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Recap: Normal-Form Games
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🌟 SIMULTANEOUS

(No turns)

🌟 Strategy for a player 

is just a probability 

distribution over 

actions
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Correlated Equilibrium

- Mediator suggests actions to all 
players before play

- Correlated equilibrium if everyone 
is incentivized to take suggested 
action

- NE of stoplight game
- Two pure strategy NE
- Mixed NE: Go w/ prob. 1/11

- Correlated equilibrium
- Could suggest mixture of (Stop, 

Go) and (Go, Stop)

Stop Go

Stop 0, 0 0, 1

Go 1, 0 -10, -10



Two-Player Zero-Sum Games

- NE doesn’t have problems as in 
general-sum or multiplayer games

- In a sense, NE is optimal in that no 
opponent can exploit you
- If I were to play any other strategy 

than ⅓, ⅓, ⅓ in rock paper 
scissors, you could exploit me

- NE can leave utility on the table 
against imperfect opponents
- If you always play Rock, NE will 

still just play ⅓, ⅓, ⅓
- But this is a price usually worth paying 

when playing experts or other AI 
programs

R P S

R 0 -1 1

P 1 0 -1

S -1 1 0



Computing NE in Two-Player 
Zero-Sum Imperfect Information 

Games (This Lecture)

1. LP for small games

2. Iterative Approaches

○ Self Play (doesn't converge)

○ Fictitious Play aka Follow the Leader 

(FTL)

3. No-Regret Algorithms

○ MWU aka Follow the Regularized 

Leader (FTRL)

○ Regret Matching
4. Optimism

R P S

R 0 -2 1

P 2 0 -1

S -1 1 0



LP Approach

- Payoff table U
- I choose a distribution s over my 

pure strategies
- After choosing my distribution, 

my opponent has expected values 
for each action given by sU

- Goal is to maximize utility of 
opponent best response

- Called exploitability when subtracted 
from the game value

R P S

R 0 -2 1

P 2 0 -1

S -1 1 0

2/3

1/3

R P S

EV 2/3 -4/3 1/3



LP Formalization

Expected value of action 
k for player 2

s is probability simplex 
for player 1

Game value for 
player 1



LP Continued

- Solving our game results in the 
following

- We maximize the value that the 
opponent can get against us

- Any deviation would allow the 
opponent to exploit us more

R P S

R 0 -2 1

P 2 0 -1

S -1 1 01/2

1/4

R P S

EV 0 0 0

1/4



Iterative Approaches

- Only small games can be solved via LP
- For larger games we need iterative approaches
- Most iterative approaches approach a NE

- Can be stopped any time
- What we’ll cover

- Self Play (doesn’t converge to NE)
- Fictitious Play aka Follow the Leader (isn’t no-regret)
- Follow the Regularized Leader aka Replicator Dynamics 

aka Multiplicative Weights aka Hedge aka Mirror Descent
- Regret Matching

- Regret Matching Plus

- Optimism



Self Play

- Both players learn best 
response to opponent’s 
latest strategy

- Does not converge to a 
Nash equilibrium even in 
small games

- Will continue to cycle in 
games without pure 
strategy NE

Player 1 Best Responds to Player 2’s Last Policy

Player 2 Best Responds to Player 1’s Last Policy



Fictitious Play (Follow the Leader)

- Both players learn best 
response to opponent’s 
average strategy

- Average strategy 
converges to a Nash 
equilibrium

Player 1 Best Responds to Player 2’s Average Policy

Player 2 Best Responds to Player 1’s Average Policy



No Regret Algorithms

- What if I’m playing a repeated game against someone 
who knows I am playing fictitious play?

- Then they would know exactly what my next move will 
be and could choose a best response every time

- Can we find iterative algorithms that will not be too bad
even when the opponent knows the algorithm?

- No-regret algorithms do exactly this

- And achieve faster convergence than FP as well!



Regret Minimization

for 𝑡 = 1,… , 𝑇:

• Agent chooses an action distribution 𝑥𝑡 ∈ 𝑋 ≔ Δ𝑛

• Environment chooses a utility vector 𝑢𝑡 ∈ 0, 1 𝑛

• Agent observes 𝑢𝑡 and gets utility 𝑢𝑡 , 𝑥𝑡

Agent goal: Minimize regret. 

“How well do we do against best, fixed strategy in hindsight?”

