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Self Play

Player 1 Best Responds to Player 2’s Last Policy
- Both players learn best

response to opponent’s latest I "
strategy
- Does not converge to a Nash
equilibrium even in small
games

Player 2 Best Responds to Player 1’s Last Policy




Fictitious Play

Player 1 Best Responds to Player 2’s Average Policy

- Both players learn best
response to opponent’s "
average strategy

- Average strategy converges to
a Nash equilibrium

Player 2 Best Responds to Player 1’s Average Policy

B |




Policy Space Response Oracles (PSRO)

Player 1 Best Responds to Player 2's Meta Nash
- Both players learn best

response to opponent’s

meta-Nash

- Meta-Nash converges to a
Nash equilibrium

e e

Player 2 Best Responds to Player 1's Meta Nash

T 1

Marc Lanctot, Vinicius Zambaldi, Audrunas Gruslys, Angeliki Lazaridou, Karl
Tuyls, Julien Pérolat, David Silver, Thore Graepel. NIPS 2017.

A Unified Game-Theoretic Approach to Multiagent Reinforcement Learning; ]J




PSRO

Repeatedly add best responses to the meta-Nash to the population
Meta-Nash is guaranteed to converge to Nash when enough strategies are
added

PSRO approximates best response through RL

new strategies 13, n23 added best responses do not improve resultg
Start n2l n22 / Expand Restricted Game 4-\ /Terminate ,O
nil [ 2 | -1 _
Restricted Game Compute Best Response

n2 | o | 3
\\> Solve Restricted Game /

NE = <(1/2,1/2); (2/3, 1/3)>



PSRO Pros and Cons

Pros
- Can converge faster than NFSP, Deep CFR in certain games
- Easy to use with any existing RL algorithm
- Can handle continuous actions in practice
- Has been used to achieve expert-level performance at Starcraft

Cons
- Sequential algorithm, requires training a new best response every iteration
- Convergence guarantees on normal form of the game, exponential in # of infostates
- Exploitability can increase from one iteration to the next
- Strategies added every iteration are not optimal



Parallel PSRO

DCH

Figure 2: Overview of DCH
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Need to know how many levels needed
beforehand
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Parallel PSRO

- DCH

Need to know how many levels needed
beforehand
Number of levels needed could be large

'
N players £ !

Figure 2: Overview of DCH



Parallel PSRO

DCH
- Need to know how many levels needed

beforehand

Number of levels needed could be large

Randomness in best response causes ripple

effect of instability N players

Figure 2: Overview of DCH



DCH
Rectified PSRO

Parallel PSRO

Algorithm 4 Response to rectified Nash (PSRO,n)

input: population 3,
fort=1;. T do
p: < Nash on Ay,
for agent v; with positive mass in p; do
Vipr oracle (ve, Y-, con Pefi] - [dw.(0)] )
end for
Piy1 < Pi U {vey1 : updated above }
end for
output: Pr




Parallel PSRO

Algorithm 4 Response to rectified Nash (PSRO,n)

input: population 3,
= D C H fort=1,..., T do

- Redctified PSRO P ¢- Nashoh Ag,

for agent v; with positive mass in p; do

- Not guaranteed to converge to Nash yet ¢ TR0 (Vi o e, Peli] - L9we(#)]1)

end for

Piy1 < Pi U {vey1 : updated above }
end for

output: Pr
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How to Parallelize PSRO?

- DCH ﬂ o |
- Rectified PSRO 0 D.e?pM-"?d |
_ AlphaStar o

Main agents, main exploiter agents,
league exploiter agents

W 2

-
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How to Parallelize PSRO?
- DCH . “;
- Rectified PSRO 0 D.e?pM-"?d |
- AlphaStar o g S

-

- Main agents, main exploiter agents,
league exploiter agents

- Not proven to converge to Nash

- Could be difficult to replicate

- Empirically (our implementation) can fail
on normal form games




Parallel

- DCH

- Rectified PSRO

- AlphaStar

- Naive Parallel PSRO

Have each additional worker play
against same meta-Nash distribution

Q
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=
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Fixed and active policies

