Deep Learning in Tree-Based Game Solving 4

Stephen McAleer

Outline of the next few lectures

- Deep learning in tree-based game solving 1
 - Deep learning recap
 - NFSP
 - Deep CFR
 - Policy gradient methods
- Deep learning in tree-based game solving 2
 - MCCFR
 - DREAM
 - ESCHER
 - NeuRD
- Deep learning in tree-based game solving 3
 - DeepNash for expert-level Stratego
- Deep learning in tree-based game solving 4
 - AlphaStar and OpenAl 5 for SOTA in video games
 - Double Oracle brief intro
- SOTA in double oracle algorithms
 - PSRO
 - XDO
 - SP-PSRO

- Counterfactual Regret Minimization (Zinkevich et al. 2007)
 - CFR: Zinkevich et al. 2007
 - MC-CFR: Lanctot et al. 2009
 - Deep CFR: Brown et al. 2019
 - DREAM: Steinberger et al. 2020
 - ESCHER: McAleer et al. 2022
- Policy Gradients
 - Regret Policy Gradient (Srinivasan et al. 2018)
 - OpenAl Five (OpenAl 2019)
 - Neural Replicator Dynamics (Hennes, Morrill, and Omidshafiei et al. 2020)
 - Actor Critic Hedge (Fu et al. 2022)
 - DeepNash for expert-level Stratego (Perolat, de Vylder, and Tuyls et al. 2022)
 - Magnetic Mirror Descent (Sokota et al. 2022)
- PSRO (McMahan et. al. 2003, Lanctot et al. 2017)
 - AlphaStar for expert-level Starcraft (Vinyals et al. 2019)
 - Pipeline PSRO (McAleer and Lanier et al. 2020)
 - α -PSRO (Muller et al. 2020)
 - XDO (McAleer et al. 2021)
 - Joint-PSRO (Marris et al. 2021)
 - Anytime PSRO (McAleer et al. 2022)
 - Self-Play PSRO (McAleer et al. 2022)
- Neural Fictitious Self Play (Heinrich and Silver 2016)

- Counterfactual Regret Minimization (Zinkevich et al. 2007)
 - CFR: Zinkevich et al. 2007
 - MC-CFR: Lanctot et al. 2009
 - Deep CFR: Brown et al. 2019
 - DREAM: Steinberger et al. 2020
 - ESCHER: McAleer et al. 2022
- Policy Gradients
 - Regret Policy Gradient (Srinivasan et al. 2018)
 - OpenAl Five (OpenAl 2019)
 - Neural Replicator Dynamics (Hennes, Morrill, and Omidshafiei et al. 2020)
 - Actor Critic Hedge (Fu et al. 2022)
 - DeepNash for expert-level Stratego (Perolat, de Vylder, and Tuyls et al. 2022)
 - Magnetic Mirror Descent (Sokota et al. 2022)
- PSRO (McMahan et. al. 2003, Lanctot et al. 2017)
 - AlphaStar for expert-level Starcraft (Vinyals et al. 2019)
 - Pipeline PSRO (McAleer and Lanier et al. 2020)
 - α -PSRO (Muller et al. 2020)
 - XDO (McAleer et al. 2021)
 - Joint-PSRO (Marris et al. 2021)
 - Anytime PSRO (McAleer et al. 2022)
 - Self-Play PSRO (McAleer et al. 2022)
- Neural Fictitious Self Play (Heinrich and Silver 2016)

- Counterfactual Regret Minimization (Zinkevich et al. 2007)
 - CFR: Zinkevich et al. 2007
 - MC-CFR: Lanctot et al. 2009
 - Deep CFR: Brown et al. 2019
 - DREAM: Steinberger et al. 2020
 - ESCHER: McAleer et al. 2022
- Policy Gradients
 - Regret Policy Gradient (Srinivasan et al. 2018)
 - OpenAl Five (OpenAl 2019)
 - Neural Replicator Dynamics (Hennes, Morrill, and Omidshafiei et al. 2020)
 - Actor Critic Hedge (Fu et al. 2022)
 - DeepNash for expert-level Stratego (Perolat, de Vylder, and Tuyls et al. 2022)
 - From Poincaré Recurrence to Convergence in Imperfect Information Games: Finding Equilibrium via Regularization (Perolat et al. 2021)

- Magnetic Mirror Descent (Sokota et al. 2022)
- PSRO (McMahan et. al. 2003, Lanctot et al. 2017)
 - AlphaStar for expert-level Starcraft (Vinyals et al. 2019)
 - Pipeline PSRO (McAleer and Lanier et al. 2020)
 - α-PSRO (Muller et al. 2020)
 - XDO (McAleer et al. 2021)
 - Joint-PSRO (Marris et al. 2021)
 - Anytime PSRO (McAleer et al. 2022)
 - Self-Play PSRO (McAleer et al. 2022)
- Neural Fictitious Self Play (Heinrich and Silver 2016)

