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ABSTRACT

Kidney exchange, where needy patients swap incompatilsierdo
with each other, offers a lifesaving alternative to waitfiog an
organ from the deceased-donor waiting list. Recerthgins—
sequences of transplants initiated by an altruistic kidieyor—
have shown marked success in practice, yet remain poorlgrund
stood. We provide a theoretical analysis of the efficacy afirth
in the most widely used kidney exchange model, proving thrag |
chains do not help beyond chains of length of 3 in the largas Th
completely contradicts our real-world results gatherechfthe bud-
ding nationwide kidney exchange in the United States; {teri@-
tion quality improves by increasing the chain length cap 3ot
beyond. We analyze reasons for this gulf between theory ea p
tice, motivated by our experiences running the only natidewid-
ney exchange. We augment the standard kidney exchange todel
include a variety of real-world features. Experiments ie #fatic
setting support the theory and help determine how largeayre
“in the large". Experiments in the dynamic setting cannotbe-
ducted in the large due to computational limitations, bubwip to
460 candidates, a chain cap of 4 was best (in fact, bettef3han
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1. INTRODUCTION

The role of kidneys is to filter waste from blood. Kidney fail-
ure results in accumulation of this waste, which leads tahdea
months. One treatment option is dialysis, in which the patipes
to a hospital to have his/her blood filtered by an externalhimec
Several visits are required per week, and each takes séngared.
The quality of life on dialysis can be extremely low, and ictfa
many patients opt to withdraw from dialysis, leading to aunait
death. Only 12% of dialysis patients survive 10 years [18].
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Instead, the preferred treatment is a kidney transplardnégis
are by far the most common organ to transplant—maore pretvalen
than all other organ transplants combined. Unfortunatély,de-
mand for kidneys far outstrips supply. In the United Statese in
2010, 4,654 people died waiting for a life-saving kidneysyglant.
During this time, 34,418 people were added to the nationélvga
list, while only 10,600 people left the list by receiving acdased-
donor kidney. The waiting list has 89,808 people, and theiamed
waiting time is between 2 to 5 years, depending on blood t¥fg [

For many patients with kidney disease, the best option isitb fi
a living donor, that is, a healthy person willing to donate one of
his/her two kidneys. Although there are marketplaces fofirigu
and selling living-donor kidneys, the commercializatidrhaman
organs is almost universally regarded as unethical, angrdetice
is explicitly illegal in most countries. However, in mosturtries,
live donation is legal, provided it occurs as a gift with ncaficial
compensation. In 2010, there were 5,467 live donationsaniJ8.

The number of live donations would have been much higher if
it were not for the fact that, in most cases, a potential d@mat
his intended recipient are blood-type or tissue-type irgatible.

In the past, the incompatible donor was sent home, leavie@h
tient to wait for a deceased-donor kidney. This is where dydn
exchanges come into play, in which patients can swap thednin
patible donors with each other, in order to each obtain a edilvlp
donor. While stillin their infancy, kidney exchanges haearbeen
fielded at the regional and national level.

In this paper, we consider altruistic chains, a recent iation
for barter exchanges that has been widely adopted for k&ney
but is poorly understood. Section 2 describes the formahaxge
clearing problemand why chains exacerbate the already computa-
tionally intractable problem. Section 3 reports resulbsrfithe first
(and only) nationwide kidney exchange, using our fieldetinet
ogy; these real-world results clearly show the benefit @fgrating
chains into the clearing process. Section 4 formalizeshberteti-
cal benefit of chains as a kidney exchange scales to the kange,
Section 5 experimentally determines exactly what “largefams.
Section 6 studies the dynamics of kidney exchange over tiisie,
ing an extension over the state-of-the-art model to morarately
represent the realities of modern kidney exchange.

2. THE CLEARING PROBLEM

One can encode am-patient kidney exchange (and almost any
n-agent barter exchange, such as Netcycler for used goodsi- Re
It-Swap-It for used books, the National Odd Shoe Exchangd, a

ference on Autonomous Agents and Multiagent Systemsntervac for exchanging time in holiday homes) as a diregtegh

(AAMAS 2012) Conitzer, Winikoff, Padgham, and van der Hoek
(eds.), 4-8 June 2012, Valencia, Spain.

Copyright(© 2012, International Foundation for Autonomous Agents and
Multiagent Systems (www.ifaamas.org). All rights resetve

G(n) as follows. Construct one vertex for each patient. Add a
weighted edge from one patient; to another;, if v; wants the
item of v;. In the context of kidney exchange, the item is a kidney



from a donor thaw; brings with him into the exchange; the donor
is willing to give a kidney if and only ifv; receives a kidney. The
weight w. of edgee represents the utility te; of obtainingv;’s
item. In kidney exchange, the methodology for setting wisigh
decided by the exchange design committee. The weights nade i
account such considerations as age, degree of compatilibit
time, and geographic proximity. A cyclein this graph represents
a possible swap, with each agent in the cycle obtaining &me df
the next agent. The weight. of a cyclec is the sum of its edge
weights. Anexchanges a collection of disjoint cycles. (They have
to be disjoint because no donor can give more than one kidney.

