Algorithms for solving

seguential (zero-sum)

complete-information
games

Tuomas Sandholm

CHESS,
MINIMAX SEARCH,

AND IMPROVEMENTS TO
MINIMAX SEARCH

| PEE 1R e e

@ACM Chess Challengg
Garry Kasparov

JOog

2000 —]
E .
— - =
1) —| ¥ E
1 — - - - - - £ L = h
- = e = =| = - =4 . = = = o
d3 & 3| 3| oz E|z]3 " HHE 8l 2
HJz :z = S K 2 = Rl B A MEH P
- = =\ & = P ful H S =
35 f 2 (9 E 3 E: H HH 5 C
J3 z 2 AL E £ 3] 2 z SHE LI
o I | T | |] ol LB J 1 [F ! ! i
1960 1965 1970 1975 1980 1985 1990 !
. . I
Figure5.12 Ratings of human and machine chess champions.

Deep Blug leam.
Front, lalt to right:
Joal Benjamin,
Chung-Jen Tan. Back,
fatt to right: Jerry
Brody, Murray
Campbell, Fang-
Hsiung Hsu, and Joe
Hoane,

Loss—win-draw-drgw-draw-wipn

Rich history of cumulative 1deas

Claude Shannon, Alan Turing Minimax search with scoring function 1950
KoTok/McCaRTHY Program
& ITep Program Alpha-beta search, brute force search 1966
Mac Hack Transposition tables = 1967
CHEess 3.0-CHess 4.9 Ilteratively-deepening depth-first search 1975
"BELLE Special-purpose circuitry 1978
CRAY BLiTz Parallel search 1983
HITecH Parallel evaluation 1985
Deep BLue Parallel search and special-purpose

circuitry (19007 1987
' seakc] . o
g:arr‘;c:}ccg(afgéa_sa Vin dyramic Pyﬁjrﬂnh;l:z 1927

(ons p}f'm:‘y hupbers !?38

S;nju!ﬂr extension 195005 |
O penita J,g'k} ' ' . . |
E‘:fl(ud-‘jﬂ'ah function leﬂ'hihj zl”‘j"h”hl:] 950"s

Chess game tree

400 positions after

one move by each side .
|patabases for all

5 and some 6
plece endgames

Opening stage:
Databases for
opening moves
usually cover the
first 5-15 moves

Endgame A
stage ~

20 positions after
White's first move

Initial
position

% o) L. _D -z
: _ Mlddlogam stage:
% Moves In the middiegame
are selected by carrying out

a large search gulded by
the minimax algorithm

g2
el
R '.g'.‘.
i
.'E-_?:::‘.-

The search tree fans out at
an average of 30-40 moves

at each position In the tree

Opening books (available electronically too)
Example opening where the book goes 16 moves (32 plies) deep

RUY LOPEZ
Marshall {Counter} Attack

1 e4 €5 2 Nf3 Nc6 3 Bb5 a6 4 Ba4 Nf6 5 0-0 Be7 6 Re1
b5 7 Bb3 0-0 8 c3 d5 9 exd5 '

97 98 99 100 101 102
8 - a4
10 = Nxes : dxc(p)
NixeS5 axi3
11° RxeS da!(q)
OB e ieiniiniiicenneeienaetnn e aaaa e ans Nf6(l) fxg2(r)
12 denecciniienniininend Bxd5g3(h) d4 Qf3
Bde cxd5 Bdé6(i) Bdé Be6
13 Rel......... Re2 d4 Rel Re1 Bf4
Qh4 Bga(c) Bds Qd7!(j) Ng4 Nds
14 g3 f3 " Re3 d3 h3 Bg3
Qh3 Bhs Qh4(f) Qh3 Qh4(m) a5
15 Be3(a) Bxd5(d) h3 Re4 Qi3 Nd2 +
Bg4 cxds Qf4 Qfs Nxfz
16 Qd3 Nd2 Re5 Nd2 Re2(n)

Raefi(b) Qc7(e) Qféi(g) Qgéi(k) Ng4(o)

(a) 15 Re4? g5 16 Qf3 (16 Bxg577 Qf5) 16 . . . Bf5 17 Be2 (17 Bf4!7) 17 . . . Bxe4 18 Bxe4 Qe6
19 Bxg5 (19 BI5? Qe1t 20 Kg2 Qxc1 21 Na3 Qd2 wins) 19 . . . f5 20 Bd3 hé ¥ (Gulman).

(b) Short-Pinter, Rotterdam, 1988 continued 17 Nd2 Re6 18 a4 bxad 19 Rxat 5 20 Qft QhS
21 f4 Rb8 22 Bxds cxds 23 Rxa6 Rbes 24 Qb5 Qf7 25 h3! with complications favoring
White.

{c) 13...Qh4 14 g3 Qh5 (14 ... Qh3 15 Ndz2 BfS 16 Ne4!7?) 15 Nd2 Bg4 16 {3 Bxf3 17 Nxf3
Qxf3 18 Ri2 Qeq 19 Qf3 , Sax-P. Nikoli¢, Plovdiv 1983.

(d) If 15 Nd2 Nf4 is annoying.