Lecture 4 (This Lecture)

- Counterfactual Regret Minimization (Zinkevich et al. 2007)
 - CFR: Zinkevich et al. 2007
 - MC-CFR: Lanctot et al. 2009
 - Deep CFR: Brown et al. 2019
 - DREAM: Steinberger et al. 2020
 - ESCHER: McAleer et al. 2022
- Policy Gradients
 - Regret Policy Gradient (Srinivasan et al. 2018)
 - OpenAl Five (OpenAl 2019)
 - Neural Replicator Dynamics (Hennes, Morrill, and Omidshafiei et al. 2020)
 - Actor Critic Hedge (Fu et al. 2022)
 - DeepNash for expert-level Stratego (Perolat, de Vylder, and Tuyls et al. 2022)
 - Magnetic Mirror Descent (Sokota et al. 2022)
- PSRO (McMahan et. al. 2003, Lanctot et al. 2017)
 - AlphaStar for expert-level Starcraft (Vinyals et al. 2019)
 - Pipeline PSRO (McAleer and Lanier et al. 2020)
 - α-PSRO (Muller et al. 2020)
 - XDO (McAleer et al. 2021)
 - Joint-PSRO (Marris et al. 2021)
 - Anytime PSRO (McAleer et al. 2022)
 - Self-Play PSRO (McAleer et al. 2022)
- Neural Fictitious Self Play (Heinrich and Silver 2016)

- Counterfactual Regret Minimization (Zinkevich et al. 2007)
 - CFR: Zinkevich et al. 2007
 - MC-CFR: Lanctot et al. 2009
 - Deep CFR: Brown et al. 2019
 - DREAM: Steinberger et al. 2020
 - ESCHER: McAleer et al. 2022

Policy Gradients

- Regret Policy Gradient (Srinivasan et al. 2018)
- OpenAl Five (OpenAl 2019)
- Neural Replicator Dynamics (Hennes, Morrill, and Omidshafiei et al. 2020)
- Actor Critic Hedge (Fu et al. 2022)
- DeepNash for expert-level Stratego (Perolat, de Vylder, and Tuyls et al. 2022)
- Magnetic Mirror Descent (Sokota et al. 2022)

PSRO (McMahan et. al. 2003, Lanctot et al. 2017)

- AlphaStar for expert-level Starcraft (Vinyals et al. 2019)
- Pipeline PSRO (McAleer and Lanier et al. 2020)
- α-PSRO (Muller et al. 2020)
- XDO (McAleer et al. 2021)
- Joint-PSRO (Marris et al. 2021)
- Anytime PSRO (McAleer et al. 2022)
- Self-Play PSRO (McAleer et al. 2022)
- Neural Fictitious Self Play (Heinrich and Silver 2016)

Games in Al

Backgammon 1992

Chess 1997

Go 2016

Poker 2017/2019

Starcraft/Dota 2019

Stratego 2022

Diplomacy 2022

Self Play PPO

- Just have agents play each other in self play
- Also look at a version of fictitious play where they output the latest strategy
- For these simulated robotics environments, can get emergent behaviors
- https://openai.com/research/competitiv
 e-self-play

More Self Play PPO

- In hide and seek game, agents can discover complex strategies with self play
- Hiders learn how to push boxes to protect themselves
- Seekers then learn counter-strategy of pushing ramp to jump over wall

Self Play PPO Exploitability

- Since self-play doesn't find an approximate Nash equilibrium, it is exploitable
- Best responses don't even have to do anything sophisticated

Figure 1: Illustrative snapshots of a victim (in blue) against normal and adversarial opponents (in red). The victim wins if it crosses the finish line; otherwise, the opponent wins. Despite never standing up, the adversarial opponent wins 86% of episodes, far above the normal opponent's 47% win rate.

Dota 2

- Multiplayer Online Battle Arena (MOBA) game
- Features two teams, the Radiant and the Dire, each with five players.
- Objective: Destroy the opposing team's "Ancient" structure.
- Over 100 unique heroes to choose from, each with distinctive abilities.
- Robust competitive scene
 - Annual tournament has multi-million-dollar prize pools
- Around 500k 1M concurrent players

Dota 2

- Map consists of three lanes (Top, Middle, Bottom) and a jungle area
- Players select heroes during the drafting phase
- Earn gold and experience by killing enemy heroes, creeps, and buildings
- Use gold to buy items that enhance heroes' abilities
- Constant strategy and coordination required to seize objectives like Roshan, towers, and barracks
- Ultimate goal: Breach the enemy base and destroy the Ancient

Dota 2 Strategy

Bluffing and Deception:

- "Smokes of Deceit": Items that make the team invisible to wards, allowing for surprise attacks or ganks.
- Fake Backs: Pretending to retreat and then quickly re-engaging.
- Baiting: Luring enemies into unfavorable positions by making them think they have an advantage.