𝑅𝑇 ≔ max
ෝ𝒙∈𝑋

෍

𝑡=1

𝑇

〈𝑢𝑡 , ො𝑥〉 −෍

𝑡=1

𝑇

〈𝑢𝑡 , 𝑥𝑡〉

🌟 Goal: have 𝑅𝑇 grow sublinearly with respect to time T, e.g., 𝑅𝑇 = 𝑂 𝑇

Δ𝑛 = set of distributions on 𝑛
things

= {𝑥 ∈ ℝ𝑛: 𝑥 ≥ 0, ∑𝑥𝑖 = 1}

Utility that was actually 
accumulated

Maximum utility that was
achievable by the best 
fixed
action in hindsight

No assumption on utilities!
Must handle adversarial environments



What does regret minimization 
have to do with zero-sum games?

🌟 IDEA: Self-play. Make two regret minimizers play each other

𝑅1
𝑇 ≔ max

ො𝑥∈Δ𝑚
෍

𝑡=1

𝑇

〈𝐴𝑦𝑡 , ො𝑥 〉 −෍

𝑡=1

𝑇

𝐴𝑦𝑡, 𝑥𝑡 ≤ 𝑂 𝑇

Nash equilibrium in a 

2-player 0-sum 

normal-form game 

with payoff matrix A:

max
𝑥∈Δ𝑚

min
𝑦∈Δ𝑛

𝑥⊤𝐴𝑦

𝑅2
𝑇 ≔ max

ො𝑦∈Δ𝑛
෍

𝑡=1

𝑇

−𝐴⊤𝑥𝑡 , ො𝑦 −෍

𝑡=1

𝑇

〈−𝐴⊤𝑥𝑡 , 𝑦𝑡〉 ≤ 𝑂 𝑇

max
ො𝑥∈Δ𝑚

ො𝑥⊤𝐴ത𝑦 − min
ො𝑦∈Δ𝑛

ҧ𝑥⊤𝐴ො𝑦 ≤ 𝑂
1

𝑇

where ҧ𝑥 =
1

𝑇
∑𝑡=1
𝑇 𝑥𝑡 and ത𝑦 =

1

𝑇
∑𝑡=1
𝑇 𝑦𝑡

🌟 TAKEAWAY

The average strategies 
converge to a Nash 

equilibrium!

Add these two lines and 
divide by T to get the 
average

for 𝑡 = 1,… , 𝑇:

• 𝑥𝑡 ← request strategy from P1's regret minimizer

• 𝑦𝑡 ← request strategy from P2's regret minimizer

• Pass utility 𝐴𝑦𝑡 to P1's regret minimizer

• Pass utility −𝐴⊤𝑥𝑡 to P2's regret minimizer



Regret Minimization: Follow 
the Leader

First attempt: Follow the leader. That is, play the best action in hindsight so 
far:

𝑥𝑡+1 = max
𝑥∈𝑋

෍

𝜏≤𝑡

𝑢𝜏, 𝑥

This does not work!

Counterexample: 𝑛 = 2 actions, 

𝑢𝑡 = ൞
ൗ1 2 , 0 𝑡 = 1

[0, 1] 𝑡 > 1, even
[1, 0] 𝑡 > 1, odd

Best action in hindsight has utility ≈ 𝑇/2

Follow-the-leader always plays the wrong action and therefore gets utility ≈ 0



Follow the Regularized Leader

- Add a regularization term
- E.g. entropy

- This prevents each iterate from 
being deterministic

- The resulting algorithm is no-
regret

- Intuitively, updates toward high-
regret actions, but not too 
much

0 1
Follow the leader will 

always play 
deterministic actions

0 1
Follow the regularized 

leader will mix



Follow the Regularized Leader

- Consider when regularization is 
entropy

- Closed-form optimization of this 
objective results in the following:

- Also called Multiplicative Weights 
Update (MWU), Hedge, Replicator 
Dynamics, Randomized Weighted 
Majority

0 1
Follow the leader will 

always play 

deterministic actions

0 1
Follow the regularized 

leader will mix



A Common Template for 
Regret Minimizers

• Given utility vectors 𝑢1, … , 𝑢𝑡, we compute the empirical regrets up 
to time t of each action:

𝑟𝑡 𝑎 ≔෍
𝜏=1

𝑡

𝑢𝜏 𝑎 − ⟨𝑢𝜏, 𝑥𝜏⟩

• Then, intuitively the next strategy 𝑥𝑡+1 gives mass to actions in a 
manner related to how much regret they have accumulated



A Common Template for 
Regret Minimizers

Empirical regret: 

𝑟𝑡 𝑎 ≔෍
𝜏=1

𝑡

𝑢𝜏 𝑎 − 𝑢𝜏, 𝑥𝜏

• Then, intuitively the next strategy 𝑥𝑡+1 gives mass to actions somewhat proportionally to how much regret 
they have accumulated

Note: MWU is a particular instance of a very general algorithm called “Online mirror descent”, 

which can be applied to all convex strategy sets and guarantees sublinear regret



A Common Template for 
Regret Minimizers

Empirical regret:

𝑟𝑡 𝑎 ≔෍
𝜏=1

𝑡

𝑢𝜏 𝑎 − 𝑢𝜏, 𝑥𝜏

= 𝑟𝑡−1 𝑎 + 𝑢𝑡 𝑎 − 𝑢𝑡 , 𝑥𝑡

A simple modification is to, at every iteration, set a floor of 0 on the 
cumulative regret:

𝑟+
𝑡 𝑎 ≔ max 0, 𝑟+

𝑡−1 𝑎 + 𝑢𝑡 𝑎 − 𝑢𝑡 , 𝑥𝑡



A Common Template for 
Regret Minimizers

All of these algorithms guarantee that after seeing any number T of utilities 

𝑢1, … , 𝑢𝑇, the regret cumulated by the algorithm satisfies

Constant that depends on number of actions

𝑅𝑇 ≤ 𝑐 ෍

𝑡=1

𝑇

𝑢𝑡 2
2

So, assuming that the utility vectors have bounded norms 𝑢𝑡 ≤ 𝐵 (this is 

always the case when playing finite games), then 𝑅𝑇 ≤ 𝑐𝐵 𝑇

Consequence: when using these algorithms in self-play in 2-player 0-sum games, the 

average strategy converges to a Nash equilibrium at a rate of 
𝑇

𝑇
=

1

𝑇

Remember:

This holds without any 

assumption about the way the 

utilities are selected by the 

environment!



State-of-the-Art Variant in 
Practice: Discounted RM (DRM)

• Linear RM (LRM)
• Weight iteration t by t (in regrets and averaging)

• RM+ floors regrets at 0. Can we combine this with linear RM? Theory: Yes. Practice: 
No! Does very poorly.

• But less-aggressive combinations do well: Discounted RM

• On each iteration, multiply positive regrets by 𝑡𝛼 / (𝑡𝛼+1)

• On each iteration, multiply negative regrets by 𝑡𝛽 / (𝑡𝛽+1)

• Weight contributions toward average strategy on iteration 𝑡 by 𝑡𝛾

• Worst-case convergence bound only a small constant worse than that of RM

• For 𝛼 = 1.5, 𝛽 = 0, 𝛾 = 2, consistently outperforms RM+ in practice

[Brown & Sandholm, Solving Imperfect-Information Games via Discounted Regret Minimization, AAAI’19]



What Regret Minimizers are 
Used in Practice?

Multiplicative Weights 
Update (MWU)

✔ Special case of OMD, that works 
for general convex sets

✔Widely used & understood

❌ Slow in practice for games

❌ Hyperparameters (stepsize)

✔ Can incorporate optimism 
about future losses to 
converge faster in 2-player 0-sum
games

🌟Modern variants of this, such as DCFR, are the 
standard in tabular extensive-form game solving!

❌ Only for simplex domains

❌ Not as well studied

✔ Tuned for game solving

✔ No hyperparameters

✔ Incredibly effective 

❓ Unknown… Until recently

✔

Regret Matching (RM)

& Regret Matching+ 

(RM+)

[Farina et al., Faster Game Solving via Predictive Blackwell Approachability: Connecting Regret Matching and Mirror Descent, AAAI 2021]



Optimistic Regret Minimizers

All of these algorithms guarantee that after seeing any number T of utilities 𝑢1, … , 𝑢𝑇 , 

the regret cumulated by the algorithm satisfies

Takeaway message: still ≈ 𝑇 regret, but 

much smaller when there is little change to the 

utilities over time

𝑅𝑇 ≤ 𝑐 ෍

𝑡=2

𝑇

𝑢𝑡 − 𝑢𝑡−1 2
2 + 𝑢𝑡 , 𝑥𝑡 − 𝑢𝑡−1, 𝑥𝑡−1 2

Typically, one-line change in implementation

Remember:

This holds without any assumption about the way 

the utilities are selected by the environment!
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RM+

Self-play iterations

[Farina, Kroer, and Sandholm; Faster Game Solving via Predictive Blackwell Approachability:
Connecting Regret Matching and Mirror Descent, AAAI’21]

Green dashed: Linear RM
Violet dotted: Discounted RM

(RM was omitted as it is typically much slower than RM+)

Empirical Performance



Practical State-of-the-Art

• In general, Discounted RM and Optimistic RM+ are 
the fastest in practice
• For some games, like poker, Discounted RM is 

empirically consistently faster than Optimistic RM+

• For many other games, Optimistic RM+ is significantly 
faster

[Farina, Kroer, and Sandholm; Faster Game Solving via Predictive Blackwell Approachability:
Connecting Regret Matching and Mirror Descent, AAAI’21]
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