The vanilla version of thelearing problenis to find a maximum-
weight exchange consisting of cycles with length at mostesom
small constant (typically, 2 < L < 5). This cycle-length con-
straint is crucial. For one, all operations in a cycle havbager-
formed simultaneously; otherwise a donor might back owrdfis
incompatible partner has received a kidheilhe availability of
operating rooms, doctors, and staff thus constrains cgdgth.

The clearing problem witl, > 2 is NP-complete [1]. Yet sig-
nificantly better solutions can be obtained by just allowiygles
of length 3 instead of allowing 2-cycles only [12]; in pragj a cy-
cle length cap of 3 is typically used. Using a mixed integexgpam
(MIP) where there is a decision variable for each cycle n@édon

than L and constraints that state that accepted cycles are vertex

disjoint, combined with specialized branch-and-price Mt#ing
software, the (3-cycle) problem is solvable to optimalityractice
at the projected steady-state nationwide scale of 10,008ps[1].
In all our experiments, we use that algorithm as a subroutine

A recent innovation in kidney exchange dbains[13, 9, 10].
Each chain starts with aaltruistic donor—that is, a donor who
enters the pool, without a candidate, offering to donatedady
to any needy candidate in the pool. Chains start with anisttru
donating a kidney to a candidate, whose paired donor dorates
kidney to another candidate, and so on. Chains can be lohger t
cycles in practice because it is not necessary (althoughathé=)
to carry out all the transplants in a chain simultaneotighready,
chains of length ten or more have been reported in practiég [1
To our knowledge, all kidney exchanges in the US now use shain
(in fact, the National Kidney Registry is using chains onhdano
cycles). In our experience, roughly 5% of the pool is altiais

ever, in 2008, the United Network for Organ Sharing (UNOS)—
which controls all organ transplantation in the US—ingithe
formation of anationwidekidney exchange. The benefits of such a
large-scale exchange are numerous (see, for instanceaffe])t is
ubiquitously accepted that one centralized exchange tsrhtbtan
fragmenting the market into separate exchanges. The UN®S na
tionwide kidney exchange pilot went live with 77 transpleenters

in October 2010, and uses our algorithms and software toumind
a match run every month. Starting in May 2011, chains wererinc
porated into the UNOS pilot program. Currently, the cyclp isa3,
while the chain cap was 20 and is now being increased to ipfinit

it turns out to be computationally feasible.
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Figure 1: Real data from the June/July 2011 UNOS match
runs, optimized for maximum cardinality.
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There are many more feasible chains in a network than cycles— Figure 2: Real data from the June/July 2011 UNOS match
because one does not have to find a way to close a chain into aryns, optimized for maximum total weight.

cycle. The straightforward way to incorporate chains it op-
timizer is to add from the end of each potential chain a fakgeed
of weight 0 to every vertex that represents an altruist. Tay,
chains look exactly like cycles to the solver and are handted
rectly. Unfortunately, due to the removal of the cap of 3 ooley
length, this approach does not scale even remotely to thennat
wide level. Rather, it currently scale only to around 200gys,
depending on the cap on chain length. (Of course, if the chain
length cap is lower than the cycle length cap, then chainsado n
significantly increase the complexity.)

3. NATIONWIDE KIDNEY EXCHANGE

Starting around 2003, several regional kidney exchanges ha
gone live in the US. Two examples include those run by the Al-
liance for Paired Donation and the Paired Donation Netwiidu-

Figures 1 and 2 show results for two real matches, for June and
July 2011. To show the efficacy of chains, we varied the cham ¢
from 1 (i.e., the altruistic donor donates directly to theehsed
waiting list) to 20. In Figure 1, we maximize the cardinali
the final matching. That is, we ignore edge weights and assume
all compatible matches are equally good, and determine #ielm
ing that allocates kidneys to the most candidates. The ditteeo
matching increases significantly with chains up to lengtlithé)
or 10 (July). Critically, with long chains we match 1.77 (dyand
2.55 (July) times the number of candidates than would haea be
matched with 3-cycles alone. We note that Ashlagi et al. i@kt
pendently report similar findings from real-world data sets

The improvement from long chains is even more drastic when
the edge weights are taken into account, as is the case irdhe r
UNOS match run. Figure 2 shows that in June, chains of length
up to 13 increase the objective value, while chains of lengtio

1Such backing out cannot be prevented by legal means bedause 12 increase the objective of the matching in July. Ovenadiorpo-

is illegal to contract for an organ in most countries.

