Imperfect-Information Games 2

Stephen McAleer

Sequential Decision-Making

- Most real-world games involve sequential decision making
- Actions affect the future
- Low-level control can become a significant hurdle
- E.g. Robotics
- Emergence of bluffing, deception

Single-Agent Setting: Markov Decision Process (MDP)

A Markov Decision Process is formally defined as a tuple $\left(S, A, P_{s a}, \gamma, R\right)$ where:

- S is a finite set of states.
- A is a finite set of actions.
- $P_{s a}\left(s^{\prime}\right)=\mathbb{P}\left(S_{t+1}=s^{\prime} \mid S_{t}=s, A_{t}=a\right)$ is the transition probability that action a in state s at time t will lead to state s^{\prime} at time $t+1$.
- γ is the discount factor, $0 \leq \gamma \leq 1$.
- R is a reward function, which can be state-dependent $R(s)$ or state-action dependent $R(s, a)$.

MDP Example

- States
- Each cell
- Action Space
- Up, down, left, right
- Transition Probabilities
- Go in action direction with prob 1- ε
- Go in random direction with prob ε
- Discount Factor
- 0.99
- Reward Function
- 0 on normal cells
- 1 on goal cell
- -1 on red cells

Goal of Reinforcement Learning

- A policy provides a mapping from states to actions
- Could be distribution over actions

$$
\pi: S \rightarrow A
$$

- The value function returns the expected value of a policy at a particular state

$$
V^{\pi}(s)=\mathbb{E}\left[\sum_{t=0}^{\infty} \gamma^{t} R\left(s_{t}\right) \mid s_{0}=s, \pi\right]
$$

Goal of Reinforcement Learning

- A policy provides a mapping from states to actions
- Could be distribution over actions

$$
\pi: S \rightarrow A
$$

- The value function returns the expected value of a policy at a particular state

$$
V^{\pi}(s)=\mathbb{E}\left[\sum_{t=0}^{\infty} \gamma^{t} R\left(s_{t}\right) \mid s_{0}=s, \pi\right]
$$

- Objective is to find the optimal policy

$$
\pi^{*}=\arg \max _{\pi} \mathbb{E}_{s_{0} \sim p\left(s_{0}\right)}\left[V^{\pi}\left(s_{0}\right)\right]
$$

Bellman Equations

- Value function can be recursively defined

$$
V^{\pi}(s)=R(s)+\gamma \sum_{s^{\prime} \in S} P_{s a}\left(s^{\prime}\right) V^{\pi}\left(s^{\prime}\right)
$$

Bellman Equations

- Value function can be recursively defined

$$
V^{\pi}(s)=R(s)+\gamma \sum_{s^{\prime} \in S} P_{s a}\left(s^{\prime}\right) V^{\pi}\left(s^{\prime}\right)
$$

- Q values return expected value for state and action

$$
Q^{\pi}(s, a)=\mathbb{E}\left[\sum_{t=0}^{\infty} \gamma^{t} R\left(s_{t}, a_{t}\right) \mid s_{0}=s, a_{0}=a, \pi\right]
$$

Bellman Equations

- Value function can be recursively defined

$$
V^{\pi}(s)=R(s)+\gamma \sum_{s^{\prime} \in S} P_{s a}\left(s^{\prime}\right) V^{\pi}\left(s^{\prime}\right)
$$

- Q values return expected value for state and action

$$
Q^{\pi}(s, a)=\mathbb{E}\left[\sum_{t=0}^{\infty} \gamma^{t} R\left(s_{t}, a_{t}\right) \mid s_{0}=s, a_{0}=a, \pi\right]
$$

- and also can be defined recursively

$$
Q^{\pi}(s, a)=R(s, a)+\gamma \sum_{s^{\prime} \in S} P_{s a}\left(s^{\prime}\right) \sum_{a^{\prime} \in A} \pi\left(a^{\prime} \mid s^{\prime}\right) Q^{\pi}\left(s^{\prime}, a^{\prime}\right)
$$

