Game Abstraction Lecture 2

Tuomas Sandholm

ACTION ABSTRACTION

Action abstraction

- Typically done manually
- Prior action abstraction algorithms for extensive games (even for just poker) had no guarantees on solution quality [Hawkin et al. AAAI-11, 12]
- For stochastic games there is an action abstraction algorithm with bounds (based on discrete optimization) [Sandholm \& Singh EC-12]
- We present the first algorithm for parameter optimization for one player (in 2-player 0-sum games)
- We use it for action size abstraction
- Leverage regret matching (or CFR) warm starting by regret transfer
"Regret Transfer and Parameter Optimization with Application to Optimal Action Abstraction"
[Brown \& Sandholm, AAAI-14]

Setting: game payoffs change as we change the actions
(e.g., bet sizes in poker or bid sizes in auctions),
but the game topology doesn't change

Motivation: A Simple Game

We solve with No-Regret Learning

Convergence to ϵ-Nash equilibrium

Convergence to Nash

Motivation: A Simple Game

Suppose we change the Bet-Call payoff part-way through our run

Motivation: A Simple Game

Convergence to ϵ-Nash equilibrium

Convergence to Nash

Convergence to ϵ-Nash equilibrium

Convergence to Nash

Convergence to ϵ-Nash equilibrium

Scale Amount: $0\left(\frac{1}{(1+\delta \sqrt{T})^{2}}\right)$
Convergence to Nash

Optimal Parameter Selection

- Action abstraction: action size selection
- (Optimizing together with probabilities would be quadratic)
- Each abstraction has a Nash equilibrium value that isn't known until we solve it
- We want to pick the optimal action abstraction (one with highest equilibrium value for us)

Optimizing A Simple Game

What is the optimal value of θ for P 1 ?

Step 1:Do K_{1} iters of No-Regret Learning

NE Value vs Theta

Step 2:Estimate Gradient

NE Value vs Theta

Step 3:Move Theta, Transfer Regret (deweight regrets and strategies for averaging)

NE Value vs Theta

Step 4: Do K_{2} iters of No-Regret Learning

NE Value vs Theta

Repeat to convergence

NE Value vs Theta

- We have applied this to
- No-Limit Texas Hold'em (1 bet being sized in that experiment), and
- Leduc Hold'em (2 bet sizes being sized simultaneously in that experiment)

SIMULTANEOUS ABSTRACTION AND EQUILIBRIUM FINDING

Strategy-based abstraction

- So far, we have done this for adding actions into the abstraction (and warm starting via discounting) ["Simultaneous Abstraction and Equilibrium Finding in Games", Brown \& Sandholm, IJCAI-15]

REVERSE MAPPING

Original game

Automated abstraction
Abstracted game

Custom equilibrium-finding algorithm

Nash equilibrium
Reverse model
Nash equilibrium

Action translation

$\mathrm{f}(\mathrm{x}) \equiv$ probability we map x to A

Desiderata about f

1. $f()=1, f()=0$
2. Monotonicity
3. Scale invariance
4. Small change in x doesn't lead to large change in f
5. Small change in or doesn't lead to large change in f
[Ganzfried \& Sandholm, IJCAI-13]
"Pseudo-harmonic mapping"

- $\mathrm{f}(\mathrm{x})=[(\mathrm{B}-\mathrm{x})(1+\mathrm{A})] /[(\mathrm{B}-\mathrm{A})(1+\mathrm{x})]$
- Derived from Nash equilibrium of a simplified no-limit poker game
- Satisfies the desiderata
- Much less exploitable than prior mappings in simplified domains
- Performs well in practice in nolimit Texas Hold'em
- Significantly outperforms best prior reverse mapping, randomized geometric

LOSSY ABSTRACTION WITH EXPLOITABILITY BOUNDS

Game abstraction is nonmonotonic

In each equilibrium:

- Attacker randomizes 50-50 between A and B
- Defender plays A w.p. p, B w.p. p, and Between w.p. 1-2p
- There is an equilibrium for each $p \in[0,1 / 2]$

An abstraction: A Between B

A	0,2	1,1

Defender would choose A, but that is far from equilibrium in the original game where attacker would choose B

Coarser abstraction: Between B

Defender would choose Between. That is an equilibrium in the original game

- Such "abstraction pathologies" also in small poker games [Waugh et al., AAMAS-09]

Can we get bounds on exploitability despite abstraction pathologies?