(e) 17 Nf1 Rfe8 18 Be3 Qc4 =, van der Sterren—Pein. Brussels 1984. Black has good play for
the pawn.

(f) 14 ... 5 15 Nd2 4 16 Re1 Qg5 17 NI3 Qh5 18 Ne5 3 19 gxf3 Bh3 20 {4 = (Tal).

(8) 17 Re1 Qg6 18 Qf3 Beb 19 Bf4 Bxf4 20 Qxi4 Bxh3 21 Qg3 Qxg3 =, Tal-Spassky. match
1965.

(h) 12 d3 Bd6 13 Re1 (13 ... Qh4 14 g3 Qh3 transposes back into the column] 13 . . . Bfs!
14 Nd2 Nf4 15 Ne4 Nxd3 16 Bg5 Qd7 17 Re3 Bxed 18 Rxe4 Rae8 =, Kir. Georgiev—Nunn,
Dubai 1986.

(i) Geller's 12 ... Bf6 13 Re1 ¢5 14 d4 Bb7, playing for central control. is a reasonable
alternative.

(i) 13 ... Ni6 14 d4 Bga 15 Qd3 c¢5 16 Bc2 is better for White, according to Fischer.

Minimax algorithm (not all branches are shown)

|Talllnl positions l

1. Draw tree to a depth of two levels l
(Note 1: not all moves at the first two levels are shown in this ﬁguul

2. Assign a score to each terminal position.

(Note 2: only the material on the board is used to assign
scores to the four positions shown. In the top one, White
a three pawn advantage 50 a score of +3.)

3. Assign backed-up scores to the non-terminal positions.

4. Determine the principal NM B
(Shown bold in this figure) | Position

5. Select the move Mpﬁya’
the first move on this
continuation.

'—'“". P % Score

Bxc3

Position A
(White
isup
pawn)

Position F

Score
1

] (Black
isup 3
pawns)

Score
=-1

(Black
isup1
pawns;

recursive function MINIMAX(POSITION ,DEPTH):

if

{MINIMAX is the name of the process, which requires two inputs: a chess

POSITION with white to move, and a number DEPTH indicating the ply

level at which evaluation is to take place. The result of this process is the

minimax value of the position} '
DEPTH = 0

then MINIMAX := EVAL(POSITION)

{the function EVAL evaluates at the bottom level}

else

begin
MINIMAX := FINDMOVES(POSITION,MOVES,NMOVES)
{the move generator finds all legal moves from POSITION; the
value produced and stored in MINIMAX is that of a loss, say —100,
or zero if stalemate (NMOVES = 0 and no check)}
if NMOVES > 0 {loop over legal moves}
then for— i:=1to NMOVES do
NEWPOSITION : = SWAPSIDES(MAKEMOVE(POSITION,MOVE()));
{produces a new position, by making move i in POSITION, and then
reversing Black and White sides} :
VALUE := -MINIMAX(NEWPOSITION,DEPTH-1);
{here comes the magic: assuming that the MINIMAX function is
available for use (not quite true at the time this line is written), it is
called upon to produce a minimax value for NEWPOSITION (with
depth decreased by 1); since this value is with respect to the Black
. side, its sign is reversed} _
if VALUE > MINIMAX then MINIMAX := VALUE
{MINIMAX contains the largest value found up to now; in this
example, no record is kept of the associated move}
end do
end

Fo“‘l Wis.a{o.!h M Ja/a/y}hj ajff}h_s?((J#pdﬂfs:
Play open positigny = ncreases the 5"*"!551:) fector
D redeces Compytep s loohahead

Search depth pathology

Beal (1980) and Nau (1982, 83) analyzed whether values backed up by minimax search are
more trustworthy than the heuristic values themselves. The analyses of the model showed
that backed-up values are somewhat less trustworthy

Anomaly goes away if sibling nodes’ values are highly correlated [Beal 1982, Bratko &
Gams 1982, Nau 1982]

Pearl (1984) partly disagreed with this conclusion, and claimed that while strong
dependencies between sibling nodes can eliminate the pathology, practical games like chess

don’t possess dependencies of sufficient strength.

— He pointed out that few chess positions are so strong that they cannot be spoiled abruptly if one really tries hard to
do so.

— He concluded that success of minimax is “based on the fact that common games do not possess a uniform structure
but are riddled with early termmal positions, colloquially named blunders, pitfalls or traps. Close ancestors of such
traps carry more reliable evaluations than the rest of the nodes, and when more of these ancestors are exposed by the
search, the decisions become more valid.”

Still not fully understood. For new results, see:

— Sadikov, Bratko, Kononenko. (2003) In: van
den Herik, lida and Heinz (eds.) Advances in Computer Games: Many Games, Many Challenges, Kluwer Academic
Publishers, pp. 33-44

— Understanding Sampling Style Adversarial Search Methods [']. Raghuram Ramanujan, Ashish Sabharwal, Bart
Selman. UAI-2010, pp 474-483.

— On Adversarial Search Spaces and Sampling-Based Planning [']. Raghuram Ramanujan, Ashish Sabharwal, Bart
Selman. ICAPS-2010, pp 242-245.