2Unlike in a cycle, if a chain breaks by some donor backing out,
the chain merely stops, but no patient-donor pair is our thoeir-
gaining chip" (donor kidney).

rating chains increases the objective value to 2.98 (Jum)6a00
(July) times that of chains only (with a cycle cap of 3).
It is important to note that the structure of the compatipili



graph, G(n) in this early pilot program is special and, in many is known as HLA type, is measured as a combination of six pro-

ways, computationally fortuitous. The current UNOS pooigists teins. Each potential candidate and potential donor mustdied
mainly of highly sensitizeghatients—that is, patients that are diffi-  for preformed antibodies against these six proteins; thésla to be
cult to match based on their tissue type. Intuitively, theagents done at least once a month because the antibody state ofanpers
were too hard to match regionally and in prior runs of theorsi changes over time. An increase in the mismatches betweenr don

exchange—so the input graph is very sparse. Our other experi and candidate HLA types decreases the likelihood of a sefides
ments have shown that with a less sensitized pool, we oftemata kidney transplant, and can render a donor and candidateninco
even solve the current problem size (with long chains) bezge patible. These kinds of blood tests where measurementsiees t

input graphG(n) is not as sparse. Luckily, in the next section, separately from the donors and the patients are caiighl cross-

we show theoretical results stating that in large kidneyigpdoawn matchfor reasons that will become obvious in the next paragraph.

from the full set of candidates (i.e., not just highly seimsil ones), An important challenge is that medical knowledge is incaetgal

long chains will have negligible effect on the overall caality of even if a patient and donor are compatible based on the Virtua

the matching with high probability. Therefore, one may need crossmatch (so there is an edge in the input graph), in yehkty

to consider long chains in the clearing. This would be dégra might not be compatible (i.e., the edge might not be usabla} is

practice because short chains are (1) computationally atieatly determined days before the operation by conducting a téstica

more tractable for the clearing algorithm (there are fevi¢ehem), crossmatchblood from the patient and blood from his/her planned

(2) logistically easier to administer, and (3) less likatyfail due donor are mixed together and if the mixture coagulates, aheyn-

to a positive crossmatch or some non-simultaneous dondirzac compatible. Such an unfortunate, but very common, occoerén

out (these two issues will be discussed later). called apositive crossmatcHPositive crossmatch-sensitive models
have only recently begun to appear in the literature, ané nay

4. THEORETICAL BOUNDS ON CHAINS included a study of chains [5, 15].

We will say that if an altruist donates directly to the deeshs
donor waiting list, that constitutes a chain of length 1.rfatruist
donates to a pair, whose donor donates to the deceasedwlaitor
ing list, that constitutes a chain of length 2. If an altruiehates to
a pair, whose donor donates to a pair, whose donor donatés to t

4.1 Necessary background & model waiting list, that constitutes a chain of length 3, and so\de. are
The need for kidney exchange exists due to the myriad of im- now ready to prove the main theoretical result of this paper.

munological incompatibilities that can be present betwaeman- 4.2 Short chains suffice (in theory)
didate and any potential donor. For instance, hand typeof In this section, we use the canonical model for generatidg ki

a donor kidney can result in acceptance or outright rejedtioa ney exchange data [5]. It works as follows. We start viitfn),

possible candidate. At a high level, human blood is spli fiour a larae compatibility araph representing a kidnev exchamde-
types—O, A, B, and AB—based on the presence or absence of the” 9 P y graph rep ng iney amae:
scribed above. The set of incompatible patient-donor pairs is

A and B proteins. While other complications may arise, a pe partitioned into subsetBx.y of type X-Y, for each combination

et e A v ofblood ypes ana’ f e patent and door espectly. For
an AB candidate; and type AB kidneys are limited to only tyy A each blood typeX we denote the set of_altrwstlc donors_ with that
candidates. Therefore, some candidates are more difficoiatch blood type byV'x, but make no assumptlons.about the size of these
with a random donor than others. O-candidates are the haales sets. We assume that a dgnor and_a pat!ent who are b.|00d type
match because only O-type kidneys can be given to them. Simi- (_:ompauble are tissue typg incompatible with con;tant oty
larly, O-donors are the easiest to match. 7, corresponding to the vnrtua_l crossmatch described abdve

; frequency of each blood typ¥ is denoted by x .

With this in mind, candidate-donor pairs in the matchingIpoo We are now readv to state our main theoretical result. | e
can be labeled based on their blood types using® model it the recent results ofyAshIa i and Roth [5] to the settin \&ﬁains
is thede factomodel for theoretical market design work on kidney 9 9 )

In this section, we prove that using chains of length mora tha
provides no benefit in large, random, unweighted candidatésp
We will prove this result in the most common model of kidney
exchange. We begin by describing the model.

exchange (see, e.g., [2, 5, 7,.15, 17)). mder-demandgpair is THEOREM 1. Assume thaty < 2/5, po < 3ua/2, and o >
any pair such that thPT donor is not ABO_—compatlbIe withthe-ca ;1 > ;g > pag. Then with high probability(n) has an efficient
didate. Furthermore, if these pairs contain only type A arddad allocation (i.e., one that saves as many patients as pajstbht

(e.g., the candidate is type A and the donor is type B), theipai  yses only cycles of length at most 3 and chains of length at3nos
calledreciprocal Any pair in the pool such that the donor is ABO-

compatible with the candidate is callester-demanded Further- The proof follows from three lemmas. The firstlemma is a #fivi
more, if a donor and candidate share the same blood typeateey ~ simplification and extension of Lemma 9.5 of Ashlagi and Rbih

a self-demandegbair. Intuitively, under-demanded and reciprocal Which is a generalization of a classic theorem by Erdds anyiRé

pairs are “harder” to match than over-demanded and selfdded To understand the lemma, denote®yn, p) a random graph with
pairs. In the ABO model, all compatible transplants are icered n vertices where an edge exists between two vertices withgprob
to be equally good (i.e., those edges have weight 1 each)yand t  bility at leastp. For a vectow = (a1, ..., a,) wherea; > 0 for
ically results in the ABO model are derived in the limit, whitre i=1,...,rletG(d,n,p) be anr-partite graph with- sets of ver-
number of pairs of each kind approaches infinity. ticesVi, ..., V, where|V;| = a;-nfori=1,...,r, and adirected