- First answer: Yes, in stochastic games [Sandholm \& Singh, EC-12]
- I'll present a unified abstraction framework for extensive-form games [Kroer \& Sandholm, NeurIPS-18]
- n-player, general-sum game
- Generalizes and improves over prior work [Lanctot et al., ICML-12; Kroer \& Sandholm, EC-14, EC-16]
- Applies to modeling also

Abstraction example

We think of this as two steps, which can be analyzed separately:

Lifted strategies

- Given a strategy profile σ^{\prime} for the abstraction, a lifted strategy is a profile σ s.t. for each abstract I^{\prime} and corresponding I :
- Probability mass on abstract action is spread any way across the set of actions that map to it
- Formally, $\sigma^{\prime}\left(I^{\prime}, a^{\prime}\right)=\sum_{a \in g^{-1}\left(a^{\prime}\right)} \sigma(I, a)$

Abstraction theorem

[Kroer \& Sandholm, NeurIPS-18]

- Given:
- a perfect-recall game,
- an acyclic abstract game,
- a mapping between them that satisfies our mild, natural assumptions, and
- an ϵ-Nash equilibrium in the abstract game
- Then: Any lifted strategy is an ϵ^{\prime}-Nash equilibrium in the original game, where $\epsilon^{\prime}=\max _{i} \epsilon_{i}^{\prime}$ and

$$
\epsilon_{i}^{\prime}=\epsilon+\text { mapping errori }+ \text { refinement errori }
$$

Error from mapping real game onto perfect-recall refinement of abstract game

Error between perfect-recall refinement of abstract game and abstract game

- Advantages over prior work:
- Exact decomposition of error
- Equilibrium in abstract game doesn't have to be exact
- Doesn't make restrictive assumption of prior work
- Exponentially better bound than Lanctot et al. [ICML-12]
- We also derive a similar result for solution to abstract game with bounded counterfactual regret (gain at most ϵ_{a} by switching to any action a)

Mapping $^{\text {error }_{i}}$

Sum of

- Payoff error:
- Expectation over leaf nodes in real game of utility difference between real leaf and the node it maps onto
- Distribution error:
- Sum over leaf nodes in abstraction of difference in probability of reaching abstract leaf and sum of reach probabilities on real leaves that map to it

Refinement error ${ }_{i}$

- Sum over infosets I_{p} in the perfect-recall refinement of the abstraction (let I^{\prime} be the corresponding abstract infoset):

Sum of:

- Payoff error:
- Expectation over leaves under I^{\prime} of utility difference compared to corresponding leaf under I_{p}
- Distribution error:
- Sum over leaves under I_{p} of difference in probability of reaching refinement leaf from I_{p} versus sum of reach probabilities on abstract leaves from I^{\prime}

Future research on lossy abstraction with exploitability bounds

- The distribution error terms in our decomposition are in general not computable ex ante (i.e., before running a solver on the abstract game)
- Because they can depend on players' strategies
- Prior approaches required that for pairs of leaves mapped to each other, the leaves have the same sequence of information-set-action pairs leading to them in the abstraction
- Under that assumption, we can compute ex ante bounds (take max's)
- Idea: Find other specialized but practical game classes where game structure can be leveraged to give computable ex ante bounds
- One approach:

Our decomposition relies on utility differences (not absolute value thereof as prior approaches did), so structured game classes could potentially even cancel out error terms

Conclusions on this lecture

- Domain-independent techniques
- First action abstraction algorithm with optimality guarantees: iterative action size vector changing
- Simultaneous abstraction and equilibrium finding
- Reverse mapping: "pseudoharmonic"
- Lossy abstraction with exploitability bounds
- Future research
- Applying these techniques to other domains
- Better algorithms within our lossy-abstraction-with-bounds framework (or different such framework to be developed in the future)