Pipeline PSRO

Iteration

Policy Level
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Pipeline PSRO

Policy Level

Fixed and active policies

Each active policy plays 9 & 2 8 4 8 B 7 B

Legend
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Pipeline PSRO

Fixed and active policies
Each active policy plays
against meta-Nash of
policies below it

Once lowest active policy
plateaus, it becomes fixed
and a new policy is added

Iteration

Policy Level
0 1 2 3 4 5 6 74 8
0 2 Legend
n . n LS D Fixed Policy
Lowest Active
no T[l . 1'[3 "'[4 Policy
D Active Policy
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Pipeline PSRO

Policy Level

Fixed and active policies

Each active policy plays 9 & 2 8 4 8 B 7 B

. Legend
against meta-Nash of 1 | [n® . | [ o P
pO”CieS beIOW it 2 no nl . n3 FL)(::iv‘:!?ystN:tive

DAcﬁvePolicy

Once lowest active policy
plateaus, it becomes fixed
and a new policy is added
Inherits same convergence
guarantees as PSRO
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Pipeline PSRO: Results

Leduc Poker

3x10°
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&
6x10-1 | — P2SRO (Ours)
® ~—— Rectified PSRO
- Naive PSRO
4x1°-1 = DCH
o 1 2 3 4 5 6 1 8
Steps (Million)
(a) Leduc poker

Exploitability

Dimension: 60, Learning Rate: 0.1, Workers: 4

w—sDCH

Naive PSRO
P2SRO (Ours)
Rectified PSRO
Self Play
Sequential PSRO

st

10° 4

===l

1077 1

200 250 300 350 400

Iteration

0 5 100 150

(b) Random Symmetric Normal Form Games

Figure 2: Exploitability of Algorithms on Leduc poker and Random Symmetric Normal Form Games
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Exploitability

Pipeline PSRO: Results

Dimension: 30, Learning Rate: 0.1, Workers: 4 Dimension: 30, Learning Rate: 0.1, Workers: 8
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Exploitability

Pipeline PSRO: Results

Dimension: 45, Learning Rate: 0.1, Workers: 4 Dimension: 45, Learning Rate: 0.1, Workers: 8

- DCH
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Exploitability

Pipeline PSRO: Results

Dimension: 60, Learning Rate: 0.1, Workers: 4 Dimension: 60, Learning Rate: 0.1, Workers: 8
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Exploitability

Dimension: 120, Learning Rate: 0.1, Workers: 4

Pipeline PSRO: Results
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Pipeline PSRO Results: Barrage Stratego

F
9 2 10 Table 1: P2SRO Results vs. Existing Bots
B 3 Name P2SRO Win Rate vs. Bot
Asmodeus 81%
Celsius 70%
=l Vixen 69%
Celsiusl.1 65%
2 3 All Bots Average 71%
2 10
9
B F




PSRO Bad Case

Because PSRO is a normal form algorithm,
guarantees exist only in the number of normal
form strategies

But could need exponential number of normal
form strategies to support Nash

Can construct games where PSRO empirically
expands all normal-form pure strategies

H T
1 -1
A1

H T
1 -1
1




PSRO Bad Case

Because PSRO is a normal
form algorithm, guarantees
exist only in the number of
normal form strategies

Can construct games where
PSRO empirically expands all
normal-form pure strategies

(a)

Figure 5. (a) Player 1 first chooses which RPS game both players play. Both players know which RPS game they are playing. Then both

R1]P1 |s1 |R2 |P2 |52|

RR

0

-1

1

0

-1

1

EEEEIEIEIEIE]

e - -]

players simultaneously make their move. (b) The normal form game. Player 2 has 9 pure strategies.

Number of Unique Row Pure Strategies Expanded
125

Number of PSRO Trials

1
1
0
0
0
1
1
1

o ©0 ©O A A AR P

(b)
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Extensive-Form Double Oracle (XDO)

Instead of mixing over normal form strategies at
the root of the game, allow mixing at every
infostate

Now only need HHand TT

|dear

H 1 -1
T | -1 1
H T

H 1 -1




(N)XDO Algorithm

- Same as PSRO, but meta-Nash is
computed in extensive form of the
game

- Restricted game is created by
restricting the actions to be choosing a
best response from the population

- This restricted game is solved via
NFSP or CFR to get meta-Nash

- Linear convergence instead of
exponential

XDO: A Double Oracle Algorithm for Extensive-Form Games; Stephen
McAleer, John Lanier, Kevin Wang, Pierre Baldi, Roy Fox. NeurlPS 2021.