Q-Learning

- Maintain a table of Q-values for each state-action pair
- Iteratively update this table via bootstrapped target until convergence
- Improvement comes from the max operator

TD Target

Markov Games

- Like MDP, but multiple agents give actions

$$
\left(S,\left\{A_{i}\right\},\left\{R_{i}\right\}, P, \gamma\right)
$$

- When only one state, same as normal-form game
- Essentially each timestep you play a normal-form game then everyone transitions to the next state

Markov Games

- Like MDP, but multiple agents give simultaneous actions

$$
\left(S,\left\{A_{i}\right\},\left\{R_{i}\right\}, P, \gamma\right)
$$

- When only one state, same as normal-form game
- Essentially each timestep you play a normal-form game then everyone transitions to the next state
- Due to Markov assumption, doesn't model many (most?) real-world or game settings such as poker or Stratego
- Only hidden info is due to synchronous moves
- We want to generally model imperfect information

Extensive-Form Games

- History h is ground truth state of the game
- All cards for all players
- Information set s is observation for one player

- Set of histories consistent with observation
- The hand for one player

Extensive-Form Games

- History h is ground truth state of the game
- All cards for all players
- Information set s is observation for one player

- Set of histories consistent with observation
- The hand for one player
- Strategy (policy) $\pi_{i}(a \mid s)$ gives distribution over actions at information set s

Extensive_Forn Gannes

- History h is ground truth state of the game
- All cards for all players
- Information set \boldsymbol{s} is observation for one player
- Set of histories consistent with observation
- The hand for one player
- Strategy (policy) $\boldsymbol{\pi}_{\boldsymbol{i}}(a \mid s)$ gives distribution over actions at information set s
- Terminal history z is history at end of game
- Utility $u_{i}(z)$ is utility for player i

Extensive-Form Games

- General way to model sequential games such as poker and Stratego
- Kind of like Partially-Observable Markov Games
- Tree form (no looping)
- Finite horizon
- Connection to reinforcement learning
- Strategy = policy
- Information set = set of all past observations
- Utility = reward

Connection to Normal Form

- Normal -> extensive form
- Player one acts first
- Player two's information set includes all possible P1 actions

Figure 5.11: The Prisoner's Dilemma game in extensive form.

Connection to Normal Form

- Normal -> extensive form
- Player one acts first
- Player two's information set includes all possible P1 actions

Figure 5.11: The Prisoner's Dilemma game in extensive form.

- Extensive -> normal form
- NF pure strategy picks one action for each information set
- Combinatorial blow-up

1357, 1358, 1359, 1367, 1368, 1369, 1457, 1458, 1459, 1467, 1468, 1469, 2357, 2358, 2359, 2367, 2368, 2369, 2457, 2458, 2459, 2467, 2468, 2469

Sequence Form

- Sequence σ : series of actions taken by a player to reach a history h
- \quad h may or may not be terminal
- Doesn't include opponent actions

Figure 5.13: The sequence form of the game from Figure 5.10.

Figure 5.14: The induced normal form of the game from Figure 5.10.

Sequence Form

- Sequence σ : series of actions taken by a player to reach a history h
- h may or may not be terminal
- Doesn't include opponent actions
- Payoff of two sequences is $u(z)$ if the sequences lead to z , otherwise 0
- Number of sequences linear in game tree size

Figure 5.13: The sequence form of the game from Figure 5.10.

Sequence Form

- Sequence σ : series of actions taken by a player to reach a history h
- h may or may not be terminal
- Doesn't include opponent actions
- Payoff of two sequences is $u(z)$ if the sequences lead to z , otherwise 0
- Number of sequences linear in game tree size
- What is a strategy (policy)?

Figure 5.13: The sequence form of the game from Figure 5.10.

