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Sequential Decision

Most real-world games involve
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sequential decision making

Actions affect the future

Low-level control can become a

E.g. Robotics
Emergence of bluffing, deception

significant hurdle




Single-Agent Setting: Markov Decision
Process (MDP)

A Markov Decision Process is formally defined as a tuple (S, A, Psa,7, R)
where:

e S is a finite set of states.
e A is a finite set of actions.

P, (s") = P(S;,1 = §'|S; = s,A; = a) is the transition probability that
action a in state s at time t will lead to state s’ at time t + 1.

~ is the discount factor, 0 < vy < 1.

R is a reward function, which can be state-dependent R(s) or state-action
dependent R(s,a).




MDP Example

States

- Each cell

Action Space
- Up, down, left, right
Transition Probabilities

- Goin action direction with prob 1-¢
- Goinrandom direction with prob €

Discount Factor
- 0.99

Reward Function
- 0onnormalcells
- 1 on goalcell St;:'e

- -l1onredcells

[ =< -
»

=

®
®
fit

A ent|

vy Y

reward

9

Environment ]<7

action
A,



Goal of Reinforcement Learning

- A policy provides a mapping from states to actions

Could be distribution over actions

T: S — A

- The value function returns the expected value of a policy at a
particular state

VT(s) =E |3 7' R(s0) | 50 = 5,7
t=0



Goal of Reinforcement Learning

A policy provides a mapping from states to actions
Could be distribution over actions

T: S — A

The value function returns the expected value of a policy at a
particular state

VT(s) =E |3 7' R(s0) | 50 = 5,7
t=0

Objective is to find the optimal policy

" = arg max Esonp(so) [V (50)]



Bellman Equations

- Value function can be recursively defined

V™(s) = R(s) +7 Y Psa(s)V"(s")

s’eS



Bellman Equations

- Value function can be recursively defined

V7(s) =R(s)+v Y Pels)V

s’eS

- Qvalues return expected value for state and action

Q" (s,a) = Z’th Styay) | so = 8,00 = a,m
t=0



Bellman Equations

Value function can be recursively defined

V7(s) =R(s)+v Y Pels)V

s’eS

Q values return expected value for state and action

Q" (s,a) = Z’th Styay) | so = 8,00 = a,m
t=0

and also can be defined recursively

Q7(s,a) = R(s,a) +7 Y | Psals') Y w(a'|s")Q



Q-Learning

- Maintain a table of Q-values for each state-action pair

- lteratively update this table via bootstrapped target until
convergence

- Improvement comes from the max operator

Q(Sta At) — Q(St, At) + Of[Rt+1 + ’}’maﬂi‘aQ(StHa a) — Q(StaAt)]

New Former Learning Discounted Estimate Former
Q-value Q-value  Rate optimal Q-value Q-value
estimation estimation of next state estimation

TD Target



Markov Games

Like MDP, but multiple agents give actions

(Sa {A??}a {R’i}a P, ’Y)

When only one state, same as normal-form game
Essentially each timestep you play a normal-form game then
everyone transitions to the next state



Markov Games

Like MDP, but multiple agents give simultaneous actions

(S, {A’&}& {R’&}a P, ’Y)

When only one state, same as normal-form game

Essentially each timestep you play a normal-form game then
everyone transitions to the next state

Due to Markov assumption, doesn’t model many (most?) real-world
or game settings such as poker or Stratego

- Only hidden info is due to synchronous moves

We want to generally model imperfect information



Extensive-Form Games

History h is ground truth state of the
game

All cards for all players

Information set s is observation for one

player
Set of histories consistent with observation
The hand for one player



Extensive-Form Games

- History h is ground truth state of the
game

- All cards for all players

- Information set s is observation for one

player
- Set of histories consistent with observation
- The hand for one player

- Strategy (policy) r;(a|s) gives
distribution over actions at information
sets



Extensive-Form Games

History h is ground truth state of the
game

- All cards for all players
Information set s is observation for one
player

- Set of histories consistent with observation

- The hand for one player u(z,) u(z,) u(z,) u(z,)
Strategy (policy) 1r;(a|s) gives
distribution over actions at information

sets

Terminal history z is history at end of
game

Utility u(z) is utility for player i



Extensive-Form Games

- General way to model sequential games such as poker and Stratego
- Kind of like Partially-Observable Markov Games