If blood type compatibility were the only requirement forics edge between € V; andv’ € Vi1 fori =1,...,r — 1, or be-
cessful kidney donation, over-demanded and self-demapéiesl tweenv € V,. andv’ € V1, exists with probability at leagt A per-
would have no need to enter the exchange pool because thiey cou fect allocationin a graphG/(n, p) matches all the vertices; a perfect
simply conduct the transplant within the pair. Howeverttier allocation inG(&,n, p) (consisting of cycles of length) matches

complications force their hand: the people in a pair are liysua  all the vertices in the smallest vertex $étfor i = argmin; |Vj|.
incompatible due to tissue type. Tissue type, in particulbat Deviating from [5], defineG’(&, n, p) similarly to G(@&, n, p),



except that there are no edges betwegandV;. An allocation in
G’ (a,n, p) consists of chains of lengththat originate in a vertex
in V1. As before, a perfect allocation @& (&, n, p) matches all the
vertices in the smallest vertex sétfor i = argmin; |V;].

LEMMA 1 (ASHLAGI & ROTH [5]). Letp > 0. ThenG(n, p)
admits a perfect allocation that uses cycles of length at1®egth
high probability. In addition, for any vecta® as above, the ran-
dom graphs(&, n, p) and G’ (&, n, p) admit a perfect allocation
with high probability.

Using Lemma 1, we can assume that if we single out several
large groups of vertices (in a large random compatibilipdr) that
correspond to blood type compatible pairs, there will bécehtly
many edges to admit a perfect matching. For example, if there
large sets of AB-O pairs, O-A pairs, and A-AB pairs, then with
high probability we can find an allocation that consists afy8les
that matches all the vertices in the smallest set. Even ifamsider
several such allocations sequentially, by applying themtiound
we can see that they all exist with high probability. Thiseesglly
allows us to assume in the proof of the next lemma that any two
vertices that are blood type-compatible are connected ledga.

LEMMA 2. Let G(n) be a random graph that admits the fol-
lowing allocation:

1. Every self-demanded pair is matched in 2-way or 3-way cy-
cles with other self-demanded pairs.

Every B-A pair is matched in a 2-way cycle with an A-B pair.

Every A-B pair that is not matched to a B-A pair is matched
in a 3-way cycle with an O-A pair and an A-AB pair.

For X € {A, B}, every over-demanded pak-O is matched

in a 2-way cycle with an Q¥ pair.

2.
3.

4.

Then with high probability7(n) admits an efficient allocation that
uses cycles of length at most 3 and chains of length at most 3.

PROOF SKkeETCH We complete the allocation described in the
lemma’s statement to an efficient allocation. Figure 3 Jigaa the
augmented allocation; regular edges are assumed by theadsmm
formulation while dashed edges are added during this prbef.

V! be the set of vertices not matched by the initial allocatkirst,

as many A-donors as possible donate to A-AB pairs and as many
B-donors as possible donate to B-AB pairs (shown in Figurg 3 b
dashed edges from A-altruists to A-AB pairs and from B-dtsu

to B-AB pairs). In both cases, one of the two vertex sets véll b
exhausted. More formally, using Lemma 1 we find a perfect allo
cation for the subgraph induced BY andVj3 A, and similarly we

find a perfect allocation for the subgraph induced/gyand Vg g .

Let V2 be the vertices not matched by previous allocations. We
find as many 3-wayAB-O, O-A, A-AB) cycles as possible, that
is, we find a perfect allocation for the subgraph induced/Byo,
VEa, andVi2,g. It may be the case th&fZ,s = 0. Let V3 be the
set of vertices not matched by previous allocations. Nextimeea
perfect allocation with 3-wayAB-O, O-B, B-AB) cycles. It may
be the case thdts o = 0 or Viag = 0.

Let V* be the vertices not matched by previous allocations. The
next component in the constructed allocation matches ay @an
donors as possible in chains of length 3 of the f¢@NO-A, A-AB)
and then(O, O-B, B-AB). This is done sequentially as above. Fi-
nally, we match the remaining O-donors and AB-O pairs with re
maining under-demanded pairs via chains of length 2 or 2ayay
cles (not shown in Figure 3).

Each of the allocations constructed above exists with highp
ability; thus (by applying the union bound) they all existlwhigh

-

Figure 3: Accompanying figure to Lemma 2. Altruists are
shown as rectangles; candidate-donor pairs as ovals. Over-
demanded pairs are gray, under-demanded are white, and re-
ciprocal pairs are black. Regular edges appear in the lemma’
formulation and dashed edges are constructed in the proof.

probability. To complete the proof, we argue that our carcton
gives rise to an efficient allocation. Since under our casion all
over-demanded, self-demanded, and reciprocally demapales!
are matched, it is sufficient to show that no allocation catcha
more under-demanded pairs.

