
Counterfactual Regret 
Minimization



Extensive-Form Games Recap
- History h is ground truth state of the game

- All cards for all players

- Information set s is observation for one 

player
- Set of histories consistent with observation

- The hand for one player

- Strategy (policy) πi(a|s) gives distribution 

over actions at information set s

- Terminal history z is history at end of game

- Utility ui(z) is utility for player i
- Reach probability ηπ(h) is joint probability of 

reaching history h under π
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Sequence Form Recap

● Store probabilities for 

sequence of actions

● Set of strategies is convex

● Expected utility of game is 

bilinear



Sequence Form Recap

A realization plan x of player 1 fulfills

If x satisfies these constraints, it is in the sequence-form polytope X

Goal is to solve this bilinear saddle point problem, where X and Y

are the sequence-form polytopes



Sequence-Form Strategies

🌟 Consequence: a lot of results carry over 

from normal form games when using 

sequence-form strategies!

✔ Nash equilibrium is a bilinear saddle point problem

min
𝑥∈𝑋

max
𝑦∈𝑌

𝑥⊤𝐴𝑦

✔ As long as we can construct regret minimizers for the sets of

sequence-form strategies, we can use them to converge to

Nash equilibrium in self play

where 

𝑥⊤𝐴𝑦 =෍

𝑧∈𝑍

𝑢1 𝑧 𝑝𝑐ℎ𝑎𝑛𝑐𝑒 𝑧 𝑥 𝜎1 𝑧 𝑦 𝜎2 𝑧



Recall: Regret Minimization on Δ𝑛

for 𝑡 = 1, … , 𝑇:

• Agent chooses an action distribution 𝑥𝑡

• Environment chooses a utility vector 𝑢𝑡 ∈ 0, 1 𝑛

• Agent observes 𝑢𝑡 and gets utility 𝑢𝑡 , 𝑥𝑡

Agent goal: Minimize regret. 

“How well do we do against best, fixed strategy in hindsight?”

𝑅𝑇 ≔ max
ෝ𝒙∈𝑋

෍

𝑡=1

𝑇

〈𝑢𝑡, ො𝑥〉 −෍

𝑡=1

𝑇

〈𝑢𝑡, 𝑥𝑡〉

Utility that was actually accumulatedMaximum utility that was
achievable by the best fixed
action in hindsight



Regret Minimization on Δ𝑛

Sequence-Form Decision Problems
for 𝑡 = 1, … , 𝑇:

• Agent chooses a sequence-form strategy 𝑥𝑡

• Environment chooses a utility vector 𝑢𝑡 ∈ 0, 1 𝑛

• Agent observes 𝑢𝑡 and gets utility 𝑢𝑡 , 𝑥𝑡

Agent goal: Minimize regret. 

“How well do we do against best, fixed strategy in hindsight?”

𝑅𝑇 ≔ max
ෝ𝒙∈𝑋

෍

𝑡=1

𝑇

〈𝑢𝑡, ො𝑥〉 −෍

𝑡=1

𝑇

〈𝑢𝑡, 𝑥𝑡〉

Utility that was actually accumulatedMaximum utility that was
achievable by the best fixed
action in hindsight

If we can do regret minimization for sequence-form strategy spaces, 

then we can solve zero-sum extensive-form games!



Regret Circuits

• Player 1 chooses A or 

B to decide which 

normal-form game to 

play

• Then the players play 

the normal-form 

game
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Regret Circuits

• No-regret approach:

– Each iteration choose a 

behavior strategy

– Opponent also chooses 

behavior strategy

– Want average regret to 

go to zero
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Regret Circuits

• Let's decompose 
this game into the 
two subgames

• Opponent chooses 
strategy for each 
subgame

– a or b / c or d

• We choose strategy 
for each subgame

– C or D / E or F
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Regret Circuits

• We know how to solve 

this

• Just use a no-regret 

algorithm!

– Let's use RM

• Denote regret in each 

subgame
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Regret Circuits

• Now let's add back 

root decision node

• Same setting: both 

players choose 

behavior strategy 

every timestep

• We know how to 

update s1 and s2

– How to update s0?
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Regret Circuits

• Main idea: we pass 

values of subgames 

back up as if they 

were utilities

• Then run no-regret 

on this new problem

A B

h0

s0



Regret Circuits

• Can bound total regret by regret 

accumulated in subgames plus root regret

• Intuition: we pay for learning top-level 

decision plus subgame decision

• Still get same order regret



Counterfactual Regret Minimization 

(CFR)

• Can extend this approach for arbitrary 

treeplexes

• Simply run RM on each individual 

information set

• Use "counterfactual values"



Counterfactual Regret Minimization 

(CFR)

• Back to our example

• π1(C | s1) = 1

• π2(a | h1) = 1
a
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Regret circuit notation



Counterfactual Regret Minimization 

(CFR)

• Run Regret Matching at every decision point

• Feed counterfactual values to regret 

minimizer



Another CFR Example on Kuhn 

Poker
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⚠️ Information sets for red player (Player 2) are not shown

https://emojipedia.org/warning/


Two Representations

Tree-Form (Sequential) Decision Problem

aka. sequence-form decision problem

aka. treeplex

(for P1)

Represents the game from viewpoint of one player

This is the representation in regret minimization

Game tree

Each node belongs to a specific 

player or chance
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Step 1: Compute and output the sequence-form 
strategy 𝑥𝑡

Counterfactual Regret Minimization

Suppose the orange local strategies were output at time 
𝑡 by the regret minimizers at each decision point.
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Counterfactual Regret Minimization
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Remember: in regret minimization we make no 
assumption as to how the environment picked the 
utility vector. So, the green utilities may not actually 
be “real” payoffs in the game, which are

𝑢𝑡 𝑠 = ෍
𝑧∈𝑍:

𝜎1 𝑧 =𝑠

𝑢 𝑧 pchance(𝑧) 𝑦
𝑡 𝜎2 𝑧

(Not too important; this is just the vector such that 
𝑢𝑡, 𝑥𝑡 matches the expected value calculation 

from a few slides ago)
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Suppose the orange local strategies were output at time 
𝑡 by the regret minimizers at each decision point.