- Tree form (no looping)
- Finite horizon

- Connection to reinforcement learning
- Strategy = policy
- Information set = set of all past observations
- Utility = reward



Connection to Normal Form

- Normal -> extensive form

- Player one acts first
- Player two’s information set includes all

possible P1 actions (“1.-1) (—4.0) (0.—4) (~3,-3)

Figure 5.11: The Prisoner’s Dilemma game in extensive form.



Connection to Normal Form

- Normal -> extensive form

- Player one acts first
- Player two’s information set includes all

possible P1 actions (“1.-1) (—4.0) (0.—4) (~3,-3)

Figure 5.11: The Prisoner’s Dilemma game in extensive form.

-  Extensive -> normal form
- NF pure strategy picks one action for B C D
: - 34 56 789 789
each information set SN SN JIN LT

- Combinatorial blow-up
1357, 1358, 1359, 1367, 1368, 1369,
1457, 1458, 1459, 1467, 1468, 1469,
2357, 2358, 2359, 2367, 2368, 2369,

\ . . 2457, 2458, 2459, 2467, 2468, 2469
Kuhn's Theorem [1953] shows that mixed strategies

and behavioral strategies are equivalent Pure NF strategies for player 1




Sequence Form

Sequence O: series of actions

taken by a player to reach a

history h

h may or may not be terminal
Doesn’t include opponent actions

Le¢

Lr

Figure 5.13: The sequence form of the
game from Figure 5.10.

?

(0,0) (2,4)
) A B
0,0 0,0 0,0
0,0 0,0 0,0
1,1 0,0 0,0
0,0 | 0,0 2,4
0,0 | 2.4 0,0

2

(2,4)

Le

Lr

ke

Rr

(0,0)
A B
0,0 | 2.4
2,4 | 0,0
1,1 1,1
1,1 1,1

Figure 5.14: The induced normal
form of the game from Figure 5.10.



Sequence Form

Sequence O: series of actions
taken by a player to reach a
history h

- h may or may not be terminal
- Doesn’t include opponent actions

Payoff of two sequences is u(z) if
the sequences lead to z,
otherwise O

Number of sequences linear in
game tree size

Le¢

Lr

Figure 5.13: The sequence form of the
game from Figure 5.10.
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(0,0)
A B
0,0 | 2.4
2,4 | 0,0
1,1 1,1
1,1 1,1

Figure 5.14: The induced normal
form of the game from Figure 5.10.



Sequence Form

Sequence O: series of actions
taken by a player to reach a
history h

- h may or may not be terminal
- Doesn’t include opponent actions

Payoff of two sequences is u(z) if
the sequences lead to z,
otherwise O

Number of sequences linear in
game tree size

What is a strategy (policy)?

Le¢

Lr

Figure 5.13: The sequence form of the
game from Figure 5.10.

(0,0) (2,4)
) A B
0,0 0,0 0,0
0,0 0,0 0,0
1,1 0,0 0,0
0,0 | 0,0 2,4
0,0 | 2.4 0,0

(2,4)

Le

Lr

ke

Rr

(0,0)
A B
0,0 | 2.4
2,4 | 0,0
1,1 1,1
1,1 1,1

Figure 5.14: The induced normal
form of the game from Figure 5.10.