Algorithm 1 XDO
1: Input: initial population I1°
2: repeat
3 Define restricted game for IT* via equation (1)
4: Get ¢-NE policy 7"* of restricted game
5: Find BR; (7"*) for i € {1, 2}
6: if v; (BR; (7"%), 7"%) < v;(7"*) + € for both i then
g Terminate
8 It =TIt U BR;(n™*) fori e {1,2}

AT (s;) = {a € Ai(s;) : Im; € IT* s.t. mi(si,a) = 1} (1)

Algorithm 2 NXDO

1: Input: initial population IT°
2: repeat

3:

4.
3
6

Define restricted game for IT* via eq. (@)

Get ¢-NE policy 7"* of restricted game via NFSP
Find BR,(7n"™*) for i € {1,2} via DRL

It = ¢ U BR; (77*) for i € {1,2}
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Figure 1. Three iterations of XDO (left to right). In these extensive-form game diagrams, player 1 (P1) plays at the root, then P2 plays
without knowing P1’s action, and if both played Left P1 plays another action. Actions in the restricted game are solid, vs. dashed outside
the restricted game. Meta-NE actions are blue, vs. black not in the meta-NE. BR actions are thick, vs. thin for non-BR actions.
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PSRO Can Increase Exploitabilityioo

- PSRO is guaranteed to converge to a R P S
Nash if you run for enough iterations.

- But if you stop before convergence, R 0 -1 1
the exploitability can be arbitrarily 100% | p 1 0 2
high

- This is because NE of restricted S -1 2 0
game is not least-exploitable
distribution over population DO Bad Case with 10 Actions

— DO
150 RM-BR DO

Exploitability

50

lteration



Least-Exploitable Restricted Distribution

Instead of computing meta-NE on

restricted game, define new

restricted game where opponent is 50%
unrestricted

NE of this will be least-exploitable
distribution over population

Now, adding population members

can only decrease least-exploitable
distribution

50%

max min u; (7w, T—;).
mi;€ll; m—;

R P S
0 -1 1
1 0 -2
-1 2 0
50% 50%

R P S
0 -1 1

1 0 -2
-1 2 0




Anytime Double Oracle (ADQO)

Full Game Restricted Restricted Distribution 1 Exploitability
II, Game
0/ -110 0/-110
I I . .
DO 1 0 -2 = 1 0 -2 _— e(n') = 4
0 20 0 20
0|-110
HZ
i 1 0| -2
& 0'-10./ ol21o
: |
ADO 1|0|-2 — e(n)=4/3
0O /-110
o200 > |—
10| -2
0|20

Anytime PSRO for Two-Player Zero-Sum Games; Stephen McAleer, Kevin Wang, Marc
Lanctot, John Lanier, Pierre Baldi, Roy Fox. AAAI RLG Workshop 2022.



ADO Results

DO Bad Case with 10 Actions

Avoids DO counterexample and doesn’t increase 2™ : ;i'gémo
exploitability g100

On random normal form games we achieve g

significantly lower exploitability every iteration R TN

Iteration
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Regret-Minimizing against a BR Double Oracle (RM-BR DO)

- Regret minimization against a Algorithm 5: RM-BR DO
BR will also converge to a Nash Result: Approximate Nash Equilibrium
_ _ Input: initial population IT°
- Can incorporate into double while Not terminated do
. . Get meta-distribution 7" via RM-BR
oracle algorithm to build Find BR, (r" ) fori € {1,2}
. . t+1 _ 1yt Wiy :
foundation for next algorithm e T AR for € il 2)
- Will converge to e-Nash and not
increase exploitability
BR BR BR BR
0|-1|0 0|-1|0 0 -1 0 0 -1 0
RM-BR 1 — 1
1]0|-2 1]|0]-2 1|0 |-2 1]0|-2

Iteration 1 [teration 2 Iteration 3 Iteration 4



Anytime PSRO (APSRO)

! APSRO
2
r———— . Find Least-Exploitable Distributions and
Train Best Responses
- 0|-1]0 p
Iteration 1 1 ' ‘
0 2 0 0 -1]10
2 Update BRs via
I1 1 0 -2 Reinforcement
p AL N Learning
f

o|1]o0] e l=]0"
[teration 2 1—I|2< 1 0 -2 m Update Restricted Distributions via w

No-Regret Algorithm

Population
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Which Strategies Should We Add?