Now we observe some utility vector 𝑢𝑡



Counterfactual Regret Minimization

Suppose the orange local strategies were output at time 
𝑡 by the regret minimizers at each decision point.

Now we observe some utility vector 𝑢𝑡

Step 2: Compute counterfactual utilities

At observation points and leaves:
counterfactual utility =

sum of counterfactual utilities of children +
utility value given at that observation point

At decision points:
counterfactual utility =

expected counterfactual utility of children 
under local strategy at that decision point
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Counterfactual Regret Minimization

Suppose the orange local strategies were output at time 
𝑡 by the regret minimizers at each decision point.

Now we observe some utility vector 𝑢𝑡

Step 2: Compute counterfactual utilities

At observation points and leaves:
counterfactual utility =

sum of counterfactual utilities of children +
utility value given at that observation point

At decision points:
counterfactual utility =

expected counterfactual utility of children 
under local strategy at that decision point
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Counterfactual Regret Minimization

Suppose the orange local strategies were output at time 
𝑡 by the regret minimizers at each decision point.

Now we observe some utility vector 𝑢𝑡
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Step 2: Feed the counterfactual utilities 
to the regret minimizers at each 
decision point

Note: Steps 1 & 2 can be done in a 
single bottom-up pass

Remember: this will work no matter the 
choice of regret minimizers (MWU, RM, 
RM+, Discounted RM, Optimistic RM+, 
etc). We can also use different regret 
minimizers at different nodes, unlike 
the original CFR paper, which used RM



Counterfactual Regret Minimization

Suppose the orange local strategies were output at time 
𝑡 by the regret minimizers at each decision point.

Now we observe some utility vector 𝑢𝑡
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Step 2: Feed the counterfactual utilities 
to the regret minimizers at each 
decision point

Example:

Feed utilities (2.19, 0) to the regret 
minimizer for this decision point



CFR Guarantees

• Theorem: the regret cumulated by CFR can be bounded as

• Therefore:  if the local regret minimizers all have regret 𝑂 𝑇 , 
then CFR has regret 𝑂 𝑇 (where the 𝑂 hides game-
dependent constants)

𝑅𝐶𝐹𝑅 ≤෍

𝑗∈𝐽

max{0, 𝑅𝑗}

Decision points

Regret of local regret
minimizer for decision point 𝑗

[Farina, Kroer & Sandholm, Regret Circuits: Composability of Regret Minimizers, ICML 2019]

Therefore: if both players in a zero-sum extensive-form 
game play according to CFR, the average strategy 

converges to Nash equilibrium at rate 𝑂( Τ1 𝑇)



Why is CFR Superior in Practice?

🌟 … to second-order methods (which can offer 
convergence rate 1/eT )?

– Does not require solving large linear systems

– Second-order methods (interior point, …) don’t fit in 
memory for large games

🌟 … to general-purpose regret minimizers (FTRL & OMD)?

– CFR uses an approach local to each decision point 
(easier to parallelize, warm-start, etc.)

• [Brown & Sandholm, Reduced Space and Faster Convergence in Imperfect-Information 
Games via Pruning. ICML-17]

• [Brown & Sandholm, Strategy-based warm starting for regret minimization in games, 
AAAI 2016]

– No need for expensive projections onto feasible 
strategy polytope (think projected gradient descent)

http://www.cs.cmu.edu/~sandholm/reducedSpace.icml17.pdf
http://www.cs.cmu.edu/~sandholm/reducedSpace.icml17.pdf


Other approaches

• Offline first-order methods:

– E.g., mirror prox (MP) or excessive gap technique 
(EGT)

• O(1/T) convergence instead of CFR’s O(1 / 𝑇)

– Regret minimization is decentralized, and with 
optimism it matches the same theoretical rates. 
Also, it performs better empirically

• All in all, regret-based methods are today the 
scalable state of the art



CFR Framework + Predictivity



Important Takeaways

🌟You can construct a regret minimizer for

sequential decision making problems by

combining regret minimizers for individual

decision points

⇒ Improvements on simplex domains carry over to   

extensive-form domains!

🌟Predictivity works well also in extensive-form

domains



Techniques to Further Increase 

Scalability of CFR

• Using utility estimators
– Similar idea as stochastic gradient descent vs gradient 

descent

– Instead of exactly computing the green numbers 
(gradients of the utility function), we use cheap unbiased 
estimators

– Popular estimator: sample a trajectory in the game tree 
and use importance sampling

– “Monte Carlo CFR” [Monte Carlo Sampling for Regret 
Minimization in Extensive Games; Lanctot, Waugh, 
Zinkevich, Bowling NIPS 2009]

– Even better algorithm, ESCHER, does not use importance 
sampling [McAleer, Farina, Lanctot & Sandholm ICLR-23]
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