Following Ashlagi and Roth [5], when vertex participates in
an exchange with under-demanded vertewe say that helpsv’.
Self-demanded and reciprocally demanded pairs cannotihelgr-
demanded pairs without involving donors or over-demandesp
Similarly, AB-donors cannot help under-demanded pairsaddi-
tion, only two types of vertices can help two under-demarpiecs:
AB-O pairs can participate in cycles with one of O-A and O-Blan
one of A-AB and B-AB, and O-donors can start a chain with the
same types. Any other vertex can help at most one under-disdan
pair, and in particular over-demanded pairs of type” £ AB-O
can only help under-demanded vertices of typeX.

Now, A-donors can only help A-AB pairs, and B-donors can only
help B-AB pairs. Therefore, it is optimal to match these dsno
with their respective under-demanded pairs. Finally, in @an-
structed allocation as many AB-O pairs and O-donors as lplessi
are helping two under-demanded pairs each, while the resiedp-
ing one under-demanded pair eaclf.]

The following lemma directly follows from Proposition 5.2[8],
and holds under the assumptions of Theorem 1.

LEMMA 3 (ASHLAGI & ROTH [5]). G(n) has an allocation
as in Lemma 2, up to symmetries between A-B pairs and B-A pairs
with high probability.

4.3 Discussion

Theorem 1 follows from the proofs of the three lemmas in Sec-
tion 4.2. The theorem itself is motivated by the recent woirk o
Ashlagi and Roth [5]. One has to be careful, though, not to use
the exact allocation constructed in Proposition 5.2 ofrtpaper
as a starting point for the efficient allocation that invahadtruistic
donors. Indeed, given thata.s| > |Ve-a|, Ashlagi and Roth match
AB-O pairs in cyclegAB-O, O-A, A-AB). However, because we
are essentially making no assumptions regardling and|Vz|, it
may be the (admittedly extreme) case that there are manyasay
infinite supply) of A-donors, few B-donors, few O-donorsdam
large number of unmatched under-demanded pairs of type @dB a
B-AB. In that case we would rather have the A-donors donate to
A-AB pairs while creating cyclesAB-O, O-B, B-AB). Therefore,
we must match AB-O pairs onlgfter matching altruistic donors.



The presence of (even short) chains allows us to avoid a nega-types from the ABO model discussed earlier. It also incaapes an

tive property of the efficient allocation constructed by ksfiand
Roth [5]: that it never matches O-AB pairs. These are, in @&sen
the “most” under-demanded pairs in that their candidate$ard-
est to match, while their donors are least capable of findimgteh.
In our allocation, AB-O pairs and O-donors that cannot paéte
in 3-cycles can donate to O-AB pairs without affecting theesif
the matching. More precisely, if there are sufficiently mdoyors
to fully match one of the setgo.a and Va-ag, and one of the sets

Vo-s andVa.ag, then an efficient allocation can match O-AB pairs.

Independent work by Ashlagi et al. [3] attempts to explaia th
observed benefit of longer chains by considering a theadatiodel
with highly sensitized patients. Specifically, the proliapbf tis-
sue type compatibility is allowed to decrease with the sizthe
graphn. Among other results, it is shown that for ahythere ex-
ists a small enough probability of compatibility such thiains of
lengthk + 1 are strictly better than chains of lengthHowever, to
even derive such a statement for chains of length 5 versussbh
length 3, the probability must be as smalkgs for some constant
¢, whereas intuitively this probability should be a consthat does

abstract model of tissue types to compute a type of scorejtizat-
tifies the likelihood of a specific candidate being tissueetgpm-
patible with a random donor. In other words, this tissue tyjelel
is more refined than assuming all blood type compatible edges
tissue type incompatible with equal probability.

5.1 Increasing the candidate pool size

In the first set of experiments, we explore the effect of adarg
number ofcandidateson the efficacy of long chains. We hold the
number ofaltruistsconstant at 1, 5, or 10 for each experiment.

Figures 4, 5, and 6 show that larger pools match a higher per-
centage of candidates, leveling out at roughly 62% in corhitiat
graphs with a couple hundred candidates. At a high leved,itha
strong argument for a national kidney exchange to replazsahof
smaller regional exchanges; see [11] for similar argumeTitese
figures also make a case for the inclusion of chains in podistat
the regional and national level. Figure 5 shows that, foregated
pools of size 256, the optimal matching with a chain cap ofél (i
altruists donating directly to the deceased waiting ligtjding the

not depend om. Hence, despite the elegance of their results, the paired candidate pool entirely) matches nearly 4% fewedicates

assumptions underlying their model may be hard to justify.

5. EXPERIMENTAL VALIDATION

The theoretical results from Theorem 1 are strong in that the

limit the utility of chains to those of length 3 or fewer—agtijraph
grows to infinity. In this section we study the disconnectssn
that theorem and the real-world results from the recent UKIGS
ney match runs (Figures 1 and 2).

