
Imperfect-Information 
Games 2

Stephen McAleer



Sequential Decision-Making

- Most real-world games involve 

sequential decision making

- Actions affect the future

- Low-level control can become a 

significant hurdle
- E.g. Robotics

- Emergence of bluffing, deception



Single-Agent Setting: Markov Decision 
Process (MDP)



MDP Example

- States
- Each cell

- Action Space 
- Up, down, left, right

- Transition Probabilities
- Go in action direction with prob 1-ε

- Go in random direction with prob ε

- Discount Factor
- 0.99

- Reward Function
- 0 on normal cells

- 1 on goal cell

- -1 on red cells



Goal of Reinforcement Learning

- A policy provides a mapping from states to actions
- Could be distribution over actions

- The value function returns the expected value of a policy at a 

particular state



Goal of Reinforcement Learning

- A policy provides a mapping from states to actions
- Could be distribution over actions

- The value function returns the expected value of a policy at a 

particular state

- Objective is to find the optimal policy



Bellman Equations

- Value function can be recursively defined



Bellman Equations

- Value function can be recursively defined

- Q values return expected value for state and action



Bellman Equations

- Value function can be recursively defined

- Q values return expected value for state and action

- and also can be defined recursively



Q-Learning

- Maintain a table of Q-values for each state-action pair

- Iteratively update this table via bootstrapped target until 

convergence

- Improvement comes from the max operator



Markov Games

- Like MDP, but multiple agents give actions

- When only one state, same as normal-form game

- Essentially each timestep you play a normal-form game then 

everyone transitions to the next state 



Markov Games

- Like MDP, but multiple agents give simultaneous actions

- When only one state, same as normal-form game

- Essentially each timestep you play a normal-form game then 

everyone transitions to the next state

- Due to Markov assumption, doesn’t model many (most?) real-world 

or game settings such as poker or Stratego
- Only hidden info is due to synchronous moves

- We want to generally model imperfect information



Extensive-Form Games
- History h is ground truth state of the 

game
- All cards for all players

- Information set s is observation for one 

player
- Set of histories consistent with observation

- The hand for one player

a1 a2

s1
h1 h2

h0



Extensive-Form Games
- History h is ground truth state of the 

game
- All cards for all players

- Information set s is observation for one 

player
- Set of histories consistent with observation

- The hand for one player

- Strategy (policy) πi(a|s) gives 

distribution over actions at information 

set s

a1 a2

s1
h1 h2

h0



Extensive-Form Games
- History h is ground truth state of the 

game
- All cards for all players

- Information set s is observation for one 

player
- Set of histories consistent with observation

- The hand for one player

- Strategy (policy) πi(a|s) gives 

distribution over actions at information 

set s

- Terminal history z is history at end of 

game

- Utility ui(z) is utility for player i

a1 a2

s1
h1 h2

h0

a3 a4 a3

u(z1) u(z2) u(z3) u(z4)

a4



Extensive-Form Games

- General way to model sequential games such as poker and Stratego

- Kind of like Partially-Observable Markov Games
- Tree form (no looping)

- Finite horizon

- Connection to reinforcement learning
- Strategy = policy

- Information set = set of all past observations

- Utility = reward



Connection to Normal Form

- Normal -> extensive form
- Player one acts first

- Player two’s information set includes all 

possible P1 actions



Connection to Normal Form

- Normal -> extensive form
- Player one acts first

- Player two’s information set includes all 

possible P1 actions

- Extensive -> normal form
- NF pure strategy picks one action for 

each information set

- Combinatorial blow-up 

1357, 1358, 1359, 1367, 1368, 1369,
1457, 1458, 1459, 1467, 1468, 1469,
2357, 2358, 2359, 2367, 2368, 2369,
2457, 2458, 2459, 2467, 2468, 2469

Pure NF strategies for player 1

Kuhn's Theorem [1953] shows that mixed strategies 
and behavioral strategies are equivalent



Sequence Form

- Sequence σ: series of actions 

taken by a player to reach a 

history h
- h may or may not be terminal

- Doesn’t include opponent actions



Sequence Form

- Sequence σ: series of actions 

taken by a player to reach a 

history h
- h may or may not be terminal

- Doesn’t include opponent actions

- Payoff of two sequences is u(z) if 

the sequences lead to z, 

otherwise 0

- Number of sequences linear in 

game tree size



Sequence Form

- Sequence σ: series of actions 

taken by a player to reach a 

history h
- h may or may not be terminal

- Doesn’t include opponent actions

- Payoff of two sequences is u(z) if 

the sequences lead to z, 

otherwise 0

- Number of sequences linear in 

game tree size

- What is a strategy (policy)?



From Behavior Strategy to Sequences

- Realization probability of a sequence σ of player i under strategy πi

- Product of action probabilities needed to play sequence for player i



From Behavior Policy to Sequences 

- Realization probability of a sequence σ of player i under strategy πi

- Product of action probabilities needed to play sequence for player i

- Realization plan provides probabilities for each sequence under 

strategy π



Realization Plan Example

- π1(L) = ½, π1(R) = ½, 

π1(l) = ⅓, π1(r) = ⅔

- x(L) = ½, x(R) = ½, 

x(Ll) = ⅙, x(Lr) = ⅓



From Realization Plans to Policies 

A realization plan x of a behavior strategy of player 1 fulfills

Conversely, if a realization plan x fulfills these properties, it corresponds 

to a behavior strategy. The strategy prob for action a is just x(σa)/x(σ)



From Realization Plans to Policies 
A realization plan x of a behavior strategy of player 1 fulfills

Conversely, if a realization plan x fulfills these properties, it corresponds to a 

behavior strategy. The strategy prob for action a is just x(σa)/x(σ)

If x satisfies these constraints, it is in the sequence-form polytope X



Characterizing the Sequence-Form 
Polytope

- Can represent the previous constraints compactly



Characterizing the Sequence-Form 
Polytope

- Can represent the previous constraints compactly

- In our example, 5 sequences (Ø, L, R, Ll, Lr), so x is 5-dim vector

F1 = 

f1 = 



Sequence-Form LP

- Goal is to solve this bilinear saddle point problem

where X and Y are the sequence-form polytopes of the players



Sequence-Form LP

- Goal is to solve this bilinear saddle point problem

where X and Y are the sequence-form polytopes of the players

- Let’s define the inner optimization objective



Sequence-Form LP

- Goal is to solve this bilinear saddle point problem

where X and Y are the sequence-form polytopes of the players

- Let’s define the inner optimization objective

So that 



Sequence-Form LP

- Can rewrite g(x) as a linear program



Sequence-Form LP

- Can rewrite g(x) as a linear program

- By LP duality, we can equivalently write



Sequence-Form LP

- Now we just plug this back into the original saddle-point problem
- Just need to add sequence form constraint for x 

- The solution to this LP is a Nash equilibrium strategy for player 1
- Can similarly find NE for player 2