Best response to opponent restricted
distribution not necessarily optimal
Want to add strategy that minimizes
exploitability of next iteration distribution
Idea: include mixed strategies!

New strategy trained in self-play against
opponent best response

O (-1/0 0|01
1 0 -1. 0O 0 O
O 1 0 b-l‘O 0
O 0 1 O ‘-1§ 0
O 0 0 1 0 .-1
-110(0[0 (1O




0O -1 0 0 0 1
1 0O -110 0 0
0 1 0]-1]|]0 0
. 0 0 ;£ 0O -1, 0
0 0 0 1 0 | -1
1|10 0 0 I 0
Inner Iteration 1
Fixed
Strategies

0O(-1{0}J0 |01 O(-1/0}J0|0 |1
1/]0|-1J0]0 )0 1110|1000
0o(1/]0}]-1(0]|O0 0o/1/0}|-1/0]|0
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Figure 3: Normal-form games

Exploitability
© = = N
n o uvw o

o
S

AlphaStar Restricted Game

—— SP-PSRO (Ours)
—— APSRO
—— PSRO
00 25 50 75 100 125 15.0
lteration

(c) AlphaStar Restricted Game

Hex Board Size 3

2.0 m
215 ;
3_‘—:: —— SP-PSRO (Ours) |
8101 — APSRO
o
= — PSRO
3 0.5 \
0.0 L 2 . v '
0 5 10 15 20
Iteration

(f) Hex-3 Restricted Game



Leduc

2.0 —— SP-PSRO (ours)
— APSRO
215 —— PSRO
=
8
£ 10
Q
x
wo.5
0.0 ¥ T T T
0 10 20 30
Iteration
(a) Leduc Poker
4-Repeated RPS
41
23
= P-PS
S 2 APSRO
o PSRO
Q
>
w 1.
0~ . . :
0 10 20 30
lteration
(c) Repeated RPS

1.00

Exploitability
o o o
NN
w o w

=
o
S

Exploitability

o o © =
N (8] ~ o
w o w o

o
o
<)

Tiny Battleship

—— SP-PSRO (Ours)
= APSRO
— PSRO

s

0 20 40 60 80 100
Iteration
(b) Battleship
Goofspiel
—— SP-PSRO (Ours)
~—— APSRO

= PSRO

0 20 40 60 80 100

Iteration

(d) Goofspiel

Figure 4: Extensive-form games with tabular Q-learning best responses
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Figure 5: Extensive-form games with DDQN best responses



Diversity in PSRO

- Want to converge faster by adding “good” policies

- Good policies are ones that decrease exploitability

- One heuiristic for this is diversity

- Can take the distance between two policies to be the KL

+1

4P

= arg max u(ﬂ'i, O't_z) + A min diSt(ﬂ'z‘, 7125”)
i T EH(ILY)

Yao, Liu, Fu, Yang, McAleer, Fu, Yang. Policy Space Diversity for Non-Transitive Games.
NeurlPS 23



Results

Leduc Poker

Exploitability
o

50

75 100
Episodes (1e4)

—— PSRO
P-PSRO
—— PSRO-rN

~— PSD-PSRO (Ours)

- v -
125 150 175

PSRO PSRO,n P-PSRO PSD-PSRO(OURS)
PSRO - 0.613+0.019 | 0.469+0.034 0.422+0.025
PSRO, N 0.387+0.019 - 0.4124+0.030 0.358+0.019
P-PSRO 0.531£0.034 | 0.588+0.030 - 0.370£0.031
PSD-PSRO(OURS) | 0.578+0.025 | 0.642+0.019 | 0.630+0.031 -

Table 1: The win rate of the row agents against the column agents on Goofspiel.

Yao, Liu, Fu, Yang, McAleer, Fu, Yang. Policy Space Diversity for Non-Transitive Games.

NeurlPS 23