There are three potential reasons for this disconnecthglite-

ory applies in the large, and the UNOS exchange is not yeelarg
enough for the theory to have taken hold, (2) the model thett ea

blood type compatible edge fails tissue type compatibitidepen-
dently and with equal probability is a poor model of the (ygh
sensitized) UNOS pool, and (3) the theory assumes all edges h
equal weight, while in the UNOS exchange, edges are weighted

The discrepancy between the theory and the fielded resuits ca

not be explained solely by the fact that the theory model uses
weighted edges while the real UNOS data has edge weightsatlf t
were the main difference, we would see the curves in Figueadhr

their maxima at a chain cap of 3. This is not the case. So, we see

that even if all the weights were binary, long chains woulddoice
a significant benefit in practice. The difference can, in,dzetat-
tributed to the highly structured and very small UNOS podhisT

is the product of the newness of the UNOS pilot program; as the

exchange grows, we expect the compatibility graph’s stinecto
converge to one similar to our theoretical model.

In reality, the input grapkz(n) cannot grow infinitely; specifi-
cally, in kidney paired donation, it has been estimatedithstieady
state the fully fielded nationwide exchange will have aroli@®00
pairs at any one time. In this section, we experimentallgiteine
just how large the candidate pool needs to be for the chaipieap
scribed by Theorem 1 to apply.

The minimum size of this compatibility graph needed for the

theory to take hold depends on the probability distributbhlood
and HLA types in the candidate and altruist pools, the nunaofber
candidates in the graph, and the number of altruists. Weval
both the number of candidates and altruists, but chooseciasfo
only on blood and HLA types representative of the US popoifati
(which serves the current nationwide kidney exchange).

Here we generate candidate-donor pairs and altruistseiatst

overall than matching with a chain cap of 3. The case is mas-dr
tic as the number of altruists increases; for instance,reigishows
a 5% decrease on compatibility graphs of the same size. Téwt ef
of altruists on the pool is discussed further in the nextisact

From above, we can now ignore matchings that only include
chains of length 1 and 2; capping chains at either of these lev
els would result in fewer candidates being matched. Figdrés
and 9 show the expected number of extra transplants regéitm
matches incorporating chains of length 4 and 5, comparedlto o
considering chains of up to length 3. Clearly, the maximumber
of additional transplants offered by increasing the chaimloy 1 is
proportional to the number of altruists present in the grapbr
example, for a graph with altruists, incorporating 5-chains can
provide a benefit of at mog matches over incorporating at most
3-chains; similarly, increasing the cap from 3 to 4 resuitatimost
a extra matches. Figures 7 and 8 show that at pool sizes of 266 wi
a = 1 anda = 5, the expected number of additional transplants
for either 4- or 5-chains is nil (over 100 generated comjiétib
graphs). Figure 9 shows similar results while exemplifyamgther
behavior: as the number of altruists increases, the sizieegbool
required so that limiting the mechanism to 3-chains is fatiery
increases. This behavior is explored further in the nexicaec

Figures 8 and 9 initially show aincreasein the utility of longer
chains as the graph size moves from very small (e.g., 16 datati)
to slightly larger (e.g., 32-64 candidatésThis is a side effect of
the number of altruists present relative to the size of thad. pdith
a high enough ratio of altruists to candidates, altruists“€i@aod”
the matching, an idea explored further in the next section.

All of the experiments validate the theory: there seemsdarty
be a pool size beyond which long chains do not help.

5.2 Increasing the number of altruists

In the previous subsection, we held the number of altruisits ¢
stant while increasing the size of the candidate pool. We eow
plore the opposite, allowing ever increasing numbers ofiialis to
enter candidate pools of constant size.

As the number of altruists increases relative to the sizénef t
candidate pool, the expected number of candidates matéhesl r
to 100%, as shown in Figures 10, 11, and 12. This full flooding
of the pool to create a complete matching, while interesimgot

advanced and commonly used data generator for kidney egehan 3|n Figure 9, the computational demands of this experimeeat pr

today, by Saidman et al. [14]. This generator incorpordte$tood

cluded us from extending the dotted line past 128 candidates
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Figure 7: Cardinality increase over 3-
chains for 4- and 5-chains, #altruists=1.

presently a realistic scenario; all three tested compiyilgiraph
sizes would require around 50% as many altruists as caredidat
the pool (Figure 12 has the x-axis cut short). In our expegesith
UNOS, the number of altruists is typically around 5% the site
the candidate pool. Increasing this number could feasibgnge
as the exchange grows in size and publicity, paying speotie
to the ethical issues that arise in coercion of possible dono

6. DYNAMIC KIDNEY EXCHANGE

6.1 Augmenting the model

nuances that have arisen in practice.

single-shot optimization on a static pool. This deviatesfireality

in that matching should occutynamically In reality, candidates
arrive and depart from the pool. Even with dialysis, only 1886
patients survive 10 years [18]; this gives us the monthltidegte

we use in our experiments. Timeliness in matching is cleianky

portant. Our experimental results, discussed later, parfoatch-

ing over 24 months using a changing kidney pool.

various chain caps, #altruists=5.