From Behavior Strategy to Sequences

- Realization probability of a sequence σ of player i under strategy π_{i}
- Product of action probabilities needed to play sequence for player i

$$
\pi_{i}[\sigma]=\prod_{a \in \sigma} \pi_{i}(a)
$$

From Behavior Policy to Sequences

- Realization probability of a sequence σ of player i under strategy π_{i}
- Product of action probabilities needed to play sequence for player i

$$
\pi_{i}[\sigma]=\prod_{a \in \sigma} \pi_{i}(a)
$$

- Realization plan provides probabilities for each sequence under strategy T

$$
\begin{aligned}
& x(\sigma)=\pi_{1}[\sigma] \\
& y(\sigma)=\pi_{2}[\sigma]
\end{aligned}
$$

Realization Plan Example

$$
\begin{aligned}
- & \pi_{1}(\mathrm{~L})=1 / 2, \pi_{1}(\mathrm{R})=1 / 2, \\
& \Pi_{1}(\mathrm{l})=1 / 3, \Pi_{1}(\mathrm{r})=2 / 3 \\
-\quad & x(\mathrm{~L})=1 / 2, x(\mathrm{R})=1 / 2, \\
& x(\mathrm{LI})=1 / 6, x(\mathrm{Lr})=1 / 3
\end{aligned}
$$

	\emptyset	A	B
\emptyset	0,0	0,0	0,0
	0,0	0,0	0,0
	1,1	0,0	0,0
	1,	0,0	0,0
	2,4		
	0,0	2,4	0,0

Figure 5.13: The sequence form of the game from Figure 5.10.

Figure 5.14: The induced normal form of the game from Figure 5.10.

From Realization Plans to Policies

A realization plan x of a behavior strategy of player 1 fulfills

$$
\begin{aligned}
& x(\sigma) \geq 0 \\
& x(\emptyset)=1, \\
& \sum_{a \in A_{s}} x\left(\sigma_{s} a\right)=x\left(\sigma_{s}\right) \quad \text { for all } \sigma \in S_{1}, \\
& \text { for every information set } s \in S .
\end{aligned}
$$

Conversely, if a realization plan x fulfills these properties, it corresponds to a behavior strategy. The strategy prob for action a is just $x(\sigma a) / x(\sigma)$

From Realization Plans to Policies

A realization plan x of a behavior strategy of player 1 fulfills

$$
\begin{aligned}
& x(\sigma) \geq 0 \\
& x(\emptyset)=1, \\
& \sum_{a \in A_{s}} x\left(\sigma_{s} a\right)=x\left(\sigma_{s}\right) \quad \text { for all } \sigma \in S_{1}, \\
& \text { for every information set } s \in S .
\end{aligned}
$$

Conversely, if a realization plan x fulfills these properties, it corresponds to a behavior strategy. The strategy prob for action a is just $x(\sigma a) / x(\sigma)$

If x satisfies these constraints, it is in the sequence-form polytope X

Characterizing the Sequence-Form Polytope

- Can represent the previous constraints compactly

$$
\mathcal{X}=\left\{\boldsymbol{x}: \mathbf{F}_{1} \boldsymbol{x}=\boldsymbol{f}_{1}, \boldsymbol{x} \geq \mathbf{0}\right\}
$$

Characterizing the Sequence-Form Polytope

- Can represent the previous constraints compactly

$$
\mathcal{X}=\left\{\boldsymbol{x}: \mathbf{F}_{1} \boldsymbol{x}=\boldsymbol{f}_{1}, \boldsymbol{x} \geq \mathbf{0}\right\}
$$

- In our example, 5 sequences ($\varnothing, L, R, L I, L r)$, so x is 5 -dim vector

$$
\begin{aligned}
& F_{1}=\left[\begin{array}{rrrrr}
1 & & & & \\
-1 & 1 & 1 & & \\
& -1 & & 1 & 1
\end{array}\right] \\
& f_{1}=\left[\begin{array}{l}
1 \\
0 \\
0
\end{array}\right]
\end{aligned}
$$

Figure 5.13: The sequence form of the game from Figure 5.10.