Mixed Strategy Play:

- Constantly adapting between aggressive (ganking, pushing) and passive (farming, defensive) strategies based on in-game situations.
- Changing lanes, rotating heroes to surprise the enemy.

Drafting Strategy:

Counter-picking enemy heroes or picking synergistic team combinations.

Resource Management:

- Balancing between farming, pushing, and fighting.
- Ensuring that key heroes get the necessary gold and experience.

• Map Control:

Securing objectives like Roshan, runes, and outposts.

Team Synergy:

- Coordinating team abilities for maximum impact during fights.
- Communication is vital for executing plans and adapting to changes.

OpenAl Dota Timeline

- 2017: OpenAl introduces initial Dota 2
 Al.
 - Demonstrates 1v1 gameplay against world's top players at The International.
- 2018: Evolution of Dota Al.
 - OpenAl Five competes in more complex 5v5 matches.
 - Exhibits cooperative strategies and dynamic reactions.
- April 2019: OpenAl Five Finals.
 - Competes with and defeats world champion team OG.
- June 2019: OpenAl Five released to the public.
 - Made available for players worldwide to challenge.
 - Found to be exploitable

Model Architecture

 (Nearly) Identical observations for each team member: 2-player game not team game

Figure 1: Simplified OpenAI Five Model Architecture: The complex multi-array observation space is processed into a single vector, which is then passed through a 4096-unit LSTM. The LSTM state is projected to obtain the policy outputs (actions and value function). Each of the five heroes on the team is controlled by a replica of this network with nearly identical inputs, each with its own hidden state. The networks take different actions due to a part of the observation processing's output indicating which of the five heroes is being controlled. The LSTM composes 84% of the model's total parameter count. See Figure 17 and Figure 18 in Appendix H for a detailed breakdown of our model architecture.

Sampling Strategy

- 80% against latest policy
- 20% against past policies
- When sampling past policies, policies are given values
- Sampled according to softmax of these values, values updated according to performance vs current policy

$$q_i \leftarrow q_i - \frac{\eta}{Np_i}$$

If another agent loses to us, we down-weight that agent

Performance Over Time

Starcraft II

- Real-time strategy game
- Three distinct races: Terran, Zerg, Protoss
- Objective: Gather resources, build army, conquer opponents
- Became standard for RTS competitions globally
- Popular in major tournaments like the World Championship Series (WCS)

Starcraft II Gameplay

Economy Management:

- a. Gather two main resources: Minerals & Vespene Gas
- Balance between resource gathering, army production, and tech upgrades

Scouting:

- a. Essential to anticipate opponent's moves
- Use early units or specialized scout units to gain intelligence

Army Composition & Micromanagement:

- a. Different units for different strategies
- b. Units have strengths and weaknesses against certain enemy types
- c. Micromanage units during battle for optimal performance

Positioning & Map Control:

- a. Strategic placement of buildings and units
- b. Secure key points on the map to control resources and movement pathways
- c. Prevent opponent's expansion while looking for opportunities to expand

• Tech Tree Progression:

- a. Upgrade paths unlock new abilities and units
- b. Determine the balance between investing in tech versus increasing army size

Adaptability:

- a. No single strategy ensures victory
- b. Counter opponent's tactics and stay unpredictable

DeepMind Starcraft Timeline

- 2016: Partnership between DeepMind and Blizzard announced
- 2017: Introduction of the StarCraft
 II Learning Environment (SC2LE)
- Early 2019: Introduction of "AlphaStar" Al reaching Grandmaster level
- Mid 2019: AlphaStar competes on public 1v1 European servers anonymously
- Late 2019: Research paper on AlphaStar's progression published in Nature

Network Input

Network Architecture

Method

- Similar to PSRO
- Prioritized Fictitious Self Play (PFSP): sample proportionate to how well opponents beat you
- Main agents
 - Trained against 35% SP, 50% PFSP, 15% exploiters
- League exploiters
 - Trained against PFSP
- Main exploiters
 - Play against main agents
- Output: meta-Nash equilibrium of the league

Method

- To compute meta-NE, have each agent play each other, compute the score
- Then, create a normal form game with the payoffs
- Finally, find a NE in this normal form game

Ablations

Performance