Cardinality Increase over 3-Chains, [Alts|=5
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Figure 8: Cardinality increase over 3-
chains for 4- and 5-chains, #altruists=5.
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Figure 9: Cardinality increase over 3-
chains for 4- and 5-chains, #altruists=10.

waiting list. An alternative is to split long chains into segnts
with intra-segment simultaneous transplants, but the satgrexe-
cute one after another. The left over donor (Bkidge dono) from

one segment then serves as a virtual altruist for the nexhaeg
These two types of chains perform differently under the gmes

of renege rates-that is, when a bridge donor decides to leave the
pool before donating a kidney. However, no reliable quaraifon

of a renege rate exists due to the infancy of kidney exchanges

While Gentry et al. [8] do not explicitly consider chain caps

Ashlagi et al. [4] do; they experimentally show that longep (o

In the paper so far, we have studied static models. We now dis- |ength 6) chains can, in fact, help. Our work uses a similadeho
cuss the dynamics of a kidney exchange running month to month  ith single-shot execution chains and, importantly, takes ac-
count the policies of the UNOS nationwide kidney exchangs. A
we will show, this addition results in different matchinghlagior.
We augment the model in several ways to make it capture the we now discuss these UNOS-specific additions to the model.
Individual crossmatch sensitivity. As exemplified in the real,
Dynamics. Most of the work in kidney exchange has focused on a highly-sensitized UNOS candidate pool, candidates cae Wwinely

varying susceptibility to incompatibilities in kidney dation. The
Saidman et al. model from the previous section has a rathkstie
view of virtual crossmatch failures, and we use that modet he
In addition, here we do (non-virtual) crossmatches for ladl t
planned transplants just before the transplant takes ,phacie re-
ality. This is again done using the Saidman et al. [14] geoer#&
provides for each candidate a probability that the candidaissue

Some work in this area has been done already. Unver [17] de- type compatible with a random person. We use that probpbdit

rives an efficient mechanism in the dynamic setting for a §fiag
model of kidney exchange that can be solved analyticallyagti

draw crossmatch success versus failure. If the crossmaitshthe
transplant cannot proceed. If it is part of a cycle, the cgdes not

and Sandholm [6] apply the model discussed above to the dgnam execute; the pairs in the cycle go back in the pool. The faitige

setting, using trajectory-based optimization to look itite pos-
sible futures and then use optimization technology to dates
transplants for the current period, including chains.

Work by Gentry et al. [8] on simulated data and Ashlagi et4]l. [
on real-world data explores the trade-offs between two syqpfe
chain execution polices. The first chain type is executedsieri-

tirety in one time period, with the leftover donor donatirgthe

is permanently removed from the compatibility gra@kn).
Crossmatching has a significant effect on the size of thd™rea
matching. Assume an optimal matching (pre-crossmatchjsiz
3-cycle. If any crossmatch fails between a candidate and poten-
tial donor, theentire cycle must be thrown away—since we cannot
force a donor to give a kidney if his accompany candidate does
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receive one. Even more drastic is the case of chains: if Xame
ple, a pre-crossmatch matching yields a 20-chain, any pfants
after the first crossmatch failure cannot be performed.
Because of this special case for chains, real-world exdsng [ e T e
have enacted policies for the acceptance or rejection afishased ' ‘ ‘ '
on their length and the quality of the altruistic donor. @eyaltru-
ists are highly valued, as they can (potentially) donatentotdood
type, so short chains enabled by O-type altruists shoultefpo
tially) be rejected in favor of longer chains in the futuraur@xper-
iments follow current UNOS policy which, along with some cigé
cases discussed below, states that (i) chains started b@+gpe
altruists are always executed, while (ii) chains triggengdan O- ‘ T
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type altruist are executed only if they can be executed tgtleat 300 T05§|° ondidote Poc oz 450
least 5 (before there is a crossmatch failure). We will eixpent . . . .
with varying the value away from 5; we will call this paramete Figure 13: Expected improvement ofn-chains over 1-chains

Altruists are allowed choices.In the event that an O-type chainis  (over 24 months).
shorter than length 5, the UNOS policy allows for the altrtosle-

cide that the chain be executed anyway. This is due to thetatt
altruists do not want to stay in the candidate pool indefiyiteut
rather want to move on with their lives and other plans. In 8%
experience running kidney exchange, altruists typicadiydt wish

to stay active in the pool for more than three months—instgze

ing to donate directly to the deceased donor waiting list. ilgvh
exact data on this phenomenon are too sparse at the moment, ou
experiments use the anecdotal rates (received through YN6%
probability of an altruist requesting execution of a shbaio, and a
monthly altruist exit rate that corresponds to an expectedgnce

of two months in the pool for each altruist. Our model exesute
each chain in a single time segment.

sidering longer chains helps—sometimes by nearly 10 axtditi
transplants. This increase is surprising because, inglytilonger
chains are less likely to be executed in full (and thus likelyoe
canceled by the UNOS policy) due to low crossmatch proligbili
Not executing a chain is dangerous because altruists lbavgobl
entirely if they remain unmatched for more than a few months.
The results above can be explained by considering the effect
time on an evolving small-scale pool of candidates. Oveetim
highly sensitized candidates will build up in the pool, sitlcey are
often significantly harder to match—both because they heweif
connected edges in the generated compatibility graph aralise
they are more likely to fail during the crossmatch. Throuwhreal-
world results detailed in Section 3, we have seen that thigyudf
. (long) chains increases tremendously in the presence ofadl,sm
6.2 Experimental Results highly sensitized pool. In Figure 13, chains of length geeshan
We now present preliminary results simulating dynamic &ign 3 are able to serve highly sensitized candidates becaugddheot
exchange under the model described above. Figure 13 shews th need to “close” the chain, as is the case with a cycle.