Also present in imperfect-information games when one party has limited lookahead
[Kroer & Sandholm IJCAI-15; Kroer, Farina & Sandholm AAAI-18]

http://ai.fri.uni-lj.si/sasha/acg2003.pdf
http://event.cwi.nl/uai2010/papers/UAI2010_0287.pdf
http://www.aaai.org/ocs/index.php/ICAPS/ICAPS10/paper/view/1458/1571

o-p -pruning

Subtree returns s

Deep cutoff:
score of +10

Move E refutes Move D
The search of Move F

Is unnecessary and cut off.

Partially drawn game tree showing deep alpha-beta cutoff

a- -search on ongoing example

a-f3 -search

function MAX-VALUE(state, game, «, [3) returns the minimax value of state
inputs: state, current state in game '
game, game description
o, the best score for MAX along the path to srate
(3, the best score for MIN along the path to state

if CUTOFE-TEST(state) then return EVAL(state)
for each s in SUCCESSORS(srare) do
a «— MAX(ar, MIN-VALUE(s, game, «, 3))
ifo > fthenreturnf

ERM
return o

function MIN-VALUE(state, game, o, 3) returns the minimax value of state

if CUTOFE-TEST(state) then return EVAL(state)
for each s in SUCCESSORS(state) do
B — MIN(8, MAX-VALUE(s, gaime, a, 3))
if 3 < o then return o
en
return j3

Complexity of a-[3 -search

1 | Best case
- Search Depth Minimum number of terminal positions
- (DMAX) in an alpha-beta search
2 ~2 X 30'=6 X 10 = 60
4 ~2 X 302=2 X 10° | = 2,000
6 ~2 X 30*=~6 X 10¢ = 60,000
8 ~2 X 30*= 2 X 10¢ = 2,000,000
10 ~2 X 30°=6 X 107 ' = 60,000,000
12 ~2 X 308 =2 X 10° = 2,000,000,000
14 ~2 X 30" ~_6 X 10"%PeqBke = 60,000,000,000
1 ~2 X 308 =~ 2 X 10" = 2,000,000,000,000

., [veathb Mook 1995)
Best cose: o-B allows Searth Iz as deep as Minimer.

Worst case: of-2 oees hot prune o Single hode. oy
A""!J(co3t based on vendok order ol meves O(L")-!O((B/u.,it
(lose Yo best case by erforhﬁ belier woves first

~ caplures —> 4hrpgt s — forward mobes = bechward woves

= iterative '(”fﬂl;i:g Seorch and wse bached up velues Trom ong

Heralion o defermine the ovdering of succossors i the west i teration
V-rm_-ff " Searcl Ve (due fo -8 and e SPR d-)
zb_:frrgf.v(AeepPhing (vsed by all mejor chss progroms).

h“?'l'\ fﬂbh’ .

Evaluation function

« Difference (between E @ ,9_%/@ ,ﬁ,@ 2.

player and opponent) of
— Material

— Mobility

— King position

— Bishop pair

— RooOKk pair

— Open rook files

— Control of center |
(piecewise) — '

Pla_yer to move

Values of knight’s position in Deep Blue

Evaluation function...

Deep Blue used ~6,000 different features in its evaluation function (in

hardware)
A different weighting of these features is downloaded to the chips after
every real world move (based on current situation on the board)

— Contributed to strong positional play

Acquiring the weights for Deep Blue
— Weight learning based on a database of 900 grand master games (~120

features)
« Alter weightof one feature => 5-6 ply search =>if matches better with grand master
play, then alter that parameter in the same direction further
« Least-squareswith no search
— Manually: Grand master Joel Benjamin played take-back chess. At possible
errors, the evaluation was broken down, visualized, and weighting possibly

changed
Deep BIue)(brute force Smartsearch andknowledge
engineered evaluation

— Other learning is possible, e.g., Tesauro’s Backgammon programs
* Neurogammon [1989]

— Taught using supervised learning on 400 games
— Level:intermediate human player

« TD-Gammon [1992]: Reinforcementlearning; Level: world-class human tournament
player

Datebases of cxpart qomes

“Detp plue does net usp Lhost dutiry f’/ﬂ)’
—Dorp Blue wirs Hhom offlive +o learn evaluetio, f

332 C 02

KUPREJCIK 2520 —
VLADO KOVACEVIC 2545

Ljubljana/Rogaska Slatina 1989

L. ed e6 2. d4 d5 3. &5 5 4. c3 H\eT 5.
Df3 Pecé 6. He3!? N [6. ha — 46/343;
RR 6. 2d3 N b6 7. g5 ®Wd7 8. 0—0
£2a6 9. dcS beS 10. a6 Haé 11. o4 hé
12. &h4. &7 13. &c3 feT 14, feT HieT
15. Hcl HcB 16. We2 0—0 17. Hfdl Wc6
I8. b3k Svednikov 2435 — Lputjan 2610,
‘Moskva (GMA) 1989] &H\d7 [6... b6] 7.
£4d3 a5 [7... f4e7] 8. Hbd2 [8. Qgs!? cda
9. cd4 fe7 (9... h67! 10. WhS hg5 11.
Wh8 &b4 12. Wh7 g6 13. fg6+—) 10.
ha!? (10. Wh5? @p5! 11. 885 Wb6F)
Wb6 (10... h6 11. WhS) 11. Hc3E] cdd 9.

cdd ad 10. a3 [10. Hg5!'1 He7 11. ha [11.