From Behavior Strategy to Sequences

- Realization probability of a sequence O of player i under strategy T,

Product of action probabilities needed to play sequence for player i

milo] = H mi(a)

aco



From Behavior Policy to Sequences

- Realization probability of a sequence O of player i under strategy T

Product of action probabilities needed to play sequence for player i

milo| = H i (a)

- Realization plan provides probabilities for each sequence under

strategy 1T :L.(O_) — O_

y(o) = malo



Realization Plan Example

(L) = %2, m,(R) = 7,
() = V3, my(r) = %
X(L) = 72, x(R) = 7%,
X(LI) = %, x(Lr) = 73

(0,0) (2,4) (2,4) (0,0)

0 A B
A B

G| 0,0 0,0 0,0
Le | 0,0 2,4

L | 00 0,0 0,0
Lr | 2.4 0,0

R | 1.1 0,0 0,0
Re | 1,1 1,1

Le | 0,0 0,0 2,4
Rr | 1,1 1.1

Lr | 0,0 2.4 0,0

Figure 5.14: The induced normal

Figure 5.13: The sequence form of the form of the game from Figure 5.10.
game from Figure 5.10.



From Realization Plans to Policies

A realization plan x of a behavior strategy of player 1 fulfills

z(o) >0 for all o € 5,
x(()) =1,
Z x(osa) = x(os) for every information set s € S.

GEAE

Conversely, if a realization plan x fulfills these properties, it corresponds
to a behavior strategy. The strategy prob for action a is just x(ca)/x(0)



From Realization Plans to Policies

A realization plan x of a behavior strategy of player 1 fulfills

z(o) >0 for all o € 5,
x(()) =1,
Z x(osa) = x(os) for every information set s € S.

GEAE

Conversely, if a realization plan x fulfills these properties, it corresponds to a
behavior strategy. The strategy prob for action a is just x(oa)/x(0)

If x satisfies these constraints, it is in the sequence-form polytope X



Characterizing the Sequence-Form
Polytope

Can represent the previous constraints compactly

XZ{iB:FlLB:fl,CCEO}



Characterizing the Sequence-Form
Polytope

- Can represent the previous constraints compactly

X:{.’I}:Flwz‘fl,ﬂ?zO}

- In our example, 5 sequences (@, L, R, LI, Lr), so x is 5-dim vector

0 A B
[ | 0 00 0,0 0,0
Fl = _1 1 1 L 0,0 0,0 0,0
| o 1 1 1_ R 1,1 0,0 0,0
_1_ Lt | 0.0 0,0 2,4
fl - 0 Lr 0,0 2,4 0,0
0 Figure 5.13: The sequence form of the
L game from Figure 5.10.




Sequence-Form LP

- Goal is to solve this bilinear saddle point problem

maxminz ' Ay
xeX ye)y

where X and Y are the sequence-form polytopes of the players



Sequence-Form LP

- Goal is to solve this bilinear saddle point problem

maxminz ' Ay
xeX ye)y

where X and Y are the sequence-form polytopes of the players
- Let’s define the inner optimization objective

T
) =minx ' A
g(x) min Yy



Sequence-Form LP

- Goal is to solve this bilinear saddle point problem

maxminz ' Ay
xeX ye)y

where X and Y are the sequence-form polytopes of the players
- Let’s define the inner optimization objective
g(x) =minz' Ay

yey

So that

max minx ' Ay = max g(x)
reX yey TEX



Sequence-Form LP

Can rewrite g(x) as a linear program

g(x)

\

(min (A'z)'y

S.T. @ ng = fg

\ 2y > 0.



Sequence-Form LP
Can rewrite g(x) as a linear program
(min (A'z)'y

g(x) =1 st. Q) Fy= 7

\ @y > 0.
By LP duality, we can equivalently write
max f, v
gx) =19 st. ODFJv<ATx

(2) v free.



Sequence-Form LP

- Now we just plug this back into the original saddle-point problem

Just need to add sequence form constraint for x

- The solution to this LP is a Nash equilibrium strategy for player 1
Can similarly find NE for player 2

max f, v
st. A"z —-F,v>0

@ Fiz = f
3)x >0, v free.