Sequence-Form LP

- Goal is to solve this bilinear saddle point problem

$$
\max _{\boldsymbol{x} \in \mathcal{X}} \min _{\boldsymbol{y} \in \mathcal{Y}} \boldsymbol{x}^{\top} \mathbf{A} \boldsymbol{y}
$$

where X and Y are the sequence-form polytopes of the players

Sequence-Form LP

- Goal is to solve this bilinear saddle point problem

$$
\max _{\boldsymbol{x} \in \mathcal{X}} \min _{\boldsymbol{\in} \mathcal{Y}} \boldsymbol{x}^{\top} \mathbf{A} \boldsymbol{y}
$$

where X and Y are the sequence-form polytopes of the players

- Let's define the inner optimization objective

$$
g(\boldsymbol{x}):=\min _{\boldsymbol{y} \in \mathcal{Y}} \boldsymbol{x}^{\top} \mathbf{A} \boldsymbol{y}
$$

Sequence-Form LP

- Goal is to solve this bilinear saddle point problem

$$
\max _{\boldsymbol{x} \in \mathcal{X}} \min _{\boldsymbol{\in} \mathcal{Y}} \boldsymbol{x}^{\top} \mathbf{A} \boldsymbol{y}
$$

where X and Y are the sequence-form polytopes of the players

- Let's define the inner optimization objective

$$
g(\boldsymbol{x}):=\min _{\boldsymbol{y} \in \mathcal{Y}} \boldsymbol{x}^{\top} \mathbf{A} \boldsymbol{y}
$$

So that

$$
\max _{\boldsymbol{x} \in \mathcal{X}} \min _{\boldsymbol{y} \in \mathcal{Y}} \boldsymbol{x}^{\top} \mathbf{A} \boldsymbol{y}=\max _{\boldsymbol{x} \in \mathcal{X}} g(\boldsymbol{x})
$$

Sequence-Form LP

- Can rewrite $g(x)$ as a linear program

$$
g(\boldsymbol{x})= \begin{cases}\min & \left(\mathbf{A}^{\top} \boldsymbol{x}\right)^{\top} \boldsymbol{y} \\ \text { s.t. } & (1) \mathbf{F}_{2} \boldsymbol{y}=\boldsymbol{f}_{2} \\ & \text { (2) } \boldsymbol{y} \geq \mathbf{0}\end{cases}
$$

Sequence-Form LP

- Can rewrite $g(x)$ as a linear program

$$
g(\boldsymbol{x})= \begin{cases}\min & \left(\mathbf{A}^{\top} \boldsymbol{x}\right)^{\top} \boldsymbol{y} \\ \text { s.t. } & \text { (1) } \mathbf{F}_{2} \boldsymbol{y}=\boldsymbol{f}_{2} \\ & \text { (2) } \boldsymbol{y} \geq \mathbf{0} .\end{cases}
$$

- By LP duality, we can equivalently write

$$
g(\boldsymbol{x})= \begin{cases}\max & \boldsymbol{f}_{2}^{\top} \boldsymbol{v} \\ \text { s.t. } & \text { (1) } \mathbf{F}_{2}^{\top} \boldsymbol{v} \leq \mathbf{A}^{\top} \boldsymbol{x} \\ & \text { (2) } \boldsymbol{v} \text { free. }\end{cases}
$$

Sequence-Form LP

- Now we just plug this back into the original saddle-point problem
- Just need to add sequence form constraint for x
- The solution to this LP is a Nash equilibrium strategy for player 1
- Can similarly find NE for player 2

$$
\max \boldsymbol{f}_{2}^{\top} \boldsymbol{v}
$$

$$
\begin{aligned}
& \text { s.t. (1) } \mathbf{A}^{\top} \boldsymbol{x}-\mathbf{F}_{2}^{\top} \boldsymbol{v} \geq \mathbf{0} \\
& \text { (2) } \mathbf{F}_{1} \boldsymbol{x}=\boldsymbol{f}_{1} \\
& \text { (3) } \boldsymbol{x} \geq \mathbf{0}, \boldsymbol{v} \text { free. }
\end{aligned}
$$