0-0] h6 12. hS Qb6eo 13. Hh2 Has 14.
Wed Q18 [14... BB 15. Hel A 00, f4-
511 15. Bl (o 15. We2 §d7 16. f4]
£.d7 16. 0—0 Hbed! 17. Hicd Hicd 18, We2
[18. ficd dod 19. d5 edS 20. Wdd & (5!
21. g4 8d3F; 19. f417] b5 [18... Hc8!M
19. f4 fe7 20. (517 [20. fc4 dcd (20...
bed 21. gdt) 21. €512 (21. d5 ed5 22. 5
d4! 23. @d4 Qf5F; 22. £d4175) ef5 22.
d5o0] ef5 [20... £g57 21. fcd bed (21...
ded 22. d51) 22. Qg5 WpS 23. f6+] 21.
8f5 Ge3 22. Wel fp5 23. Wg3 Afs
24. Br5

(diagram)
24... Hc8? [24... fcl! 25. Wg7 HMB a)

26. @gd Ha6 (26... Ag5 27. 6 Ha7 28.
@e5 Wd6 29. ef7 Hd8 30. Qcht) 27. &f6

Hf6 (27... &e7 28. H)g8 &d7-29. BT Hf7
30. Wf7 HeB 31. 6 Qe3 32. Bfloo) 28.
ef6 Wd6[] 29. He5 &d8 30. He7 He8 31.
HeB &e8 32. W8 W8 33. Wgl! ibd7
34. Wh3 &d8 35. Wgld=: b) 26. e6!?
Wd6! 27, ef7'? (27. BEf7 0-0-0 28. 7 Bf7
29. W7 4b2! 30. 8% §d4 31. Hhi Ees
32. We8 &Hc7F) &d7 28. QI3 (28. Ded!?
A Hds) &7 29. Bf6! We7 30. Webool
25. Hefl 0—0 26. e6'+ We7 [26... 6 27.
Wi3t] 27. Wel! We7 [27... &6 28. gf6
£f6 29. &pgd fe6 30. We6 Hp7 31. Hf6+:
27... 16 28. Hds+] 28. Ef7 Ef7 29. a7
Hel 129... Wd6 30/ BEd7 Wb6 31. Wes
276 32. WdS5+—] 30. Wcl We6 31. Hf4
1:

0 [Kuprejéik]
333.%* C 02
KUPREJCIK 2520 — KOSTEN 2505

Torcy 1989

1. ¢4 €6 2. d4 d5 3. €5 ¢5 4. 3 H)ch S,
DM £d7 6. fLe2 [RR 6. £d3 Hge? 7,
0—0 cdd 8. cdd He8 N 9. B3 fe7 10,

Horizon problem

Black to move

) A series of checks by the black rook forces the inevitable
' queening move by white “over the horizon” and makes this position look like a slight advantage
:for black, when it is really a sure win for white.

Ways to tame the horizon problem

 Quiescence search

— Evaluation function (domain specific) returns another
number in addition to evaluation: stability

 Threats
« Other
— Continue search (beyond normal horizon) if positionis
unstable
— Introduces variance in search time

e Singular extension

— Domain independent

— A nodeis searched deeper if its value is much better
than its siblings’

— Even 30-40 ply

— A variantis used by Deep Blue

IX2 a
PRt L I LR 2

Transpositions

1ML ORIA

ETY L5 1Y 4
e MWitlL

Transpositions are important

" Depth l Terminal Number of different
of Search| positions In tree] terminal positions
1 3 3
2 15 x5 =15
3 90 9x5 = 45
4 405 o9x8 = T2
5 ~2,000 13x8 = 112
6 ~10,000 13x10 = 140
7 ~50,000 17x10 = 170
8 ~250,000 - 1Tx12 = 204
9 ~1,250,000 <25x16 ~ 400
10 ~,250,000 <25x25 ~ 625

Kb2

Kbl

90 terminal nodes
45 difterent positions

Transposition table

« Store millions of positions in a hash table to avoid searching them again
— Position
— Hash code
— Score
— Exact / upper bound / lower bound
— Depth of searched tree rooted at the position
— Best move to make at the position
« Algorithm
— When a position P is arrived at, the hash table is probed
— If there is a match, and

* new_depth(P)>stored_depth(P),and

 scoreinthe tableis exact, orthe bound onthe score is sufficientto cause the move
leading to P to be inferior to some other choice

— then P is assigned the attributes from the table

— else computer scores (by direct evaluation or search (old best move searched
first)) P and stores the new attributes in the table

* Fills up => replacement strategies

— Keep positions with greater searched tree depth under them
— Keep positions with more searched nodes under them