expected increase in transplants when including chains thee Surprisingly, allowing the optimizer to use chains of upendth
cycles-only approach. The x-axis describes the total nurobe 5 is strictly worse than constraining it to chains of lengthmast
candidates available during at least one time period oweetttire 4 (while a cap of 4 is better than 3). This suggests that treedé i
simulation; between 15 and 20 candidates arrive every tieneg minishing benefit to longer and longer chains, and at the sanege

and between 1 and 2 altruists arrive every time period. Titialin there is increasing risk of crossmatch failure (and thebyists
pool (i.e., the pool at tim¢ = 0) is seeded with between 50 and leaving and candidates dying) with increasing chain cape &t
100 candidates and 5 altruists. These settings roughly artinei periments here suggest that in the dynamic setting withetpesl
current state of the nationwide UNOS pilot program. sizes (i.e., not in the very large), a chain cap of 4 is best.

The results both remain true and (appear to) deviate from the We now expand our preliminary experiments to include thécha
theory in a number of ways. The benefit of using chains is imme- execution policy from UNOS (see Section 6.1), and we willnar
diately obvious; in all cases, even using only 2-chainsdases the (between 1 and the chain cap). Intuitively, a highewill prevent
total number of transplants by 20 or more. However, in thiw ne  “wasting” a valuable O-altruist on short chains, favoringiting
setting, chains of length at most 3 (at least for the testetlgires, for a longer, higher-scoring chain instead. Figure 14 shthes
number of altruists, etc) daot provide equivalent benefit to longer  effect of varyingk as we increase the chain length cap. When con-
chains. While 3-chains do provide a net gain over 2-chaios; ¢ sidering only short chains, a highkiincreases the total number of



transplants. In contrast, when chains of length 4 and 5 arsido
ered, it appears better to reduceThe drop in overall utility from
allowing only long chains to execute is due to altruists’ propensity
to leave the pool; if an altruist is not used in an executedncha
within a few time period, he/she is likely to leave the poatda
thus be “wasted” by going straight to the deceased donolingait
list instead of saving some lives in the pool first).

Candidates Matched, |Alts|=29

Candidates Matched (%)

1 2 4 5

Cha\g Cap
Figure 14: Expected percentage of candidates matched with-1
to 5-chains, varyingk in the UNOS chain execution policy.

7. CONCLUSIONS & FUTURE RESEARCH

In this paper, we considered altruist-initiated chaingaent in-
novation in barter exchanges that has seen wide adoptioa-in r
gional and national kidney exchange, but has not been well un
derstood. We described results gathered from the firstmatite
kidney exchange in the US that show, for relatively smatyhhy-
sensitized pools of candidates, the benefit of long chairesthéh
showed that, in the large, the benefit from chains longer &hae-
comes negligible (with high probability) on random compiéitly
graphs drawn from distributions that mimic the real worlppo
lation. We supported these theoretical results by exteresiperi-
ments using the state-of-the-art instance generatordw al$ to ex-
periment on larger instances than exist in current kidnehamsges.
The theoretical results take hold in exchanges orders ohitalg
smaller than the expected steady-state of the nationwitieeltiex-
change; this provides evidence for considering only shuatires in
the large, real-world exchanges we expect to see.

Finally, we experimented in the dynamic setting where the ex
change clears every month. We included in the simulatiohs al
the known (to us) considerations that have arisen througkvork
with real kidney exchanges. Computational complexity juded
experiments in the large for the dynamic setting, but in medi
sized pools a chain cap of 4 was best (and strictly betterhaft
any given point in our largest dynamic simulations, 100-d&idi-
dates were present in the pool—others had already been edatch

had died, or had not entered the simulation yet. We showed in

Section 5 that, at such a small size and with so many altruiss
cannot expect 3-chains to suffice. We believe that, weredbkip-
creased to hundreds of new candidates per month (as is f@wjec

be the case in a fully fielded nationwide exchange), experisia

a dynamic setting would yield results similar to the statiting—
with chains of length 3 sufficing.

Many avenues for future research arise from this work. Theo-

retical results in less abstract models would provide &rrthsight

“Following the acceptance of this paper, UNOS removed the rul
that chains triggered by an O-type altruist are executeg ibthey
can be executed to length at least 5. Our experimental seseite
the reason for this change in policy.

into the efficacy of chains in real world exchanges. Ongoigkw
by Ashlagi et al. [3] is, to our knowledge, the only other push
this direction; they analyze chains in highly sensitizedlppbut
under arguable assumptions. Furthermore, advances ifngjed-
gorithms are necessary to handle chains at even the modeedte
the current state of the art can clear only small candidatdspo
with just a few altruists. Scaling to the expected size ofrthtion-
wide kidney exchange will require algorithmic and compiotal
advances that allow clearing pools orders of magnitudestatgan
what can be solved today. Restricting attention to shorihstraay
be a promising avenue for tackling that complexity.
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