2019



2-player 0-sum vs. multi-player games

• All prior superhuman AI game milestones have been in 2-player 0-sum games
• Multi-player games have additional issues (even in normal form):

– Playing a Nash equilibrium is not safe

– Finding even an approximate Nash equilibrium is hard
• In theory [Daskalakis et al. 2009; Chen et al. 2009; Rubinstein 2018]
• In practice, fastest complete algorithm only scales to 3-5 players and 3-5 strategies per player 

[Berg & Sandholm AAAI-17]

• Pluribus finds superhuman strategies with a novel set of algorithms
– No guarantee that the solution is a Nash equilibrium (beyond 2-player 0-sum games)



How does Pluribus work?

• Developed and runs on a single server, no GPUs

• Doesn’t use any data 

• Doesn’t adapt to the opponent

• Offline blueprint computation and real-time 
depth-limited search
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Pluribus’s new form of depth-limited 
search for imperfect-information games

• All players (not just opponents) pick from k 
continuation strategies at leaves

• Search starts before current situation (beginning 
of current betting round)
– Mitigates exploitability of unsafe search while keeping 

its advantages

– Our player’s strategy is kept fixed for the moves 
already taken

– As in Libratus, opponents’ actual actions are added to 
subgame model before the subgame is solved => no 
need to reverse map actions
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Pluribus’s new equilibrium-finding algorithm

• Used for blueprint computation and for solving depth-limited 
subgames

• Significant improvement over MCCFR [Lanctot et al., NeurIPS-09]
• Uses fastest equilibrium-finding algorithm for zero-sum games: 

linear CFR [Brown & Sandholm AAAI-19 Distinguished Paper 
Honorable Mention]
– Pluribus uses linear weighting for both regrets and for averaging the 

strategies
– => “Linear MCCFR”

• New form of dynamic pruning in early part of the run
– Not in last two steps of the game

• Saving memory: sequences allocated in RAM only if encountered



At play time, Pluribus:

• Runs on a regular computer using

– 2 CPUs

– Less than 128 GB RAM

– No GPUs

• Plays twice as fast as human pros (20 sec / hand)



Performance against top human pros

• AIVAT [Burch et al. AAAI-18] was used in the evaluation for variance reduction

• Experiment 1: 1 human pro, 5 copies of Pluribus
– Independent copies of Pluribus; didn’t know even seat of others
– Each of Chris Ferguson and Darren Elias played 5,000 hands (also, monetary 

incentive to play as well as they can)
– Pluribus beat each opponent with statistical significance
– In a later identical experiment, Pluribus also beat Linus Loeliger

• Experiment 2: 5 human pros, 1 Pluribus
– 10,000 hands
– For each 6-player session, 5 humans were selected based on availability from 13 

human pros
• Each has won over $1M playing poker, many have won over $10M
• Linus Loeliger, Jimmy Chou, Seth Davies, Michael Gagliano, Anthony Gregg, Dong Kim, Jason 

Les, Daniel McAulay, Nick Petrangelo, Sean Ruane, Trevor Savage, Jake Toole

– $50,000 divided among human pros to incentivize them to play as well as they can
– Pluribus won with statistical significance (p=0.028)



Improvement of Pluribus with training time
• 64-core server, 512 GB RAM, no GPUs
• ~$150 at cloud prices