End game databases

Torres y Quevedo's
Mating Rigorithm

Torres’ scheme for effecting mate in the KRK endgame assumes an
initial position with the automaton’s White King on a8, Rook on b8,
and the opponent’s King on any unchecked square in the first six
ranks. His algorithm for moving can be described in programming

notation:

if
then
elseif
then
elseif
then
elseif

then.
elseif -

then

elseif
then
else

endif

both BK and R are on left side {files a,b,c}

move R to file h {keep R out of reach of K}

both BK and R are on right side {files f,g,h}

move rook to file a {keep R away from K}

rank of R exceeds rank of BK by more than one
move R down one rank {limit scope of BK}

rank of WK exceeds rank of BK by more than two
move WK down one {WK approaches to support R}
horizontal distance between kings is odd

{make tempo move with R}

if R is on a file then move R to b file

elseif R is on b file then move R to a file

elseif R is on g file then move R to h file

else {R is on h file} move R to g file

endif

horizontal distance between kings is not zero

move WK horizontally toward BK {keep opposition}
give check by moving rook down

{and if on first rank, it's mate}

If the opponent’s King is placed on a6, with best delaying tactics
“mate can be staved off for 61 moves.

Generating databases for solvable
subgames

State space = {WTM, BTM} x {all possible configurations of
remaining pieces}

BTMtable, WTM table, legal moves connect states between
these

Start at terminal positions: mate, stalemate, immediate
capture without compensation (=reduction). Mark white’s
wins by won-in-0

Mark unclassified WTM positions that allow a move to a won-
IN-0 by won-in-1 (store the associated move)

Mark unclassified BTM positions as won-in-2 if forced moved
to won-in-1 position

Repeat this until no more labelings occurred

Do the same for black

Remaining positions are draws

Compact representation methods to help endgame
database representation & generation

Information

- " Information
Position on position Position on position
<al-al-al> 0 <al-aleal> Ilegitimate
<al-al-bl> 0 : <al-al-bl> Illegitimate
<al-al-h8> 0 <al-al-h8> legitimnte
<al-bl-al> 0 <al-bl-al> Hlegitimate
: <al-bl-bl> 0 <al-bl-bl> lllﬂll:lmm'-'
/ lﬁ' 0 % ///I, : <al-cl-al> 0 <al-cl-al> Illegitimate
. . <al-cl-bl> 0 <al-e1-bl> In check
o0 % % ;
: _ <al-cl-h8> 0 <al-cl-h8> In check
Squares for Black’s king that must be :
considered in KRK database. <dd-h8-h8> 0 <da-hs-he> | Incheck
a qh *
: (a) .)
\ _
. _ Building a KQK database: (a) initial contents of database,

and (b) contents after performing the first step.

Endgame databases...

1977
Game 1l [Ken T‘-obp;op,
White: Walter Browne Black: BELLE

U _WEH Y
: U ™
- v v w

Figure 6.17. Position from BeLLe’s database:
White to play and win in thirty moves.

(wpu‘llr (Pu{/ hs(l a (ob+ fosi'h'w. _ayg}ésf'
M Wens Borliner.

50Pnl'lff1 rooh & mhj

Folk wisdom of play;a] Open posi‘lions?

Endgame databases...

U W
O W W W
W W W
.

KNNKP(d4) endgame with White to play and win

1 Nb4+ Kb6 2 Nd3 Kc7 3 Nb5+ Kc6 4 Na3 Kb6 5 Kb8 (5 Ncd+ or 5 Nc2) Kcb

6 Nc4 (6 Nc2) Kb5 7 Nce5 Kb6 8 Kc8 Ka6 (8 ... Ka5 or 8...Kb5) 9 Kc7 (9 Kd7) Kbs
10 Kd6 Ka4 11 Kc5 Kb3 12 Kb5 Ke3 13 Kad Ke2 14 Kb4 Kd1 15 Kb3 Kd2 16 Kb2 Kd1
17 Nc4 Ke2 18 Kc2 Kf3 19 Kd2 (19 Kd1) Kg3 (19... Ked) 20 Ke2 (20 Nce5) Kg2

21 NceS Kg3 22 Kf1 Kh4 23 Kg2 (23 Kf2) Kg5 24 Kf3 Kf5 25 Nc4 Kf6 26 Kf4 Keb

27 Ked Kf6 28 Kd5 Ke7 29 Ke5 Kf7 30 Kd6 Kf6 31 Nd2 Kf5 32 Ke7 Kgé 33 Ke6 Kg7
(33...Kg5) 34 Ned Kg6 35 Ke5 Kg7 36 Kd6 Kh7 (36 ... Kh6) 37 Nd2 (37 Nef2) Kg7
38 Ke6 Kf8 39 Ned (39 Ncd) Ke8 40 Nf6+ (40 Nd6+) Kf8 (40 ... Kd8) 41 Nh5 Ke8

42 Ng7+ Kd8 43 Kd6 Kc8 44 Ne6 Kb8 (44 . . . Kb7) 45 Kc5 Ka7 46 Kc6 Kab 47 Nec5+
(47 Ng5) Ka5 48 Nb3+ (48 Ned) Ka4 49 Nd2 Ka5 50 Kc5 Kab 51 Nc4 Kb7 52 Kd6 Kc8
53 Na5 Kd8 54 Nb7+ Ke8 55 Ke6 Kf8 56 Nd6 Kg7 57 Kf5 Kh6 58 Kfe Kh5 59 Nf7

(59 Ned) Kg4 60 Ng5 Kh4 61 Kf5 Kg3 62 Ked Kg4 63 Nf7 Kh5 (63 ... Kg3) 64 Kf5 Kh4
65 Nfe5 Kh5 66 I\Ilg4 Kh4 67 Nf6é Kh3 68 Ke5 Kg3 69 Ked Kh3 70 Kf3 Kh4 71 Kf4 Kh3
72 Ne8 (72 Ne4 or 72 Nh5) Kh4 73 Ng7 Kh3 74 Nf5 Kg2 (74 . .. Kh2) 75 Kg4 Kh2
(75...Kf1or75...Kglor75...Kh1) 76 Ndé (76 Ng3) Kg2 (76 ... Kg1 or 76 ... Kh1)
77 Nc4 (77 Ned) Kh2 (77 ... Kg1) 78 Nd2 Kg2 79 Kh4 Kh2 (79 ... Kg1) 80 Nf4

(80 Ne1) Kg1 81 Kg3 Kh1 82 Nf3 (82 Ne2 or 82 Nh3) d3 followed by 83 Nh3 d2

84 Nf2#.

How end game databases changed chess

All 5 piece endgames solved (can have > 108 states) &
many 6 piece

— KRBKNN (~10'! states): longest path-to-reduction 223
Rule changes

— Max number of moves from capture/pawn move to
completion

Chess knowledge
— Splitting rook from king in KRKQ
— KRKN game was thought to be a draw, but

« White wins in 51% of WTM
« White wins in 87% of BTM

Deep Blue’s search

~200 million moves / second = 3.6 * 1019 moves in 3 minutes

3 min corresponds to
— ~7 plies of uniform depth minimax search
— 10-14 plies of uniform depth alpha-beta search

1 sec corresponds to 380 years of human thinking time

Software searches first
— Selective and singular extensions

Specialized hardware searches last 5 ply

Deep Blue’s hardware

e 32-node RS6000 SP multicomputer

« Each node had
— 1 IBM Power2 Super Chip (P2SC)

— 16 chess chips
 Move generation (often takes 40-50% of time)
« Evaluation
« Some endgame heuristics & small endgame databases

« 32 Gbyte opening & endgame database

Role o

————— ——— . i

f computing

DEEF DLUE (1998)

DEEF THOUGHT (1984)

| BELLE (5) . s 1500

BELLE (1943)

CHESS 4% (19T BELLE (6) 155 25 1714
' & 3 BELLE (1) 178 35 | 2082
Gumess .Oil;rr- developmerd | i _fae fn
“* well :
1T3-T4}

1i13888833:838838 efolo i
¢ §§i§ii§§§§§§ﬁ§§§ 313 |0 |1s70
“ifiifEifiiiigiis) PP PP
Nodes aoared TYReEsIz: BELLEM 20 | 1| 18 s | & |2031
b the level of play by ch BELLE®) | 20 }ias f1as | 15 5.5 | 2208

Figure 6,23, Relationship between evel of play by chess programs s
? and the size ofﬂ!eg'umrm.d during a three minute move. ELUE® | 20] 20 fas 18 J1es 2328

Figure 6.24, Results of Thompson's two experiments: (a) first experiment,
(b) second experiment. Entrles In the tables indicate the number of games won

by the program heading the row against the program heading the column.
KD R(I) R({i)
% of time BeLe(i) Rating of Bewe(l) if Rating of Beue(l) if
picked moves different R(4) = 1320 R(4) = 1300

i from Bewe(l - 1) and R(5) = 1570 and R(5) = 1570
; 21 1320 1300 D}h:hfsju}n, returns Yo compudefion
6 277 1779 1796 ¢ |
7 29.5 2002 2037 P w{ f'_
8 26.0 2198 2249
9 226 2369 2433
10 17.7 2503 2577
1 18.1 2639 2725

i
¥

Figure 6.25. Percentage of time Bewe(i) picked different moves from Bewe(i - 1)
and the corresponding predicted ratings based on expression (1) for two cases:
(1) R(4) = 1320 and R(5) = 1570, and (2) R(4) = 1300 and R(5) = 1570. |

Interestingly... “Freestyle Chess™
= centaurs

* Hybrid human-Al chess players were
stronger for a while than humans or Al
alone

AlphaGo and AlphaZero

MCTS Overview

e lteratively building partial search tree
e |Iteration
o Most urgent node
m Tree policy
m Exploration/exploitation .
o Simulation \
m Add child node /
m Default policy \
o Update weights D

Fig. 1. The basic MCTS process [17].

Algorithm Overview

Selection — Expansion — Simulation — Backpropagation =\

Tree Def.ault

Policy Policy
v
% ~ J

Fig. 2. One iteration of the general MCTS approach.

Policies

e Policies are crucial for how MCTS operates
e Tree policy
o Used to determine how children are selected

e Default policy

o Used to determine how simulations are run (ex. randomized)
o Result of simulation used to update values

Selection

e Start at root node
e Based on Tree Policy select child

e Apply recursively - descend through tree
o Stop when expandable node is reached
o Expandable -
m Node that is non-terminal and has unexplored children

—> Selection —

Expansion

e Add one or more child nodes to tree

o Depends on what actions are available for the current position
o Method in which this is done depends on Tree Policy
—> Expansion —

Simulation — Simulation —

Runs simulation of path that was selected

Get position at end of simulation

Default Policy determines how simulation is run
Board outcome determines value

Def.ault
Policy

v
A

Backpropagation

e Moves backward through saved path '
e Value of Node > Backpropagation -
o representative of benefit of going down that path from parent @

e \alues are updated dependent on board outcome
o Based on how the simulated game ends, values are updated

UCB in Bandits

Upper Confidence Bound: UCB(a,) = Qi(a) + ¢4/ Alfog((ti)
t—1(¢

UCT Algorithm

- Selecting child node: multi-armed bandit problem
- UCB for child selection
- UCT

—

n(N

v +C X
alonostmat | T

v: value estimate

C: exploration parameter

N: number of parent node visits
n: number of visits

UCT Algorithm

In(NV,

TV;

parent node visits

value estimate

number of visits

J | tunable parameter

- n =0 means infinite weight
Guarantees we explore each child at least once

- Each child has non-zero probability of selection
- Adjust C to change explore-exploit tradeoff

Theorem. MCTS with UCT action selection in the
SGIGCthIl phase ﬁndS an Optlmal pOllcy. [Kocsis and Szepesvari. ECML “06]

Example - The Game of Othello

{Xr n, nr! - (Mean Value, Parent Visits, Child Visits)

{;mot)
____-“"(;:-;'f;j__c#-# =" %H,__I
’1“/'\”"'2/ \ B) ™)

* - initially 0

o all weights are initially infinity -
e n-initially O
. Cp- some constant > 0

o For this example

o C=(1/2V2) —
. Xj- mean reward of selecting this

position
o [0, 1]
o Initially N/A

Example - The Game of Othello cont.

After first 4 iterations: (X, n. n) - (Mean Value, Parent Visits, Child Visits)

Suppose m1, m2, m3
\\roo> black wins in simulation
\and m4 whnte wins

(o S o) (o) T @

X n n
. Y A |74
m1 1 4 1 ™
m2 1 4 1 i
m3 1 4 1

m4 0 4 1

]t] ('I\.rl‘)\. [P it |

L7 R ey

Example - The Game of Othello Iter #5 v +¢~

withud (slimaln

|
I

\ {KJ, n, n}} - (Mean Value, Parent 'L-"a'sifs: Child Visits)
rnnt
Black’'s Move
- — e \\\ ——
N C D)
I II-\. .-‘I
S A
R e “' e mii mi3
(1. 4'1]' “x {‘1 4, 1} (1,4, 1J (0,4, 1) .
| x\\ i
\, Whlte's Move .

- - S —
<m11/,[m12/,\m‘|3

72D
' |

_

e

mi2

{NIA i . 0) {NIA 1, 0) {th 1,0)

e First selection picks m1
e Second selection picks m11

Example - The Game of Othello Iter #5

rnot \

Black's MV
7o)

/‘ \ Y, \ / N
{552; (1,5, 1) (1,5, 1) {0,5,13
White's Move

e Run a simulation

e White Wins

e Backtrack, and update mean scores
accordingly.

!

i) isstimaln

{Kf n, n}} - (Mean Value, Parent Visits, Child Visits)

Example - The Game of Othello Iter#6 » +x

withud (slimaln

{X n, n}} {Mean Value, Parent Visits, Child Visits)

Black's Move 13

2260

- \/’ ““\

/ (5, 5, 21/ k /f \ “mj>

.51 |, 51] (0,5, 1)

, White's Move N

| |

. _.*___ﬂ\ _ /
< o
(__/

\
1
!

e Suppose we first select m2

ln(\;m

n. { uarmbor of visits. |

Example - The Game of Othello Iter #6 » +¢x

w bty

(X, n. n) - (Mean Value, Parent Visits, Child Visits)
root

Black’s Move /)\
2269
m1
@& /e y @ /
(5,5, 2) (151 (151) (0,5, 1)
ite’s Move

\w / m21\ é m22\ tms) | D) *

2,1) (NIA 1, 0) (N/A 1, 0) (N/A, 1, 0)

e Suppose we pick m22

In(NY. o

-

Example - The Game of Othello Iter #6 » +¢x
—

byl aslimaln | mambar of visis

tunable parsTeter

(X, n, n) - (Mean Value, Parent Visits, Child Visits)

-
.:(x)

e Run simulated game from this position.
e Suppose black wins the simulated game.
e Backtrack and update values

T~ P
valun petEmato P mamiber of visits

(X, n. n) - (Mean Value, Parent Visits, Child Visits)

Example - The Game of Othello lter #6 . +¢x :/ln(ﬁ’i-wm

Black’s Move

1.833

(1,2,1) (N/A, 2, 0)

(N/A, 2,0) (N/A, 2,0) (0,2, 1) (N/A, 2, 0)

e This is how our tree looks after 6 iterations.

e Red Nodes not actually in tree

e Now given a tree, actual moves can be made using max, robust, max-
robust, or other child selection policies.

e Only care about subtree after moves have been made

AlphaGo

- Use value network and policy network to augment MCTS
- Trained on professional Go games

Value network

Evaluation
<

LS 0
s

Position

Policy network

Move probabilities

Position

Reducing depth with value network

¥
% T

Reducing breadth with policy network

Ra
?\:‘N
¥y
S~
RO

" . p
O
i

a. Select

b. Expand and evaluate

c. Backup d. Play

Repeat

5
rﬁ
4 v 7

;o) =fo (7o7) 2
;.S),\,):

LLX

14

o

N
e, \
2

> Q}
/

AlphaGo Zero

- No human data besides rules of the game
- Value and policy are trained on self play instead of human data
- Trained on 4 TPUs for 70 days

comparedto tens of thousands of TPUs for Gemini

a Self-play s, s,

Neural Network Loss

(p,v)=f,(s) and I=(z—v)* — =" logp+ c||0|]*

Search Algorithm

a. S:Iect b. Expand and evaluate

c. Backup

Repeat

23 2d
\Q+U
N

oo o
Q +U ﬁax
roe

[$3

Search Algorithm

Each node s in the search tree contains edges (s, a) for all legal actions.

Each edge stores a set of statistics, {N(s, a), W(s, a), Q(s, a), P(s, a)}
- N: number of visits to that edge
W: Total value
Q: Average value
P: Policy output

| a; = argmax(Q(ss, a) + U(ss, a))

J2,N(s, b)
1+ N(s,a)

U(s,a) = CpuctP(Sr a)

Expand and Evaluate

- When we reach a leaf node, we run the state through the neural network to
get a value estimate and policy estimate

- Each edge (N, W, Q) is initialized to O

- Backup value

Backup

- We update N, W, Q with the value that the neural network proposes
- N(s, a)=N(s, a)+1

- W(s,a)=W(s,a) +V

- Q(s, a) =W(s, a)/N(s, a)

Single-Agent Games

vy ﬁ

~
U :
*ET -2
(o ve(U") v (L) ve (F) ve (F')

() ys= max(vr(a) + R(A (2, a))) fora € USSR R
c
| yr,= argmaz(vs(a) + R(A (a (.,,., a))) fora € {U, U', ... , F, F'}

- J

McAleer et al. "Solving the Rubik's cube with approximate policy iteration." /CLR. 2018.
Agostinelli et al. "Solving the Rubik’s cube with deep reinforcement learning and search." Nature Machine Intelligence. 2019

	Slide 1: Algorithms for solving sequential (zero-sum) complete-information games
	Slide 2: ChESS, MINIMAX SEARCH, AND IMPROVEMENTS TO MINIMAX SEARCH
	Slide 3
	Slide 4
	Slide 5: Rich history of cumulative ideas
	Slide 7: Chess game tree
	Slide 8: Opening books (available electronically too)
	Slide 9: Minimax algorithm (not all branches are shown)
	Slide 11
	Slide 12: Search depth pathology
	Slide 13: α-β -pruning
	Slide 14: α-β -search on ongoing example
	Slide 15: α-β -search
	Slide 16: Complexity of α-β -search
	Slide 17: Evaluation function
	Slide 18: Evaluation function...
	Slide 19
	Slide 20: Horizon problem
	Slide 21: Ways to tame the horizon problem
	Slide 22: Transpositions
	Slide 23: Transpositions are important
	Slide 24: Transposition table
	Slide 26: End game databases
	Slide 27: Generating databases for solvable subgames
	Slide 28: Compact representation methods to help endgame database representation & generation
	Slide 29: Endgame databases…
	Slide 30: Endgame databases…
	Slide 31: How end game databases changed chess
	Slide 33: Deep Blue’s search
	Slide 34: Deep Blue’s hardware
	Slide 35: Role of computing power
	Slide 38: Interestingly… “Freestyle Chess” = centaurs
	Slide 50: AlphaGo and AlphaZero
	Slide 51
	Slide 52
	Slide 53
	Slide 54
	Slide 55
	Slide 56
	Slide 57
	Slide 58
	Slide 59: UCB in Bandits
	Slide 60: UCT Algorithm
	Slide 61: UCT Algorithm
	Slide 62
	Slide 63
	Slide 64
	Slide 65
	Slide 66
	Slide 67
	Slide 68
	Slide 69
	Slide 70: AlphaGo
	Slide 71
	Slide 72
	Slide 73
	Slide 74
	Slide 75
	Slide 76: AlphaGo Zero
	Slide 77
	Slide 78: Neural Network Loss
	Slide 79: Search Algorithm
	Slide 80: Search Algorithm
	Slide 81: Expand and Evaluate
	Slide 82: Backup
	Slide 83: Single-Agent Games

